イロト イヨト イヨト イヨト

크

# Frogs in a random environment

## Lorenz Pfeifroth

## March 2011, YEP 2011, Eindhoven

Lorenz Pfeifroth

Frog Model in a random environment



## 1 Frog Model in a fixed environment

- Definition
- Results

# 2 Frog Model in a random environment

- Definition
- Results

▲□▶ ▲□▶ ▲目▶ ▲目▶ ▲□ ● ● ●

Lorenz Pfeifroth

Frog Model in a random environment oo ooooooo

Let *G* be a graph and 0 a vertex.

・ロ> < 団> < 豆> < 豆> < 豆> < □</li>

Lorenz Pfeifroth

イロト イヨト イヨト イヨト

æ

Let *G* be a graph and 0 a vertex.

On every vertex we have some sleeping frogs. The frog at the origin starts to jump according to a random walk.

Lorenz Pfeifroth

Let *G* be a graph and 0 a vertex.

On every vertex we have some sleeping frogs. The frog at the origin starts to jump according to a random walk. If an active frog visits a vertex for the first time, the sleeping frogs wake up and move independently of all other active frogs according to the same random walk.

Lorenz Pfeifroth

Let 
$$G = (\mathbb{Z}, E)$$
,  $U := [0, 1]^{\mathbb{Z}}$  and

$$\mathcal{S} := \{\eta = (\eta_i)_{i \in \mathbb{Z}} \in \mathbb{N}^{\mathbb{Z}} : \eta_0 = \mathbf{1}\}.$$

Let  $\Omega \subset \mathbb{Z}^{\mathbb{N}_0}$  denote the set of all paths in *G*. Let  $\mathcal{F}$  be the canonical  $\sigma$ -algebra on  $\Omega$  and  $X_t : \Omega \to \mathbb{Z}$  the canonical projections to the *t*-th coordinate.

Lorenz Pfeifroth

ヘロト ヘアト ヘビト ヘビト

Definition

Let 
$$G = (\mathbb{Z}, E), U := [0, 1]^{\mathbb{Z}}$$
 and

$$\mathcal{S} := \{\eta = (\eta_i)_{i \in \mathbb{Z}} \in \mathbb{N}^{\mathbb{Z}} : \eta_0 = \mathbf{1}\}.$$

Let  $\Omega \subset \mathbb{Z}^{\mathbb{N}_0}$  denote the set of all paths in *G*. Let  $\mathcal{F}$  be the canonical  $\sigma$ -algebra on  $\Omega$  and  $X_t : \Omega \to \mathbb{Z}$  the canonical projections to the *t*-th coordinate.

Let  $\alpha \in U$  fixed.  $Q_{\alpha}$  is the probability measure on  $(\Omega, \mathcal{F})$  of a Markov chain such that for all  $t \in \mathbb{N}_0$  and  $n \in \mathbb{Z}$ , one has

$$Q_{\alpha}(X_{t+1} = n+1 | X_t = n) = \alpha_n,$$
  
$$Q_{\alpha}(X_{t+1} = n-1 | X_t = n) = 1 - \alpha_n := \beta_n,$$

Lorenz Pfeifroth

Frog Model in a random environment oo ooooooo

Let  $\eta \in S$  be fixed.

Lorenz Pfeifroth

Let  $\eta \in S$  be fixed. At the beginning there are  $\eta_i$  sleeping frogs on vertex *i*. The frog at the origin starts to perform a random walk with law  $Q_{\alpha}$ . If sleeping frogs get awake, they perform a random walk with the same law  $Q_{\alpha}$  independently of all other active frogs. Let  $\eta \in S$  be fixed. At the beginning there are  $\eta_i$  sleeping frogs on vertex *i*. The frog at the origin starts to perform a random walk with law  $Q_{\alpha}$ . If sleeping frogs get awake, they perform a random walk with the same law  $Q_{\alpha}$  independently of all other active frogs. This model is denoted by  $FM_{\alpha}(\mathbb{Z}, \eta)$  and the distribution by  $P_{\eta} := P_{\eta,\alpha}$ .

・ロット (四)・ (田)・ (日)・

Lorenz Pfeifroth

イロン イヨン イヨン ・

2

## Definition (Recurrence for $FM_{\alpha}$ )

The frog model  $FM_{\alpha}(\mathbb{Z}, \eta)$  is called recurrent if and only if the  $P_{\eta}$ -probability that the origin is visited infinitely often is equal 1. Otherwise the frog model is called transient.

Lorenz Pfeifroth

If the underlying random walk is a simple random walk with drift to the right (i.e. there is a  $p \in (0.5, 1)$ :  $\alpha_i = p$  for  $i \in \mathbb{Z}$ ):



Lorenz Pfeifroth

◆□▶ ◆□▶ ◆ □▶ ◆ □ ● ● ● ● ●

If the underlying random walk is a simple random walk with drift to the right (i.e. there is a  $p \in (0.5, 1)$ :  $\alpha_i = p$  for  $i \in \mathbb{Z}$ ):

Theorem (Gantert and Schmidt 2009)

Let  $p \in (0.5, 1)$  and  $\eta$  be fixed. Then the frog model  $FM_p(\mathbb{Z}, \eta)$  is recurrent if and only if

$$\sum_{i=1}^{\infty} \eta_i \rho^i = \infty,$$

with  $\rho = \frac{p}{1-p}$ .

Lorenz Pfeifroth

For the next result, we will take  $\eta = (\eta_i)_{i \in \mathbb{Z}}$  as random variable with values in S. We always assume that:

Lorenz Pfeifroth

For the next result, we will take  $\eta = (\eta_i)_{i \in \mathbb{Z}}$  as random variable with values in S. We always assume that:

1  $\eta_i$  for  $i \neq 0$  are iid random variable.

Lorenz Pfeifroth

For the next result, we will take  $\eta = (\eta_i)_{i \in \mathbb{Z}}$  as random variable with values in S. We always assume that:

- 1  $\eta_i$  for  $i \neq 0$  are iid random variable.
- **2** We denote the distribution of  $\eta$  by  $\mu$ .

Lorenz Pfeifroth

For the next result, we will take  $\eta = (\eta_i)_{i \in \mathbb{Z}}$  as random variable with values in S. We always assume that:

- 1  $\eta_i$  for  $i \neq 0$  are iid random variable.
- **2** We denote the distribution of  $\eta$  by  $\mu$ .

Lorenz Pfeifroth

For the next result, we will take  $\eta = (\eta_i)_{i \in \mathbb{Z}}$  as random variable with values in S. We always assume that:

- 1  $\eta_i$  for  $i \neq 0$  are iid random variable.
- **2** We denote the distribution of  $\eta$  by  $\mu$ .

Remark:  $\mu(\eta_1 \ge 1) = 1$ .

Frog Model in a random environment

## Theorem (Gantert and Schmidt 2009)

Let  $p \in (0.5, 1)$  and  $\eta_i$  are iid random variables. Then  $\mu$ -a.s.

$$P_{\eta}(0 \text{ is visited i.o}) = \begin{cases} 0 & \text{if} \quad \mathbb{E}[\log^{+}(\eta_{1})] < \infty \\ 1 & \text{if} \quad \mathbb{E}[\log^{+}(\eta_{1})] = \infty \end{cases}$$

▲□▶▲@▶▲≣▶▲≣▶ ■ のQで

Lorenz Pfeifroth

Frog Model in a random environment oo ooooooo

More definitions:

Lorenz Pfeifroth

More definitions:Let  $\alpha \in U$  be fixed. Then we set for all  $i \in \mathbb{Z}$ 



Results

$$\sigma_i = \frac{1 - \alpha_i}{\alpha_i}.$$

Lorenz Pfeifroth

More definitions:Let  $\alpha \in U$  be fixed. Then we set for all  $i \in \mathbb{Z}$ 

$$\sigma_i = \frac{1 - \alpha_i}{\alpha_i}.$$



1

$$\rho_i = \begin{cases} \sigma_1 \cdots \sigma_i & \text{if } i \ge 1\\ \sigma_0 \cdots \sigma_i & \text{if } i \le 0 \end{cases}.$$

Lorenz Pfeifroth

< ロ > < 回 > < 回 > < 回 > - < 回 > - <

2

More definitions:Let  $\alpha \in U$  be fixed. Then we set for all  $i \in \mathbb{Z}$ 

$$\sigma_i = \frac{1 - \alpha_i}{\alpha_i}.$$

#### 2

1

$$\rho_i = \begin{cases} \sigma_1 \cdots \sigma_i & \text{if } i \ge 1 \\ \sigma_0 \cdots \sigma_i & \text{if } i \le 0 \end{cases}.$$

 We call an environment α ∈ U irreducible if and only if 0 < α<sub>i</sub> < 1 for all i ∈ Z.</li>

Lorenz Pfeifroth

Frog Model in a random environment

#### Theorem (P. 2010)

Let  $\alpha \in U$  and  $\eta \in S$  be fixed. Also assume

$$\sum_{n=0}^{\infty} (\rho_{-n})^{-1} = \infty$$
 and  $\sum_{n=1}^{\infty} \rho_n < \infty$ 

and let  $\alpha$  be irreducible.

▲□▶▲□▶▲目▶▲目▶ ■ の900

Lorenz Pfeifroth

Frog Model in a random environment

ヘロン 人間 とくほ とくほ とう

#### Theorem (P. 2010)

Let  $\alpha \in U$  and  $\eta \in S$  be fixed. Also assume

$$\sum_{n=0}^{\infty}(
ho_{-n})^{-1}=\infty$$
 and  $\sum_{n=1}^{\infty}
ho_n<\infty$ 

and let  $\alpha$  be irreducible. Then the frog model  $FM_{\alpha}(\mathbb{Z}, \eta)$  is recurrent if and only if

$$\sum_{i=1}^{\infty} \eta_i \sigma_i^{(S)} = \infty$$
with  $\sigma_i^{(S)} := \sum_{n=i}^{\infty} \sigma_1 \cdots \sigma_n = \sum_{n=i}^{\infty} \rho_n$ .

Lorenz Pfeifroth

Frog Model in a random environment

#### Theorem (P. 2010)

Let  $\alpha \in U$  be irreducible. Suppose that  $\eta_i$  are iid random variables. Also suppose some other Assumptions for the environment  $\alpha$  are fulfilled.

Lorenz Pfeifroth

Frog Model in a random environment

#### Theorem (P. 2010)

Let  $\alpha \in U$  be irreducible. Suppose that  $\eta_i$  are iid random variables. Also suppose some other Assumptions for the environment  $\alpha$  are fulfilled.Set

 $A' := \{\eta; \text{ there exists } K(\eta) \in \mathbb{R} \text{ such that for all } x \leq 1$ 

$$\sum_{i=1}^{\infty} \eta_i \sigma_{x,i}^{(S)} < K(\eta) \}$$

with 
$$\sigma_{x,i}^{(S)} := \sum_{n=i+x}^{\infty} \sigma_x \cdots \sigma_n$$
.

Lorenz Pfeifroth

#### Theorem (P. 2010)

Let  $\alpha \in U$  be irreducible. Suppose that  $\eta_i$  are iid random variables. Also suppose some other Assumptions for the environment  $\alpha$  are fulfilled.Set

 $A' := \{\eta; \text{there exists } K(\eta) \in \mathbb{R} \text{ such that for all } x \leq 1$ 

$$\sum_{i=1}^{\infty} \eta_i \sigma_{x,i}^{(S)} < K(\eta) \}$$

くじ とくばとう くさとう

with 
$$\sigma_{x,i}^{(S)} := \sum_{n=i+x}^{\infty} \sigma_x \cdots \sigma_n$$
. If  $\mu(A') = 1$ , then we get  $\mu$ -a.s.

 $P_{\eta}$ (the origin is visited only finitely often by active frogs) = 1.

Lorenz Pfeifroth

Frog Model in a fixed environment

Frog Model in a random environment



## Frog Model in a fixed environment

- Definition
- Results

## 2 Frog Model in a random environment

- Definition
- Results

▲口 > ▲□ > ▲目 > ▲目 > ▲目 > ▲□ > ④ < ④

Lorenz Pfeifroth

The underlying random walk is now a random walk in a random environment.

◆□ > ◆□ > ◆目 > ◆目 > ◆□ > ◆□ >

Lorenz Pfeifroth

= 990

イロン イヨン イヨン ・

The underlying random walk is now a random walk in a random environment.

**Formal:** Let  $\mathbb{P}$  be a probability measure on (U, U).

Lorenz Pfeifroth

◆□▶ ◆□▶ ◆ 臣▶ ◆ 臣▶ ─ 臣 ─ のへで

The underlying random walk is now a random walk in a random environment.

**Formal:** Let  $\mathbb{P}$  be a probability measure on (U, U). Then we can define a new measure as

$${\it P}'_\eta = \int\limits_U {\it P}_{\eta,lpha} \ \mathbb{P}({\it d}lpha).$$

Lorenz Pfeifroth

The underlying random walk is now a random walk in a random environment.

**Formal:** Let  $\mathbb{P}$  be a probability measure on (U, U). Then we can define a new measure as

$$oldsymbol{P}_\eta^\prime = \int\limits_U oldsymbol{P}_{\eta,lpha} \; \mathbb{P}(oldsymbol{d} lpha).$$

Thus,  $P'_{\eta}$  is the probability measure of a new model  $(FM_{\mathbb{P}}(\mathbb{Z}, \eta))$  called frog model in a random environment.

#### Definition (Recurrence for $FM_{\mathbb{P}}$ )

The frog model  $FM_{\mathbb{P}}(\mathbb{Z}, \eta)$  is called recurrent if and only if the  $P'_{\eta}$ -probability that the origin is visited infinitely often is equal 1. Otherwise the frog model is called transient.

Lorenz Pfeifroth

イロト イヨト イヨト イヨト

2

For all the following results we make the following assumptions 1 Let  $\alpha_i$ ,  $i \in \mathbb{Z}$ , all iid random variables.

ヘロト ヘアト ヘビト ヘビト

2

For all the following results we make the following assumptions

- **1** Let  $\alpha_i$ ,  $i \in \mathbb{Z}$ , all iid random variables.
- −∞ < E[log(σ<sub>0</sub>)] < 0 where E denotes the expectation with respect to P.</li>

Lorenz Pfeifroth

ヘロト ヘアト ヘビト ヘビト

2

For all the following results we make the following assumptions

- **1** Let  $\alpha_i$ ,  $i \in \mathbb{Z}$ , all iid random variables.
- −∞ < E[log(σ<sub>0</sub>)] < 0 where E denotes the expectation with respect to P.</li>

Lorenz Pfeifroth

For all the following results we make the following assumptions

- **1** Let  $\alpha_i$ ,  $i \in \mathbb{Z}$ , all iid random variables.
- 2 −∞ < E[log(σ<sub>0</sub>)] < 0 where E denotes the expectation with respect to P.</p>

That means the underlying random walk is transient to the right.

# Theorem (P. 2010)

Let  $\eta \in S$  be fixed.

Frog Model in a random environment

うくで

Lorenz Pfeifroth

Frog Model in a random environment

#### Theorem (P. 2010)

Let  $\eta \in S$  be fixed.

1 If there is a 
$$\epsilon > 0$$
 with

$$\sum_{i=1}^{\infty} \eta_i \boldsymbol{e}^{i(\mathbb{E}[\log(\sigma_0)] - \epsilon)} = \infty,$$

then  $FM_{\mathbb{P}}(\mathbb{Z}, \eta)$  is recurrent.



Lorenz Pfeifroth

Frog Model in a random environment

#### Theorem (P. 2010)

Let  $\eta \in S$  be fixed.

1 If there is 
$$a \epsilon > 0$$
 with

$$\sum_{i=1}^{\infty} \eta_i e^{i(\mathbb{E}[\log(\sigma_0)] - \epsilon)} = \infty,$$

then  $FM_{\mathbb{P}}(\mathbb{Z},\eta)$  is recurrent.

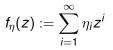
2 If there is a  $\epsilon > 0$  with  $\epsilon < -\mathbb{E}_{\nu}[\log(\sigma_0)]$  and

$$\sum_{i=1}^{\infty} \eta_i \boldsymbol{e}^{i(\mathbb{E}[\log(\sigma_0)]+\epsilon)} < \infty,$$

then  $FM_{\mathbb{P}}(\mathbb{Z},\eta)$  is transient.

Lorenz Pfeifroth

#### Now let



for  $z \in \mathbb{R}$ .

●●● 単一本目を入出す 4回す 4日を

Lorenz Pfeifroth

Frog Model in a random environment

・ロト ・聞 ト ・ 国 ト ・ 国 ト

2

#### Results

#### Now let

$$f_{\eta}(z) := \sum_{i=1}^{\infty} \eta_i z^i$$

# for $z \in \mathbb{R}$ . Also we denote $R \ge 0$ the radius of convergence of $f_{\eta}$ .

Lorenz Pfeifroth

◆□▶ ◆□▶ ◆ 臣▶ ◆ 臣▶ ─ 臣 ─ のへで

## Corollary (P. 2010)

Let  $\eta \in S$  be fixed and  $\mathbb{E}[|\log(\sigma_0)|] < \infty$ .

1 If  $\mathbb{E}[\log(\sigma_0)] \neq 0$  and  $R < \exp(-|\mathbb{E}[\log(\sigma_0)]|)$  then  $FM_{\mathbb{P}}(\mathbb{Z}, \eta)$  is recurrent.

Lorenz Pfeifroth

## Corollary (P. 2010)

Let  $\eta \in S$  be fixed and  $\mathbb{E}[|\log(\sigma_0)|] < \infty$ .

- 1 If  $\mathbb{E}[\log(\sigma_0)] \neq 0$  and  $R < \exp(-|\mathbb{E}[\log(\sigma_0)]|)$  then  $FM_{\mathbb{P}}(\mathbb{Z}, \eta)$  is recurrent.
- 2 If  $\mathbb{E}[\log(\sigma_0)] \neq 0$  and  $R > \exp(-|\mathbb{E}[\log(\sigma_0)]|)$  then  $FM_{\mathbb{P}}(\mathbb{Z}, \eta)$  is transient.

Lorenz Pfeifroth

## Corollary (P. 2010)

Let  $\eta \in S$  be fixed and  $\mathbb{E}[|\log(\sigma_0)|] < \infty$ .

- 1 If  $\mathbb{E}[\log(\sigma_0)] \neq 0$  and  $R < \exp(-|\mathbb{E}[\log(\sigma_0)]|)$  then  $FM_{\mathbb{P}}(\mathbb{Z}, \eta)$  is recurrent.
- 2 If  $\mathbb{E}[\log(\sigma_0)] \neq 0$  and  $R > \exp(-|\mathbb{E}[\log(\sigma_0)]|)$  then  $FM_{\mathbb{P}}(\mathbb{Z}, \eta)$  is transient.
- 3 If  $\mathbb{E}[\log(\sigma_0)] = 0$  then  $FM_{\mathbb{P}}(\mathbb{Z}, \eta)$  is recurrent.

Lorenz Pfeifroth

For the next theorem the starting configuration is random again, i.e.  $\eta_i$  are iid random variables.

・ロ・・ 日・・ 田・・ 日・ うらぐ

Lorenz Pfeifroth

For the next theorem the starting configuration is random again, i.e.  $\eta_i$  are iid random variables.

### Theorem (P. 2010)

Let  $\eta_i$ ,  $i \in \mathbb{Z} \setminus \{0\}$ , be iid. Then  $\mu$ -a.s.

$$P'_{\eta}(\mathit{FM}_{\mathbb{P}}(\mathbb{Z},\eta) \textit{ is recurrent}) = \begin{cases} 0 & \textit{if } & \textit{E}_{\mu}[\log^{+}(\eta_{1})] < \infty \\ 1 & \textit{if } & \textit{E}_{\mu}[\log^{+}(\eta_{1})] = \infty \end{cases}$$

Lorenz Pfeifroth

For the next theorem the starting configuration is random again, i.e.  $\eta_i$  are iid random variables.

#### Theorem (P. 2010)

Let  $\eta_i$ ,  $i \in \mathbb{Z} \setminus \{0\}$ , be iid. Then  $\mu$ -a.s.

$$P'_{\eta}(\mathit{FM}_{\mathbb{P}}(\mathbb{Z},\eta) \text{ is recurrent}) = \begin{cases} 0 & \textit{if} \quad \textit{E}_{\mu}[\log^{+}(\eta_{1})] < \infty \\ 1 & \textit{if} \quad \textit{E}_{\mu}[\log^{+}(\eta_{1})] = \infty \end{cases}$$

In particular, if the distribution of  $\eta_1$  is given the distribution of the environment doesn't change the probability to be recurrent.

Lorenz Pfeifroth

For  $\mathbb{P}$ -a.a  $\alpha$  there exists a  $K_{\alpha}$  such that  $\mathbb{P}$ -a.s for all  $x \in \mathbb{Z}^-$ 

$$\sum_{k=x}^{\infty}\sigma_{x}\cdots\sigma_{k}\leq K_{\alpha}.$$

#### Theorem (P. 2011)

Assume that  $\eta_i$ ,  $i \in \mathbb{Z} \setminus \{0\}$ , are iid and  $\alpha_i$ ,  $i \in \mathbb{Z}$ , are iid. Then we get  $\mu$ -a.s.

$$\mathcal{P}_{\eta}'(0 ext{ is visited i.o.}) = egin{cases} 0 & ext{if } \mathcal{E}_{\mu}[\log^+(\eta_1)] < \infty, \ 1 & ext{if } \mathcal{E}_{\mu}[\log^+(\eta_1)] = \infty, \end{cases}$$

Lorenz Pfeifroth

Frogs in a random environment

< ロ > < 団 > < 目 > < 目 > < 目 > < 回 < つ < ()</li>

イロト イヨト イヨト イヨト

크

# Thank you for your attention.

Lorenz Pfeifroth