PHILIPS - A NEW RAY TRACING METHOD FOR NON-IMAGING OPTICS

Jan Bouwe van den Berg, Rui Castro, Jan Draisma, Joep Evers, Maxim Hendriks, Giorgi Khimshiashvili, Oleh Krehel, Ivan Kryven, Karin Mora, Botond Szabó, Piotr Zwiernik

SWI - Eindhoven 2012

SWI, February 03, 2012

Introduction

- $\bullet \ \, \mathsf{Input} = \mathsf{source} \,\, \mathsf{position}, \, \mathsf{angle} \,\,$
- $\bullet \ \mathsf{Output} = \mathsf{target} \ \mathsf{position}, \ \mathsf{angle} \ \mathsf{and} \ \mathsf{light} \ \mathsf{intensity} \\$
- Far field

Modelling

Light intensity depends on light fixture shape.

2-faceted, multi-faceted, smooth fixture

TWO-FACETED CUP

Analytical results

- Geometrical proof: maximum number of reflections
- Finite number of reflections
- Exit position and angle
- Philips example:

PHASE SPACE

Map source position and angle to target position and angle.

LIGHT INTENSITY

 $I_{\mathsf{source}} \sim \cos heta$ (Lambertian)

Multi-faceted cup

- proof follows same principle
- Finite number of reflections
- Intensity function

Intensity for multi-faceted cups

2-faceted Fixture

4-faceted Fixture

6-faceted Fixture

2D SMOOTH CUP

DESIGNING A FUNCTIONAL

PHASE SPACE PARTITION

SMART INTEGRATION

3D ROTATIONAL SYMMETRY

3D Arbitrary Smooth Cup

RESULTS ACHIEVED

During the week, we managed to do several things.

- For mirror-symmetric 2-facet cups:
 - To compute formulas for the boundaries of the source and target phase spaces
 - Implemented the computation in Mathematica
- For mirror-symmetric multifaceted cups:
 - To compute explicit formulas for the intensity function on the far field
 - Implemented the computation in Mathematica
- For arbitrary smooth cups:
 - To develop a deterministic algorithm for numerical approximation of the division of source phase space (with exponential order convergence)
 - To construct an MC algorithm for integration over the source phase space, using bootstrapping
 - Implemented the computation in Matlab