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Aim of this lecture

Queueing system

Single server, infinite waiting room, FCFS

Multi-type Markovian arrivals (correlated types)

Type dependent service times (PH)

Type dependent customer impatience (general, e.g., Weibull)

⇒ In CONTINUOUS time
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Stepwise approach

Step 1

Single server, infinite waiting room, FCFS

Multi-type Markovian arrivals (correlated types)

Type dependent service times (PH)

//////Type/////////////dependent////////////customer//////////////impatience///////////(general,//////e.g.,///////////Weibull)

⇒ In DISCRETE time
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Stepwise approach

Step 2

Single server, infinite waiting room, FCFS

Multi-type Markovian arrivals (correlated types)

Type dependent service times (PH)

//////Type/////////////dependent////////////customer//////////////impatience///////////(general,//////e.g.,///////////Weibull)

⇒ In CONTINUOUS time
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Stepwise approach

Step 3

Single server, infinite waiting room, FCFS

Multi-type Markovian arrivals (correlated types)

Type dependent service times (PH)

Type dependent customer impatience (general, e.g., Weibull)

⇒ In CONTINUOUS time
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Step 1: Arrival Process (discrete-time)

MMAP[K]: Markovian arrival process with marked transitions

Characterized by a set of ma ×ma matrices
{Dk |k = 0, . . . ,K} such that

Dk is substochastic matrix
D =

∑K
k=0 Dk is a transition matrix

Interpretation

The (j , j ′)-th entry (Dk )j ,j ′ of Dk holds the probability that
the underlying discrete time MC changes its phase from j to
j ′, while generating a type k arrival

Like a D-BMAP, but a size k batch arrival is now a type k
arrival
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Step 1: Service Times (discrete-time)

Type dependent service

Type k customers: discrete phase-type (DPH) distributed
amount of service with representation (αk ,Sk ) of order ms,k .

DPH definition

Order n DPH is the time to absorption in an n + 1 state
discrete time Markov chain with transition matrix

P =

[
S s
0 1

]
(note, s = e − Se) and initial probability vector

(α, 1− αe) = (α, α0),

such that states {1, . . . , n} are transient.
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Step 1: Solution method

Step 1a

Construct a GI/M/1-type MC that allows us to compute

Waiting/sojourn time distributions
Queue length distributions

from its steady state distribution.

Step 1b

Reduce the GI/M/1-type MC to a Quasi-Birth-Death (QBD)
MC to compute the steady state distribution more efficiently
(in terms of time and memory usage).
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Discrete time GI/M/1-type Markov chains

GI/M/1-type transition matrix P

QBD is skip-free in both directions, GI/M/1-type is skip-free
to the right

P =


B1 A0 0
B2 A1 A0

B3 A2 A1 A0

B4 A3 A2 A1
. . .

...
...

. . .
. . .

. . .
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Discrete time GI/M/1-type MC: Main results

Positive recurrence and stationary vector π

Markov chain is positive recurrent if and only if

θ
∑
i≥1

iAie > 1,

with θA = θ and A =
∑

i≥0 Ai , which is equivalent to
sp(R) < 1

Stationary vector π = (π0, π1, . . .) obeys, for i > 0

πi = πi−1R = π0R
i

and π0 = π0
∑∞

i=1 R
i−1Bi and π0(I − R)−1e = 1
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Discrete time GI/M/1-type MC: Main results

Key Equation

Smallest nonnegative solution to nonlinear matrix equation

R =
∞∑

i=0

R iAi

R has the same probabilistic interpretation as for the QBD

To compute R we make use of the (Ramaswami/Bright) dual
(in SMCSolver) and compute G via:

Functional iterations (FI), (Neuts, Latouche)
Newton Iteration (NI), (Perez, Telek, Van Houdt)
Cyclic Reduction (CR), (Bini, Meini)
Invariant Subspace (IS), (Akar, Sohraby)
Ramaswami Reduction (RR), (Bini, Meini, Ramaswami)
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Step 1a: the GI/M/1-type MC

Main idea

Observe the system when the server is busy.

Define MC {(At , (Tt ,St ,Mt−At ))}t≥0 with

At : age of the customer in service (∈ {1, 2, . . .}) at time t,
Tt : represents the type of the customer in service at time t,
St : the phase of the server at time t,
Mt : state of the MMAP[K] at time t.

⇒ Keep track of MMAP[K] state at arrival time.
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Step 1a: the GI/M/1-type MC

Transitions (1/2)

No service completion:

At+1 = At + 1, age increases by one.
Tt+1 = Tt = k , type remains the same.
P[St+1 = j |St = i ] = (Sk )i,j , due to (αk ,Sk ) PH service.
Mt+1−At+1 = Mt−At , MMAP[K] state remains the same.

⇒ Level increases by one: A0 = Sser ⊗ Ima , with

Sser =

S1 . . .

SK

 .
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Step 1a: the GI/M/1-type MC

Transitions (2/2)

Service completion (of customer n):

Let i be the inter-arrival time between customer n and n + 1,
then At+1 = max(1,At + 1− i).
Age decreases by i − 1 → covered by matrix Ai .

⇒ Level reduces by i − 1: Ai = sser ⊗ (D0)i−1L, with

sser = e − Ssere,

and
L =

[
(α1 ⊗ D1) . . . (αK ⊗ DK )

]
.
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Discrete-time Quasi-Birth-Death (QBD) type Markov
chain:

Infinite Quasi-Birth-Death Markov chain

infinite state space S
S partitioned into levels of size
m (except for level 0)

level de- or increases by at most
one

characterized by m ×m matices
A0, A1 and A2

plus some boundary matrices
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Discrete time QBD

QBD transition matrix P

P =


B1 A2 0
B0 A1 A2

A0 A1 A2

A0 A1
. . .

0
. . .

. . .
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Discrete time QBD: Main results

Positive recurrence and stationary vector π

Markov chain is positive recurrent if and only if

(Downward drift ≈) θA0e > θA2e (≈ Upward drift) ,

with θA = θ and A = A0 + A1 + A2, which is equivalent to
sp(R) < 1

Stationary vector π = (π0, π1, . . .) obeys, for i > 0

πi = πi−1R = π0R
i

and π0 = π0(B1 + RB0) and π0(I − R)−1e = 1
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Discrete time QBD: Main results

Key Equation

Smallest nonnegative solution to nonlinear matrix equation

R = A2 + RA1 + R2A0

Algorithms for R (all implemented in SMCSolver in Matlab)

Functional iterations (FI), (Neuts, Latouche)
Logarithmic Reduction (LR), (Latouche, Ramaswami)
Newton Iteration (NI), (Latouche)
Cyclic Reduction (CR), (Bini, Meini)
Invariant Subspace (IS), (Akar, Sohraby)

Typically compute G = A0 + A1G + A2G
2 and use

R = A2(I − A1 − A2G )−1
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Step 1b: Reduction to QBD

Transition matrices

Basic idea: split transition of Ai into i steps.

Matrix geometric form of Ai , for i > 0 allows reduction to a
small QBD.

In our case: it suffices to add ma states to each level.

QBD is characterized by A∗0 (down), A∗1, A∗2 (up)

A∗2 =

[
0 0
0 A0

]
, A∗1 =

[
0 L
0 A1

]
, A∗0 =

[
D0 0

sser ⊗ D0 0

]
.

Steady state distribution of GI/M/1-type MC can be obtained
from QBD steady state by censoring
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Step 1: Concluding remarks

Possible Generalizations

Semi-Markovian arrivals (no QBD reduction)

General customer impatience (level-dependent QBD)

Correlation between service and inter-arrival times

Multiple-servers (small number): age of youngest in service

Batch arrivals (messy business)

Some related papers (discrete-time):

The delay distribution of a type k customer in a FCFS MMAP[K]/PH[K]/1 queue, B. Van Houdt and C.
Blondia, Journal of Applied Probability (JAP), Vol. 39, No 1, March 2002.

The waiting time distribution of a type k customer in a discrete-time FCFS MMAP[K]/PH[K]/c (c=1,2)
queue using QBDs, B. Van Houdt and C. Blondia, Stochastic Models, Vol 20, no 1, pp. 55-69, 2004.

Response time distribution in a D-MAP/PH/1 queue with general customer impatience, J. Van Velthoven,
B. Van Houdt and C. Blondia, Stochastic Models, Vol 21, pp. 745-765, 2005.

Age Process, Workload Process, Sojourn Times, and Waiting Times in a Discrete Time
SM[K]/PH[K]/1/FCFS Queue, Qi-Ming He, Queueing Systems, Vol 49, pp. 363-403, 2005.

Queues with correlated inter-arrival and service times and its application to optical buffers, J. Lambert , B.
Van Houdt and C. Blondia, Stochastic Models, Vol 22(2), pp. 233-251, 2006.
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Step 2: Solution method

Step 2a

Construct a MC with a matrix exponential (ME) distribution
that allows us to compute

Waiting/sojourn time distributions
Queue length distributions

from its steady state distribution.

Step 2b

Reduce the MC with ME distribution to a (Markov
modulated) fluid queue compute the steady state distribution
more efficiently (in terms of time and memory usage).
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MCs with ME distribution

Definition

{(Xt ,Nt)}t≥0 with Nt ∈ {1, . . . , b} and Xt ≥ 0.

Xt increases at rate 1 and makes occasional downward jumps:

while Xt increases, Nt evolves according to b × b matrix D
(subgenerator)
at rate (−De)i downward jumps occur in state (x , i) for any x .
given a jump from (x , i): probability (P(u))i,j that we jump to
state (y , j) with y ∈ [x − u, x).

MC is characterized by D and dA(u) = diag(−De)dP(u).
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MCs with ME distribution: Main results

Positive recurrence and stationary vector π

Markov process is positive recurrent if and only if

θ

∫ ∞
0

udA(u) > 1,

with θA = 0 and A = D +
∫∞
0 dA(u).

Stationary vector π(x) ∈ Rb for x > 0 obeys,

π(x) = π(0) exp(Tx)

with π(0) = −θT .
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MCs with ME distribution: Main results

Key Equation

Minimal solution to non-linear integral equation

T = D +

∫ ∞
0

exp(Tu)dA(u).

In general very few algorithms for T (linear convergence).

In some cases numerical integration can be avoided by solving
a Sylvester matrix equation.
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Step 2a: the MC with ME distribution

Matrices D and dA(u)

Markov process defined as in discrete-time case.

Matrix D = Sser ⊗ Ima with

Sser =

S1 . . .

SK

 .
Densities dA(u) = (sser ⊗ Ima ) exp(D0u)L with

sser = −Ssere,

and
L =

[
(α1 ⊗ D1) . . . (αK ⊗ DK )

]
.
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Markov modulated fluid queue

Definition

{(Xt ,Nt)}t≥0 with Nt ∈ {1, . . . , b} and Xt ≥ 0.

Define S+ = {1, . . . , a} and S− = {a + 1, . . . , b}.
Xt increases at rate 1 if Nt ∈ S+.

Xt decreases at rate 1 if Nt ∈ S− (unless Xt = 0).

Nt changes state according to CTMC

F =

[
F++ F+−
F−+ F−−

]
.

Fluid queue is fully characterized by F .
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Fluid queues: Main results

Positive recurrence and stationary vector π

Markov process is positive recurrent if and only if

ξ+e < ξ−e,

with ξF = 0 and ξ = (ξ+, ξ−).

Stationary vector π(x) = (π+(x), π−(x)) ∈ Rb for x > 0
obeys,

(π+(x), π−(x)) = π+(0) exp(Kx)[I ,Ψ],

with K = F++ + F+−Ψ and

π+(0) = p−(0)F−+,

p−(0)(F−− + F−+Ψ) = 0,

p−(0)e +

∫ ∞
0

π(x)e = 1.
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Fluid queues: Main results

Key Equation

The smallest non-negative solution of the algebraic Riccati
equation

F+− + ΨF−− + F++Ψ + ΨF−+Ψ = 0.

Many algorithms with quadratic convergence

Reduction to QBD (Ramaswami, 1999)
Newton Iteration, (Guo, 2001)
SDA: Structure-preserving Doubling Algorithm, (Guo,
Iannazzo, Meini, 2007)
ADDA: Alternating-Directional Doubling Algorithm, (Wang,
Wang, Li, 2012)

⇒ SDA and ADDA compute the Ψ matrix of the fluid queue
and the level reversed fluid queue.
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Step 2b: the reduction to the fluid queue

The matrix F

Replace immediate downward jumps of size u by interval of
length u during which the level decreases at rate 1.

As dA(u) = (sser ⊗ Ima ) exp(D0u)L, we have

F++ = Sser ⊗ Ima ,

F+− = sser ⊗ Ima ,

F−− = D0,

F−+ = L.

Matrix T of the MC with ME distribution is equal to matrix
K of fluid queue.
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Step 2: Generalizations and references

Generalizations

Batch arrivals, semi-Markovian arrivals, multiple servers,
correlation between service and inter-arrival times, etc.

Some related papers (continuous-time):

Markov processes whose steady state distribution is matrix exponential with an application to the GI/PH/1
queue, B. Sengupta, Advances in Applied Probability, Vol. 21, pp. 159-180, 1989.

Analysis of a Continuous Time SM[K]/PH[K]/1/FCFS Queue: Age Process, Sojourn Times, Waiting
Times, and Queue Lengths, Qi-Ming HE, Journal of Systems Science and Complexity (JSSC), Vol. 25, pp.
133-155, 2012.

A matrix geometric representation for the queue length distribution of multitype semi-Markovian queues,
B. Van Houdt, Performance Evaluation, Vol. 69, no 7-8, pp. 299-314, 2012.
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Step 3: Solution method

Finite support impatience

Assume for now that impatience distributions have finite
support {d1, . . . , dr}.
Denote ai ,k as the probability that the patience of a type k
customer is at least di .

Step 3a

Construct a jump process that allows us to compute

Waiting/sojourn time distributions
Probability of abandonment

from its steady state distribution.

Step 3b

Reduce the jump process to a fluid queue with thresholds to
compute the steady state distribution more efficiently (in
terms of time and memory usage).
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Step 3a: The jump process

Definition

Workload process {(Vt ,Mt)}t≥0 with Mt ∈ {1, . . . ,ma} and
Vt ≥ 0.

Vt : workload in the queue at time t,
Mt : state of the MMAP[K] at time t.
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Step 3a: The jump process

Evolution

Vt decreases at rate 1 and makes occasional upward jumps.

Jump rate from (x , j) with x ∈ (di−1, di ] to (y , j) with
y ∈ (x + u, x + u + du):

K∑
k=1

(Dk )j ,j ′ai ,k (αk exp(Sku)sk )du + o(du).

While Vt decreases, Mt evolves according to ma ×ma matrix

D0 +
K∑

k=1

Dk (1− ai ,k ).
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Markov modulated fluid queue with thresholds

Definition

{(Xt ,Nt)}t≥0 with Nt ∈ {1, . . . , b} and Xt ≥ 0.

Define S+ = {1, . . . , a} and S− = {a + 1, . . . , b}.
Xt increases at rate 1 if Nt ∈ S+.

Xt decreases at rate 1 if Nt ∈ S− (unless Xt = 0).

Thresholds 0 = d0 < d1 < d2 < . . . < dr < dr+1 =∞.

Nt changes state according to CTMC

F (i) =

[
F
(i)
++ F

(i)
+−

F
(i)
−+ F

(i)
−−

]
,

when Xt ∈ (di−1, di ].

Fluid queue is fully characterized by F (i) matrices.
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Fluid queues with thresholds: Main results

Positive recurrence and stationary vector π

Markov process is positive recurrent if and only if

ξ
(r+1)
+ e < ξ

(r+1)
− e,

with ξ(r+1)F (r+1) = 0 and ξ(r+1) = (ξ
(r+1)
+ , ξ

(r+1)
− ).

Stationary vector π(x) = (π+(x), π−(x)) ∈ Rb expressed via

matrices Ψ(i) and Ψ̃(i) for i = 1, . . . , r + 1.
boundary densities π(di ) = (π+(di ), π−(di )).
probability vector p−(0).
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Fluid queues with thresholds: Main results

Computing π(x)

The smallest non-negative solution of the algebraic Riccati
equation

F
(i)
+− + Ψ(i)F

(i)
−− + F

(i)
++Ψ(i) + Ψ(i)F

(i)
−+Ψ(i) = 0,

while Ψ̃(i) solves the above equation if exchange + and −.

Densities π(di ) = (π+(di ), π−(di )) can be computed via a
structured linear system in time and memory complexity that
is linear in r .
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Step 3b: the reduction to the fluid queue with thresholds

The matrices F (i)

Replace immediate upward jumps of size u by interval of
length u during which the level decreases at rate 1.

Introduce ma
∑K

k=1ms,k phases that form S+.

One finds

F
(i)
++ = Sser ⊗ Ima ,

F
(i)
+− = sser ⊗ Ima ,

F
(i)
−− = D0 +

K∑
k=1

Dk (1− ai ,k ),

F
(i)
−+ = L(i).

with
L(i) =

[
(α1 ⊗ D1)ai ,1 . . . (αK ⊗ DK )ai ,K

]
.
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Step 3: General customer impatience

Approximation method

Use step functions that lower and upper bound the impatience
distributions

Increasing the number of steps increases the accuracy

Can solve systems with as many as 216 = 65536 thresholds
⇒ accurate results even for heavy tailed impatience
distributions.
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Step 3: Generalizations and references

Generalizations

Adaptive arrivals, impatience while in service, etc.

Some related papers:

Matrix-analytic methods for fluid queues with finite buffers, A. da Silva Soares and G. Latouche,
Performance Evaluation, Vol. 63, pp. 295-314, 2006.

Fluid queues with level dependent evolution, A. da Silva Soares and G. Latouche, European Journal of
Operational Research (EJOR), Vol. 196, pp. 1041-1048, 2009.

Analysis of the adaptive MMAP[K]/PH[K]/1 queue: a multi-type queue with adaptive arrivals and general
impatience, B. Van Houdt, European Journal of Operational Research (EJOR), Vol. 220, no 3, pp.
695-704, 2012.

A multi-layer fluid queue with boundary phase transitions and its application to the analysis of multi-type
queues with general customer impatience, G. Horvath and B. Van Houdt, Proceedings of QEST 2012,
London (UK), 2012.
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Questions?

Further info and MATLAB software

Visit my webpage at http://win.ua.ac.be/~vanhoudt

Benny Van Houdt YEQT-VI 40/40

http://win.ua.ac.be/~vanhoudt

