Multi-type queues with general customer impatience

Benny Van Houdt

PATS Research Group Dept. Mathematics and Computer Science University of Antwerp - IBBT

YEQT-VI

Aim of this lecture

Queueing system

- Single server, infinite waiting room, FCFS
- Multi-type Markovian arrivals (correlated types)
- Type dependent service times (PH)
- Type dependent customer impatience (general, e.g., Weibull)

\Rightarrow In CONTINUOUS time

Stepwise approach

Step 1

- Single server, infinite waiting room, FCFS
- Multi-type Markovian arrivals (correlated types)
- Type dependent service times (PH)
- π , μ

\Rightarrow In **DISCRETE** time

Stepwise approach

Step 2

- Single server, infinite waiting room, FCFS
- Multi-type Markovian arrivals (correlated types)
- Type dependent service times (PH)
- π , μ

\Rightarrow In CONTINUOUS time

Stepwise approach

Step 3

- Single server, infinite waiting room, FCFS
- Multi-type Markovian arrivals (correlated types)
- Type dependent service times (PH)
- Type dependent customer impatience (general, e.g., Weibull)

\Rightarrow In CONTINUOUS time

Antwerper

Step 1: Arrival Process (discrete-time)

MMAP[K]: Markovian arrival process with marked transitions

- Characterized by a set of $m_a \times m_a$ matrices $\{D_k | k = 0, ..., K\}$ such that
 - D_k is substochastic matrix
 - $D = \sum_{k=0}^{K} D_k$ is a transition matrix

Interpretation

- The (j, j')-th entry $(D_k)_{j,j'}$ of D_k holds the probability that the underlying discrete time MC changes its phase from j to j', while generating a type k arrival
- Like a D-BMAP, but a size k batch arrival is now a type k arrival

Step 1: Service Times (discrete-time)

Type dependent service

 Type k customers: discrete phase-type (DPH) distributed amount of service with representation (α_k, S_k) of order m_{s,k}.

DPH definition

• Order *n* DPH is the time to absorption in an *n* + 1 state discrete time Markov chain with transition matrix

$$P = \left[\begin{array}{cc} S & s \\ 0 & 1 \end{array} \right]$$

(note, s = e - Se) and initial probability vector

$$(\alpha, 1 - \alpha e) = (\alpha, \alpha_0),$$

such that states $\{1, \ldots, n\}$ are transient.

Step 1: Solution method

Step 1a

- $\bullet\,$ Construct a GI/M/1-type MC that allows us to compute
 - Waiting/sojourn time distributions
 - Queue length distributions

from its steady state distribution.

Step 1b

 Reduce the GI/M/1-type MC to a Quasi-Birth-Death (QBD) MC to compute the steady state distribution more efficiently (in terms of time and memory usage).

Discrete time GI/M/1-type Markov chains

GI/M/1-type transition matrix P

 $\bullet~\mbox{QBD}$ is skip-free in both directions, GI/M/1-type is skip-free to the right

$$P = \begin{bmatrix} B_1 & A_0 & & 0 \\ B_2 & A_1 & A_0 & & \\ B_3 & A_2 & A_1 & A_0 & \\ B_4 & A_3 & A_2 & A_1 & \ddots \\ \vdots & \vdots & \ddots & \ddots & \ddots & \ddots \end{bmatrix}$$

YEQT-VI

Discrete time GI/M/1-type MC: Main results

Positive recurrence and stationary vector π

• Markov chain is positive recurrent if and only if

$$heta \sum_{i\geq 1} iA_i e > 1,$$

with $\theta A = \theta$ and $A = \sum_{i \ge 0} A_i$, which is equivalent to sp(R) < 1

• Stationary vector $\pi = (\pi_0, \pi_1, \ldots)$ obeys, for i > 0

$$\pi_i = \pi_{i-1}R = \pi_0 R^i$$

and $\pi_0 = \pi_0 \sum_{i=1}^{\infty} R^{i-1} B_i$ and $\pi_0 (I-R)^{-1} e = 1$

Discrete time GI/M/1-type MC: Main results

Key Equation

• Smallest nonnegative solution to nonlinear matrix equation

$$R = \sum_{i=0}^{\infty} R^i A_i$$

 ${\it R}$ has the same probabilistic interpretation as for the QBD

- To compute *R* we make use of the (Ramaswami/Bright) dual (in SMCSolver) and compute *G* via:
 - Functional iterations (FI), (Neuts, Latouche)
 - Newton Iteration (NI), (Perez, Telek, Van Houdt)
 - Cyclic Reduction (CR), (Bini, Meini)
 - Invariant Subspace (IS), (Akar, Sohraby)
 - Ramaswami Reduction (RR), (Bini, Meini, Ramaswami)

Step 1a: the GI/M/1-type MC

Main idea

- Observe the system when the server is busy.
- Define MC $\{(A_t, (T_t, S_t, M_{t-A_t}))\}_{t \ge 0}$ with
 - A_t : age of the customer in service ($\in \{1, 2, \ldots\}$) at time t,
 - T_t : represents the type of the customer in service at time t,
 - S_t : the phase of the server at time t,
 - *M_t*: state of the MMAP[K] at time *t*.
 - \Rightarrow Keep track of MMAP[K] state at arrival time.

Step 1a: the GI/M/1-type MC

Transitions (1/2)

- No service completion:
 - $A_{t+1} = A_t + 1$, age increases by one.
 - $T_{t+1} = T_t = k$, type remains the same.
 - $P[S_{t+1} = j | S_t = i] = (S_k)_{i,j}$, due to (α_k, S_k) PH service.
 - $M_{t+1-A_{t+1}} = M_{t-A_t}$, MMAP[K] state remains the same.

 \Rightarrow Level increases by one: $A_0 = S_{ser} \otimes I_{m_a}$, with

$$S_{ser} = \begin{bmatrix} S_1 & & \\ & \ddots & \\ & & S_K \end{bmatrix}$$

Universiteit Antwerpen

Step 1a: the GI/M/1-type MC

Transitions (2/2)

- Service completion (of customer *n*):
 - Let *i* be the inter-arrival time between customer *n* and n + 1, then $A_{t+1} = \max(1, A_t + 1 i)$.
 - Age decreases by $i 1 \rightarrow$ covered by matrix A_i .

 \Rightarrow Level reduces by i - 1: $A_i = s_{ser} \otimes (D_0)^{i-1} L$, with

$$s_{ser} = e - S_{ser}e,$$

and

$$L = \begin{bmatrix} (\alpha_1 \otimes D_1) & \dots & (\alpha_K \otimes D_K) \end{bmatrix}.$$

Universiteit Antwerpen

Discrete-time Quasi-Birth-Death (QBD) type Markov chain:

Infinite Quasi-Birth-Death Markov chain

- S partitioned into levels of size m (except for level 0)
- level de- or increases by at most one
- characterized by $m \times m$ matices A_0 , A_1 and A_2
- plus some boundary matrices

Discrete time QBD

QBD transition matrix P

$$P = \begin{bmatrix} B_1 & A_2 & & 0 \\ B_0 & A_1 & A_2 & & \\ & A_0 & A_1 & A_2 & \\ & & A_0 & A_1 & \ddots \\ 0 & & & \ddots & \ddots \end{bmatrix}$$

16/40

문 🛌 문

Discrete time QBD: Main results

Positive recurrence and stationary vector π

• Markov chain is positive recurrent if and only if

(Downward drift \approx) $\theta A_0 e > \theta A_2 e$ (\approx Upward drift),

with $\theta A = \theta$ and $A = A_0 + A_1 + A_2$, which is equivalent to sp(R) < 1

• Stationary vector $\pi = (\pi_0, \pi_1, \ldots)$ obeys, for i > 0

$$\pi_i = \pi_{i-1}R = \pi_0 R^i$$

and $\pi_0 = \pi_0(B_1 + RB_0)$ and $\pi_0(I - R)^{-1}e = 1$

Discrete time QBD: Main results

Key Equation

• Smallest nonnegative solution to nonlinear matrix equation

$$R = A_2 + RA_1 + R^2A_0$$

• Algorithms for R (all implemented in SMCSolver in Matlab)

- Functional iterations (FI), (Neuts, Latouche)
- Logarithmic Reduction (LR), (Latouche, Ramaswami)
- Newton Iteration (NI), (Latouche)
- Cyclic Reduction (CR), (Bini, Meini)
- Invariant Subspace (IS), (Akar, Sohraby)
- Typically compute $G = A_0 + A_1G + A_2G^2$ and use $R = A_2(I A_1 A_2G)^{-1}$

Step 1b: Reduction to QBD

Transition matrices

- Basic idea: split transition of A_i into *i* steps.
- Matrix geometric form of A_i, for i > 0 allows reduction to a small QBD.
- In our case: it suffices to add m_a states to each level.
- QBD is characterized by A_0^* (down), A_1^* , A_2^* (up)

$$A_2^* = \begin{bmatrix} 0 & 0 \\ 0 & A_0 \end{bmatrix}, \ A_1^* = \begin{bmatrix} 0 & L \\ 0 & A_1 \end{bmatrix}, \ A_0^* = \begin{bmatrix} D_0 & 0 \\ s_{ser} \otimes D_0 & 0 \end{bmatrix}.$$

 $\bullet\,$ Steady state distribution of GI/M/1-type MC can be obtained from QBD steady state by censoring

Possible Generalizations

- Semi-Markovian arrivals (no QBD reduction)
- General customer impatience (level-dependent QBD)
- Correlation between service and inter-arrival times
- Multiple-servers (small number): age of youngest in service
- Batch arrivals (messy business)

Some related papers (discrete-time):

- The delay distribution of a type k customer in a FCFS MMAP[K]/PH[K]/1 queue, B. Van Houdt and C. Blondia, Journal of Applied Probability (JAP), Vol. 39, No 1, March 2002.
- The waiting time distribution of a type k customer in a discrete-time FCFS MMAP[K]/PH[K]/c (c=1,2) queue using QBDs, B. Van Houdt and C. Blondia, Stochastic Models, Vol 20, no 1, pp. 55-69, 2004.
- Response time distribution in a D-MAP/PH/1 queue with general customer impatience, J. Van Velthoven, B. Van Houdt and C. Blondia, Stochastic Models, Vol 21, pp. 745-765, 2005.
- Age Process, Workload Process, Sojourn Times, and Waiting Times in a Discrete Time SM[K]/PH[K]/1/FCFS Queue, Qi-Ming He, Queueing Systems, Vol 49, pp. 363-403, 2005.
- Queues with correlated inter-arrival and service times and its application to optical buffers, J. Lambert, B. Iniversiteit Van Houdt and C. Blondia, Stochastic Models, Vol 22(2), pp. 233-251, 2006.

Step 2: Solution method

Step 2a

- Construct a MC with a matrix exponential (ME) distribution that allows us to compute
 - Waiting/sojourn time distributions
 - Queue length distributions

from its steady state distribution.

Step 2b

• Reduce the MC with ME distribution to a (Markov modulated) fluid queue compute the steady state distribution more efficiently (in terms of time and memory usage).

MCs with ME distribution

Definition

- $\{(X_t, N_t)\}_{t \ge 0}$ with $N_t \in \{1, \dots, b\}$ and $X_t \ge 0$.
- X_t increases at rate 1 and makes occasional downward jumps:
 - while X_t increases, N_t evolves according to $b \times b$ matrix D (subgenerator)
 - at rate $(-De)_i$ downward jumps occur in state (x, i) for any x.
 - given a jump from (x, i): probability (P(u))_{i,j} that we jump to state (y, j) with y ∈ [x − u, x).
- MC is characterized by D and dA(u) = diag(-De)dP(u).

MCs with ME distribution: Main results

Positive recurrence and stationary vector $\boldsymbol{\pi}$

• Markov process is positive recurrent if and only if

$$heta \int_0^\infty u dA(u) > 1,$$

with $\theta A = 0$ and $A = D + \int_0^\infty dA(u)$.

• Stationary vector $\pi(x) \in \mathbb{R}^b$ for x > 0 obeys,

$$\pi(x) = \pi(0) \exp(Tx)$$

with $\pi(0) = -\theta T$.

MCs with ME distribution: Main results

Key Equation

• Minimal solution to non-linear integral equation

$$T = D + \int_0^\infty \exp(Tu) dA(u).$$

- In general very few algorithms for T (linear convergence).
- In some cases numerical integration can be avoided by solving a Sylvester matrix equation.

Matrices D and dA(u)

- Markov process defined as in discrete-time case.
- Matrix $D = S_{ser} \otimes I_{m_a}$ with

$$S_{ser} = \begin{bmatrix} S_1 & & \\ & \ddots & \\ & & S_K \end{bmatrix}$$

• Densities $dA(u) = (s_{ser} \otimes I_{m_a}) \exp(D_0 u) L$ with

$$s_{ser} = -S_{ser}e,$$

and

$$L = [(\alpha_1 \otimes D_1) \ldots (\alpha_K \otimes D_K)].$$

Markov modulated fluid queue

Definition

- $\{(X_t, N_t)\}_{t\geq 0}$ with $N_t \in \{1, \ldots, b\}$ and $X_t \geq 0$.
- Define $S^+ = \{1, \ldots, a\}$ and $S^- = \{a+1, \ldots, b\}$.
- X_t increases at rate 1 if $N_t \in S^+$.
- X_t decreases at rate 1 if $N_t \in S^-$ (unless $X_t = 0$).
- N_t changes state according to CTMC

$$F = \begin{bmatrix} F_{++} & F_{+-} \\ F_{-+} & F_{--} \end{bmatrix}$$

• Fluid queue is fully characterized by F.

Fluid queues: Main results

Positive recurrence and stationary vector $\boldsymbol{\pi}$

• Markov process is positive recurrent if and only if

$$\xi_+ e < \xi_- e,$$

with $\xi F = 0$ and $\xi = (\xi_+, \xi_-)$.

Stationary vector π(x) = (π₊(x), π_−(x)) ∈ ℝ^b for x > 0 obeys,

$$(\pi_+(x),\pi_-(x)) = \pi_+(0)\exp(Kx)[I,\Psi],$$

with $K = F_{++} + F_{+-} \Psi$ and

$$\pi_{+}(0) = p_{-}(0)F_{-+},$$

$$p_{-}(0)(F_{--} + F_{-+}\Psi) = 0,$$

$$p_{-}(0)e + \int_{0}^{\infty} \pi(x)e = 1.$$

Fluid queues: Main results

Key Equation

• The smallest non-negative solution of the algebraic Riccati equation

$$F_{+-} + \Psi F_{--} + F_{++} \Psi + \Psi F_{-+} \Psi = 0.$$

- Many algorithms with quadratic convergence
 - Reduction to QBD (Ramaswami, 1999)
 - Newton Iteration, (Guo, 2001)
 - SDA: Structure-preserving Doubling Algorithm, (Guo, Iannazzo, Meini, 2007)
 - ADDA: Alternating-Directional Doubling Algorithm, (Wang, Wang, Li, 2012)

 \Rightarrow SDA and ADDA compute the Ψ matrix of the fluid queue and the level reversed fluid queue.

Step 2b: the reduction to the fluid queue

The matrix F

- Replace immediate downward jumps of size *u* by interval of length *u* during which the level decreases at rate 1.
- As $dA(u) = (s_{ser} \otimes I_{m_a}) \exp(D_0 u)L$, we have

$$F_{++} = S_{ser} \otimes I_{m_a},$$

$$F_{+-} = s_{ser} \otimes I_{m_a},$$

$$F_{--} = D_0,$$

$$F_{-+} = L.$$

• Matrix *T* of the MC with ME distribution is equal to matrix *K* of fluid queue.

Step 2: Generalizations and references

Generalizations

 Batch arrivals, semi-Markovian arrivals, multiple servers, correlation between service and inter-arrival times, etc.

Some related papers (continuous-time):

- Markov processes whose steady state distribution is matrix exponential with an application to the GI/PH/1 queue, B. Sengupta, Advances in Applied Probability, Vol. 21, pp. 159-180, 1989.
- Analysis of a Continuous Time SM[K]/PH[K]/1/FCFS Queue: Age Process, Sojourn Times, Waiting Times, and Queue Lengths, Qi-Ming HE, Journal of Systems Science and Complexity (JSSC), Vol. 25, pp. 133-155, 2012.
- A matrix geometric representation for the queue length distribution of multitype semi-Markovian queues, B. Van Houdt, Performance Evaluation, Vol. 69, no 7-8, pp. 299-314, 2012.

Step 3: Solution method

Finite support impatience

- Assume for now that impatience distributions have finite support {d₁,...,d_r}.
- Denote $a_{i,k}$ as the probability that the patience of a type k customer is at least d_i .

Step 3a

Construct a jump process that allows us to compute

- Waiting/sojourn time distributions
- Probability of abandonment

from its steady state distribution.

Step 3b

• Reduce the jump process to a fluid queue with thresholds to compute the steady state distribution more efficiently (in terms of time and memory usage).

Step 3a: The jump process

Definition

- Workload process $\{(V_t, M_t)\}_{t \ge 0}$ with $M_t \in \{1, \dots, m_a\}$ and $V_t \ge 0$.
 - V_t : workload in the queue at time t,
 - M_t : state of the MMAP[K] at time t.

Step 3a: The jump process

Evolution

- V_t decreases at rate 1 and makes occasional upward jumps.
- Jump rate from (x, j) with $x \in (d_{i-1}, d_i]$ to (y, j) with $y \in (x + u, x + u + du)$:

$$\sum_{k=1}^{K} (D_k)_{j,j'} a_{i,k} (\alpha_k \exp(S_k u) s_k) du + o(du)$$

• While V_t decreases, M_t evolves according to $m_a imes m_a$ matrix

$$D_0+\sum_{k=1}^K D_k(1-a_{i,k}).$$

Markov modulated fluid queue with thresholds

Definition

- $\{(X_t, N_t)\}_{t\geq 0}$ with $N_t \in \{1, \ldots, b\}$ and $X_t \geq 0$.
- Define $S^+ = \{1, \ldots, a\}$ and $S^- = \{a+1, \ldots, b\}$.
- X_t increases at rate 1 if $N_t \in S^+$.
- X_t decreases at rate 1 if $N_t \in S^-$ (unless $X_t = 0$).
- Thresholds $0 = d_0 < d_1 < d_2 < \ldots < d_r < d_{r+1} = \infty$.
- N_t changes state according to CTMC

$$F^{(i)} = \begin{bmatrix} F_{++}^{(i)} & F_{+-}^{(i)} \\ F_{-+}^{(i)} & F_{--}^{(i)} \end{bmatrix},$$

when $X_t \in (d_{i-1}, d_i]$.

• Fluid queue is fully characterized by $F^{(i)}$ matrices.

Fluid queues with thresholds: Main results

Positive recurrence and stationary vector $\boldsymbol{\pi}$

• Markov process is positive recurrent if and only if

$$\xi_+^{(r+1)}e < \xi_-^{(r+1)}e,$$

with $\xi^{(r+1)}F^{(r+1)} = 0$ and $\xi^{(r+1)} = (\xi^{(r+1)}_+, \xi^{(r+1)}_-).$

- Stationary vector $\pi(x) = (\pi_+(x), \pi_-(x)) \in \mathbb{R}^b$ expressed via
 - matrices $\Psi^{(i)}$ and $\tilde{\Psi}^{(i)}$ for $i = 1, \ldots, r+1$.
 - boundary densities $\pi(d_i) = (\pi_+(d_i), \pi_-(d_i)).$
 - probability vector $p_{-}(0)$.

Fluid queues with thresholds: Main results

Computing $\pi(x)$

• The smallest non-negative solution of the algebraic Riccati equation

$$F_{+-}^{(i)} + \Psi^{(i)}F_{--}^{(i)} + F_{++}^{(i)}\Psi^{(i)} + \Psi^{(i)}F_{-+}^{(i)}\Psi^{(i)} = 0,$$

while $\tilde{\Psi}^{(i)}$ solves the above equation if exchange + and -.

 Densities π(d_i) = (π₊(d_i), π₋(d_i)) can be computed via a structured linear system in time and memory complexity that is linear in r.

Step 3b: the reduction to the fluid queue with thresholds

The matrices $F^{(i)}$

- Replace immediate upward jumps of size *u* by interval of length *u* during which the level decreases at rate 1.
- Introduce $m_a \sum_{k=1}^{K} m_{s,k}$ phases that form S^+ .
- One finds

$$\begin{split} F_{++}^{(i)} &= S_{ser} \otimes I_{m_a}, \\ F_{+-}^{(i)} &= s_{ser} \otimes I_{m_a}, \\ F_{--}^{(i)} &= D_0 + \sum_{k=1}^{K} D_k (1 - a_{i,k}), \\ F_{-+}^{(i)} &= L^{(i)}. \end{split}$$

with

$$L^{(i)} = \begin{bmatrix} (\alpha_1 \otimes D_1) a_{i,1} & \dots & (\alpha_K \otimes D_K) a_{i,K} \end{bmatrix}$$

YEQT-VI

Approximation method

- Use step functions that lower and upper bound the impatience distributions
- Increasing the number of steps increases the accuracy
- Can solve systems with as many as 2¹⁶ = 65536 thresholds
 ⇒ accurate results even for heavy tailed impatience distributions.

Step 3: Generalizations and references

Generalizations

Adaptive arrivals, impatience while in service, etc.

Some related papers:

- Matrix-analytic methods for fluid queues with finite buffers, A. da Silva Soares and G. Latouche, Performance Evaluation, Vol. 63, pp. 295-314, 2006.
- Fluid queues with level dependent evolution, A. da Silva Soares and G. Latouche, European Journal of Operational Research (EJOR), Vol. 196, pp. 1041-1048, 2009.
- Analysis of the adaptive MMAP[K]/PH[K]/1 queue: a multi-type queue with adaptive arrivals and general impatience, B. Van Houdt, European Journal of Operational Research (EJOR), Vol. 220, no 3, pp. 695-704, 2012.
- A multi-layer fluid queue with boundary phase transitions and its application to the analysis of multi-type queues with general customer impatience, G. Horvath and B. Van Houdt, Proceedings of QEST 2012, London (UK), 2012.

< 口 > < 同

Further info and MATLAB software

• Visit my webpage at http://win.ua.ac.be/~vanhoudt

40/40

- ∢ ≣ ▶

- ∢ 🗇 ▶

YEQT-VI