Queueing models with matrix-exponential distributions and rational arrival processes

Analytic Methods in Queueing Systems, Eurandom 2/11 2012

Bo Friis Nielsen
Informatics and Mathematical Modelling
Technical University of Denmark
Joint work with
Nigel G Bean
School of Mathematical Sciences
University of Adelaide

Extension to QBD with PAP components

- ME/RAP expressions are analytically identical to PH/MAP expressions.
- Proof of the matrix geometric formula and other matrix analytic formulas rely on path wise arguments for countable state Markov chains.
A queue with ME (RAP) components can not be formulated as a Markov process with countable state space.
- We have prooved the MGM formula in the QBD case by two different approaches.
\diamond An approach, where we follow a line of proof similar to the one in Ramaswami95.
\diamond An approach where we apply an operator geometric result by Tweedie82 for discrete time Markov chains with general state space.

Phase Type distribution
(Jensen49), Neuts75

- A Phase type distribution is the distribution of the time to absorption in a Markov chain with p transient states.
- Infinitessimal generator

$$
Q=\left(\begin{array}{cc}
S & s \\
\mathbf{0} & 0
\end{array}\right) \quad S \text { is a sub generator. }
$$

- τ : Time to absorption.
- $J(t)$: State/phase value at $t(J(t)=p+1 ; t \geq \tau)$.
- $\mathbb{P}(J(0)=i)=\alpha_{i}, \boldsymbol{\alpha}=\left(\alpha_{1}, \ldots, \alpha_{p}\right)$, frequently $\boldsymbol{\alpha} \boldsymbol{e}=1$, where \boldsymbol{e} is a vector of ones of appropriate dimension.
- $f(x)=\boldsymbol{\alpha} e^{S x} \boldsymbol{s} \quad \mathbb{P}(\tau>x)=e^{S x} \boldsymbol{e}$.

Matrix exponential distribution
$f(x)=\boldsymbol{\beta} e^{T x} \boldsymbol{t} \quad \mathbb{P}(\tau>x)=\boldsymbol{\beta} e^{T x}(-T)^{-1} \boldsymbol{t}$
$H(s)=\mathbb{E}\left(e^{-s \tau}\right)=\frac{f_{1} s^{p-1}+f_{2} s^{p-2} \ldots+f_{p}}{s^{p+g_{1}} s^{p-1}+g_{2} s^{p-2} \ldots+g_{p}}$
The span of the residual life operator is finite-dimensional
The representation $(\boldsymbol{\beta}, T, \boldsymbol{t})$ is not unique, but $T=S$ can be chosen such that $\boldsymbol{t}=-S \boldsymbol{e}=\boldsymbol{s}$ and $\left(\boldsymbol{e}_{i}, S,-S \boldsymbol{e}\right)$ is a representation for all i.
$f(x)=\frac{2}{3} e^{-x}(1+\cos (x))$ is matrix exponential but not phase type

Markovian Arrival Processes (MAP)

- Neuts79, Lucantoni et al. 90
- Parameterized by two matrices $\left(D_{0}, D_{1}\right), D=D_{0}+D_{1}$ is a generator, D_{0} a sub-generator, and D_{1} non-negative.
- For $D_{1}=\boldsymbol{d} \boldsymbol{\theta}$ we have a phase-type renewal process
- Bivariate state space $X(t)=(N(t), J(t))$ with generator

$$
Q=\left(\begin{array}{cccc}
D_{0} & D_{1} & 0 & \ldots \\
0 & D_{0} & D_{1} & \ldots \\
\vdots & \vdots & \vdots & \vdots
\end{array}\right.
$$

$E\left(z^{N(t)}\right)=\boldsymbol{\theta} e^{\left(D_{0}+D_{1} z\right) t} \boldsymbol{e} \quad\left(e^{(-\lambda+\lambda z) t}\right)$
Joint density
$\boldsymbol{\theta} e^{D_{0} x_{1}} D_{1} e^{D_{0} x_{2}} D_{1} \ldots e^{D_{0} x_{n}} D_{1} \boldsymbol{e} \quad\left(e^{-\lambda x_{1}} \lambda \ldots e^{-\lambda x_{n}} \lambda\right)$

Rational arrival processes

Asmussen and Bladt99, (Mitchell01)

- A process is RAP if the measure of the prediction process varies in a finite dimensional space.
- There exist matrices D_{0}, D_{1}, a row vector $\boldsymbol{\alpha}$ and a column vector d, such that

$$
f\left(x_{1}, \ldots, x_{n}\right)=\boldsymbol{\alpha} e^{D_{0} x_{1}} D_{1} e^{D_{0} x_{2}} D_{1} \ldots e^{D_{0} x_{n}} \boldsymbol{d}
$$

- the parameters can be chosen such that $\boldsymbol{d}=D_{1} \boldsymbol{e}$, $\left(D_{0}+D_{1}\right) \boldsymbol{e}=\mathbf{0}$, the maximum eigenvalue of D_{0} is negative, and the maximum eigenvalue of $D_{0}+D_{1}$ is 0 .

MAP/PH/1 queue

$$
Q=\left(\begin{array}{ccccc}
D_{0} & D_{1} \otimes \boldsymbol{\alpha} & 0 & 0 & \ldots \\
I \otimes \boldsymbol{s} & D_{0} \oplus S & D_{1} \otimes I & 0 & \ldots \\
0 & I \otimes \boldsymbol{s} \boldsymbol{\alpha} & D_{0} \oplus S & A_{1} \otimes I & \ldots \\
0 & 0 & I \otimes \boldsymbol{s} \boldsymbol{\alpha} & D_{0} \oplus S & \ldots \\
\vdots & \vdots & \vdots & \vdots & \vdots
\end{array}\right.
$$

The RAP/ME/1 queue can not be formulated as a Markov process with countable state space

Why ME? (RAP)

- Minimal dimension representation
- Potential for unique representation
- ME includes all distributions with rational transform

Then why not ME? (RAP)

- The question of whether a pair represents a distribution (process) is not resolved

A Q BD with PAP components

- Define the bivariate process $N(t), \boldsymbol{A}(t)$ such that the elementary probability of an upward jump at time t is $\boldsymbol{A}(t) A_{0} \boldsymbol{e} \mathrm{~d} t$ and the elementary probability of a downward jump is $\boldsymbol{A}(t) A_{2} \boldsymbol{e d} t$.
- or equivalently $e^{A_{1} t} A_{2} \boldsymbol{e}$ and $e^{A_{1} t} A_{0} \boldsymbol{e}$ are degenerate competing ME densities.

The value of $\boldsymbol{A}(t)$ after an upward jump is $\boldsymbol{A}(t-) A_{0} / \boldsymbol{A}(t) A_{0} \boldsymbol{e}$, the value of $\boldsymbol{A}(t)$ after a downward jump is $\boldsymbol{A}(t-) A_{2} / \boldsymbol{A}(t) A_{2} \boldsymbol{e}$.

- Between jumps $\boldsymbol{A}(t)$ evolves deterministically due to the equation

$$
\boldsymbol{a}^{\prime}(t)=\boldsymbol{a}(t) A_{1}(I-\boldsymbol{e} \boldsymbol{a}(t))
$$

The matrix Q represents the process

$$
Q=\left(\begin{array}{ccccc}
B_{0} & A_{0} & 0 & 0 & \ldots \\
B_{1} & A_{1} & A_{0} & 0 & \ldots \\
0 & A_{2} & A_{1} & A_{0} & \ldots \\
0 & 0 & A_{2} & A_{1} & \ldots \\
\vdots & \vdots & \vdots & \vdots & \vdots
\end{array}\right.
$$

Such a process obviously exists
\diamond The MAP/PH/1 queue is a trivial example
\diamond The same matrix form would apply for a RAP/ME/1 queue

The problem of determining when a given Q is a QBD-RAP matrix is harder.

Censored process

Let $\{\boldsymbol{B}(t)\}_{t \geq 0}$ be the phase vector of the censored process consisting of level m only, measured in the local time of level m, and with level $m-1$ taboo.

Theorem 1 The total lifetime $\ell_{m}(\infty)$ of $\{\boldsymbol{B}(t)\}_{t \geq 0}$ is ME distributed, that is

$$
\mathbb{P}\left(\ell_{m}(\infty)>t \mid \boldsymbol{B}(0)=\boldsymbol{a}\right)=\boldsymbol{a} e^{U t} \boldsymbol{e}
$$

for some matrix U.

Expected value of phase at return to lower

levels

The distribution of the return state

$$
\psi(\mathcal{B} ; \boldsymbol{a})=\mathbb{P}\left(\boldsymbol{A}\left(\tau_{n-1}\right) \in \mathcal{B}, \tau_{n-1}<\infty \mid X(0)=(n, \boldsymbol{a})\right), \quad \mathcal{B} \subset \mathcal{A}
$$

The expected return state

$$
\Psi(\boldsymbol{a})=\mathbb{E}\left[\boldsymbol{A}\left(\tau_{n-1}\right) I\left(\tau_{n-1}<\infty\right) \mid X(0)=(n, \boldsymbol{a})\right]=\int_{\mathcal{A}} \boldsymbol{b} \psi(\mathrm{d} \boldsymbol{b} ; \boldsymbol{a})
$$

Expected return from restricted path

$$
\Psi_{k}(\boldsymbol{a})=\mathbb{E}\left[\boldsymbol{A}\left(\tau_{n-1}\right) I\left(\tau_{n-1}<\tau_{n+k}\right) \mid X(0)=(n, \boldsymbol{a})\right] .
$$

The matrix: G

Lemma 2 For $k \geq 1$, the vector valued functions $\Psi_{k}(\boldsymbol{a})$ are linear, that is, for all $\boldsymbol{a} \in \mathcal{A}, \Psi_{k}(\boldsymbol{a})=\boldsymbol{a} G_{k}$, for a unique matrix G_{k}. Further, $\boldsymbol{a} G_{k} \in \mathcal{A}$, for all $\boldsymbol{a} \in \mathcal{A}$.

Theorem 3 For all $a \in \mathcal{A}$, we have

$$
\Psi(\boldsymbol{a})=\mathbb{E}\left[\boldsymbol{A}\left(\tau_{n-1}\right) I\left(\tau_{n-1}<\infty\right) \mid X(0)=(n, \boldsymbol{a})\right]=\boldsymbol{a} G,
$$

for a unique matrix G. Further, $\boldsymbol{a} G \in \mathcal{A}$, for all $\boldsymbol{a} \in \mathcal{A}$.
With this we can prove Theorem 1 on the total lifetime $\ell_{m}(\infty)$.

The matrix geometric solution - R
Theorem 4 Assume that $X(\cdot)$ is an ergodic Markov process.

1. Let the vectors $\boldsymbol{\pi}_{n}, n \geq 0$, denote

$$
\begin{gathered}
\lim _{t \rightarrow \infty} \mathbb{E}[\boldsymbol{A}(t) I(L(t)=n) \mid X(0)=(j, \boldsymbol{a})] \text {, then } \\
\boldsymbol{\pi}_{n+1}=\boldsymbol{\pi}_{n} R \quad \text { for all } n \geq 1,
\end{gathered}
$$

with

$$
R=A_{0}(-U)^{-1}
$$

2. The vectors $\boldsymbol{\pi}_{0}$ and $\boldsymbol{\pi}_{1}$ satisfy
$\boldsymbol{\pi}_{1}\left(A_{1}+B_{2}\left(-B_{1}\right)^{-1} B_{0}+R A_{2}\right)=0, \quad \boldsymbol{\pi}_{0}=\boldsymbol{\pi}_{1} B_{2}\left(-B_{1}\right)^{-1}$, subject to

$$
\boldsymbol{\pi}_{1}\left(B_{2}\left(-B_{1}\right)^{-1} \boldsymbol{e}+(I-R)^{-1} \boldsymbol{e}\right)=1
$$

A discrete time Markov chain on a general state space - 「weedie82

A discrete time Markov $X_{n}=\left(N_{n}, A_{n}\right)$ chain on the state space $\mathbb{N} \times \mathcal{E}$

Consider the kernel (here in QBD-version)
$\tilde{P}(x, \mathcal{B})=\left(\begin{array}{ccccc}\tilde{B}_{0}(x, \mathcal{B}) & \tilde{A}_{0}(x, \mathcal{B}) & 0 & 0 & \ldots \\ \tilde{B}_{1}(x, \mathcal{B}) & \tilde{A}_{1}(x, \mathcal{B}) & \tilde{A}_{0}(x, \mathcal{B}) & 0 & \ldots \\ 0 & \tilde{A}_{2}(x, \mathcal{B}) & \tilde{A}_{1}(x, \mathcal{B}) & \tilde{A}_{0}(x, \mathcal{B}) & \ldots \\ 0 & 0 & \tilde{A}_{2}(x, \mathcal{B}) & \tilde{A}_{1}(x, \mathcal{B}) & \ldots \\ \vdots & \vdots & \vdots & \vdots & \vdots\end{array}\right.$
where $\tilde{A}_{0}(x, \mathcal{B})=\mathbb{P}\left(N_{n}=N_{n-1}+1, A_{n} \in \mathcal{B} \mid A_{n-1}=x\right)$
the stationary measure is given by

$$
\nu_{k}(\mathcal{B})=\int_{\mathcal{E}} \nu_{k-1}(\mathrm{~d} x) \tilde{S}(x, \mathcal{B})
$$

where \tilde{S} is the minimal nonnegative solution of

$$
\begin{aligned}
\tilde{S}(x, \mathcal{B}) & =\tilde{A}_{0}(x, \mathcal{B}) \\
& +\int_{\mathcal{E}} \tilde{S}(x, \mathrm{~d} y) \tilde{A}_{1}(y, \mathcal{B})+\int_{\mathcal{E}} \int_{\mathcal{E}} \tilde{S}(x, \mathrm{~d} u) \tilde{S}(u, \mathrm{~d} y) \tilde{A}_{2}(y, \mathcal{B})
\end{aligned}
$$

That is the operator version of

$$
R=A_{0}+R A_{1}+R^{2} A_{2}
$$

The QBD-PAP at level transitions $X_{n}=\left(N_{n}, A_{n}\right)$

- For the QBD-RAP the kernels are given by

$$
\tilde{A}_{i}(\boldsymbol{a}, \mathcal{B})=\int_{0}^{\infty} \boldsymbol{a} e^{A_{1} t} A_{i} \boldsymbol{e} I_{\mathcal{B}}\left(\frac{\boldsymbol{a} e^{A_{1} t} A_{i}}{\boldsymbol{a} e^{A_{1} t} A_{i} \boldsymbol{e}}\right) \mathrm{d} t \quad i=0,2
$$

We now introduce the expected value of the phase process at level changes into level n

$$
\begin{gathered}
\boldsymbol{\nu}_{i+1}=\int_{\mathcal{A}_{2}} \boldsymbol{x} \nu_{i+1}(\mathrm{~d} \boldsymbol{x})=\int_{\mathcal{A}_{2}} \boldsymbol{x} \int_{\mathcal{A}_{2}} \nu_{i}(\mathrm{~d} \boldsymbol{y}) \tilde{S}(\boldsymbol{y}, \mathrm{~d} \boldsymbol{x}) \\
=\int_{\mathcal{A}_{2}} \int_{\mathcal{A}_{2}} \nu_{i}(\mathrm{~d} \boldsymbol{y}) \boldsymbol{x} \tilde{S}(\boldsymbol{y}, \mathrm{~d} \boldsymbol{x})=\int_{\mathcal{A}_{2}} \nu_{i}(\mathrm{~d} \boldsymbol{y}) \bar{S}(\boldsymbol{y})
\end{gathered}
$$

where $\bar{S}(\boldsymbol{y})=\int_{\mathcal{A}_{2}} \boldsymbol{x} \tilde{S}(\boldsymbol{y}, \mathrm{~d} \boldsymbol{x})$.

We define the successive iterates $\tilde{S}_{k}(\boldsymbol{a}, B) \quad \tilde{S}_{k}(\boldsymbol{a}, B)=0$
$\tilde{S}_{k+1}(\boldsymbol{a}, B)=\tilde{A}_{0}(\boldsymbol{a}, B)+\int_{\mathcal{A}_{2}} \int_{\mathcal{A}_{2}} \tilde{S}_{k}(\boldsymbol{a}, \mathrm{~d} \boldsymbol{x}) \tilde{S}_{k}(\boldsymbol{x}, \mathrm{~d} \boldsymbol{y}) \tilde{A}_{2}(\boldsymbol{y}, B)$
Corresponding to $\bar{S}(\boldsymbol{a})$ we introduce

$$
\bar{S}_{k}(\boldsymbol{a})=\int_{\mathcal{A}_{2}} \boldsymbol{x} \tilde{S}_{k}(\boldsymbol{a}, \mathrm{~d} \boldsymbol{x})
$$

with $\bar{S}_{0}(\boldsymbol{a})=\mathbf{0}$
Lemma 5 The mean operator $\bar{S}_{k}(\boldsymbol{a})$ of the k 'th iterate $\tilde{S}_{k}(\boldsymbol{a})$ is linear for all k i.e.

$$
\bar{S}_{k}(\boldsymbol{a})=\boldsymbol{a} S_{k}
$$

where

$$
S_{k+1}=\left(-A_{1}\right)^{-1} A_{0}+S_{k}^{2}\left(-A_{1}\right)^{-1} A_{2}
$$

Operator equation for \bar{S}
Theorem 6 The mean operator $\bar{S}(\boldsymbol{a})$ of $\tilde{S}(\boldsymbol{a})$ is linear i.e.

$$
\bar{S}(\boldsymbol{a})=\boldsymbol{a} S
$$

$$
\begin{aligned}
\bar{S}(\boldsymbol{a})= & \int_{\mathcal{E}} \boldsymbol{x} \tilde{S}(\boldsymbol{a}, \mathrm{~d} \boldsymbol{x}) \\
= & \int_{\mathcal{E}} \boldsymbol{x} \tilde{A}_{0}(\boldsymbol{a}, \mathrm{~d} \boldsymbol{x})+\int_{\mathcal{E}} \boldsymbol{x} \int_{\mathcal{E}} \tilde{S}^{(2)}(\boldsymbol{a}, \mathrm{d} \boldsymbol{y}) \tilde{A}_{2}(\boldsymbol{y}, \mathrm{~d} \boldsymbol{x}) \\
= & \boldsymbol{a}\left(-A_{1}\right)^{-1} A_{0}+\int_{\mathcal{E}} \boldsymbol{x} \int_{\mathcal{E}} \tilde{S}^{(2)}(\boldsymbol{a}, \mathrm{d} \boldsymbol{y}) \tilde{A}_{2}(\boldsymbol{y}, \mathrm{~d} \boldsymbol{x}) \\
= & \boldsymbol{a}\left(-A_{1}\right)^{-1} A_{0} \\
& +\int_{\mathcal{E}} \boldsymbol{x} \int_{\mathcal{E}} \int_{\mathcal{E}} \tilde{S}(\boldsymbol{a}, \mathrm{~d} \boldsymbol{u}) \tilde{S}(\boldsymbol{u}, \mathrm{~d} \boldsymbol{y}) \int_{0}^{\infty} \boldsymbol{y} e^{A_{1} t} A_{2} \boldsymbol{e} I_{\mathrm{d} \boldsymbol{x}}\left(\frac{\boldsymbol{y} e^{A_{1} t} A_{2}}{\boldsymbol{y} e^{A_{1} t} A_{2} \boldsymbol{e}}\right) \mathrm{d} t
\end{aligned}
$$

$$
\begin{aligned}
\bar{S}(\boldsymbol{a}) & =\boldsymbol{a}\left(-A_{1}\right)^{-1} A_{0} \\
& +\int_{\mathcal{E}} \int_{\mathcal{E}} \tilde{S}(\boldsymbol{a}, \mathrm{~d} \boldsymbol{u}) \int_{0}^{\infty} \tilde{S}(\boldsymbol{u}, \mathrm{~d} \boldsymbol{y}) \boldsymbol{y} e^{A_{1} t} A_{2} \boldsymbol{e} \int_{\mathcal{E}} \boldsymbol{x} I_{\mathrm{d} \boldsymbol{x}}\left(\frac{\boldsymbol{y} e^{A_{1} t} A_{2}}{\boldsymbol{y} e^{A_{1} t} A_{2} e}\right) \mathrm{d} t \\
& =\boldsymbol{a}\left(-A_{1}\right)^{-1} A_{0}+\int_{\mathcal{E}} \int_{\mathcal{E}} \tilde{S}(\boldsymbol{a}, \mathrm{~d} \boldsymbol{u}) \boldsymbol{y} \tilde{S}(\boldsymbol{u}, \mathrm{~d} \boldsymbol{y})\left(-A_{1}\right)^{-1} A_{2} \\
& =\boldsymbol{a}\left(-A_{1}\right)^{-1} A_{0}+\int_{\mathcal{E}} \tilde{S}(\boldsymbol{a}, \mathrm{~d} \boldsymbol{u}) \bar{S}(\boldsymbol{u})\left(-A_{1}\right)^{-1} A_{2} \\
& =\boldsymbol{a}\left(-A_{1}\right)^{-1} A_{0}+\boldsymbol{a} S^{2}\left(-A_{1}\right)^{-1} A_{2}
\end{aligned}
$$

where we use, that $\bar{S}(\boldsymbol{u})=\boldsymbol{u} S$

$$
\boldsymbol{\nu}_{i+1}=\boldsymbol{\nu}_{i} S
$$

The time stationary solution

$$
\boldsymbol{\pi}_{k}=c \boldsymbol{\nu}_{k}\left(-A_{1}\right)^{-1}
$$

inserting we get

$$
\boldsymbol{\pi}_{k}\left(-A_{1}\right)=\boldsymbol{\pi}_{k-1}\left(-A_{1}\right) S \quad \boldsymbol{\pi}_{k}=\boldsymbol{\pi}_{k-1} R
$$

where

$$
R=\left(-A_{1}\right) S\left(-A_{1}\right)^{-1} \quad S=\left(-A_{1}\right)^{-1} R\left(-A_{1}\right)
$$

Rather than solving for S we can solve for R
$\left(-A_{1}\right)^{-1} R\left(-A_{1}\right)=\left(-A_{1}\right)^{-1} A_{0}+\left[\left(-A_{1}\right)^{-1} R\left(-A_{1}\right)\right]^{2}\left(-A_{1}\right)^{-1} A_{2}$
which is equivalent to

$$
A_{0}+R A_{1}+R^{2} A_{2}=0
$$

Ekample: RAP,MAP/PH,ME/I-queue

Service time distribution:

$$
f(x)=\frac{\left.\frac{\lambda}{2}\left((\lambda x-\epsilon)^{2}+a \epsilon^{2}\right)\right)}{1-\epsilon+\frac{1+a}{2} \epsilon^{2}} e^{-\lambda x}
$$

which is an ME distribution of order 3 with $\boldsymbol{\alpha}$ and S given by

$$
\boldsymbol{\alpha}=\frac{1}{1+\frac{1+a}{2} \epsilon^{2}-\epsilon}\left(1,-\epsilon, \frac{1+a}{2} \epsilon^{2}\right), \text { and } S=\left[\begin{array}{ccc}
-\lambda & \lambda & 0 \\
0 & -\lambda & \lambda \\
0 & 0 & -\lambda
\end{array}\right]
$$

which is also in PH whenever $a>0$.

Example arrival process: Generic ME

 distributionWith

we get $\boldsymbol{g}(t)=e^{C t} \boldsymbol{e}$

$$
\boldsymbol{g}(t)=\left[\begin{array}{c}
\lambda_{1} e^{-\lambda_{1} t} \\
\frac{\lambda_{1}\left(\lambda_{2}^{2}+\omega^{2}\right)}{\lambda_{2}^{2}+\omega^{2}+b \lambda_{1} \lambda_{2}}\left(e^{-\lambda_{1} t}+b e^{-\lambda_{2} t} \sin (\omega t)\right) \\
\frac{\lambda_{1}\left(\lambda_{2}^{2}+\omega^{2}\right)}{\lambda_{2}^{2}+\omega^{2}+b \lambda_{1} \lambda_{2}}\left(e^{-\lambda_{1} t}+b e^{-\lambda_{2} t} \cos (\omega t)\right)
\end{array}\right]
$$

The distribution is not phase type for $\lambda_{1}=\lambda_{2}$ and for $|b|=1$.

Arrival process

A $\operatorname{RAP}(C, D)$ with

$$
D=\left(\begin{array}{cccc}
\gamma_{1} & 0 & 0 & 0 \\
0 & \gamma_{1} & 0 & 0 \\
0 & 0 & \gamma_{1} & 0 \\
0 & 0 & 0 & \gamma_{2}
\end{array}\right) .
$$

(i.e. an alternating Poisson process), as a MAP

$$
C=\left(\begin{array}{cc}
T-\gamma_{1} I & \lambda(1-p) \boldsymbol{e}_{n} \\
\lambda_{3} \boldsymbol{\alpha}_{2} & -\lambda_{3}-\gamma_{2}
\end{array}\right), \quad D=\left(\begin{array}{cc}
\gamma_{1} I & 0 \\
0 & \gamma_{2}
\end{array}\right),
$$

where T and α_{2} have dimension

$$
n=\frac{2 \pi}{\arcsin \left(\frac{2 \omega\left(\lambda_{2}-\lambda_{1}\right)}{\left(\lambda_{2}-\lambda_{1}\right)^{2}+\omega^{2}}\right)} \in \mathbb{Z}_{+},
$$

where the expression has to give an integer value.

Experience

The dimension of the MAP/PH/1 increases linearly with n
The dimension of the RAP/ME/1 queue is 12
The results agreed to 10^{-10}

A generalization

- A descriptor of measures corresponding to $\bar{S}(\boldsymbol{a})$
- Operators on measures which has linear effect on the descriptors
- Still miss characterization of matrix equation
\diamond Do not invalidate results with respects to algorithms
\diamond But could potentially cause numerical instability

Conclusion

- The ME/RAP generalization can be analyzed by solving the matrix equations by Neuts
- So far we have not experienced numerical problems
- We are considering other relevant queues that can be included in the general framework (no candidates yet)

