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Basic recursion

Xn+1 =
Xn∑

ℓ=1

ζn(ℓ)
︸ ︷︷ ︸

An(Xn)

+Bn



Applications

genealogy chemistry queuing



Busy periods

S1 

S21 S22 

S31 S32 S33 

generation 1 

generation 2 

generation 3 

ζ1(1)=2 

ζ2(1)=1 ζ2(2)=2 

ζ3(1)=1 ζ3(2)=1 ζ3(3)=0 

Number of customers served in a busy period
= Total number of persons in all generations

Pr[ζ = n] = E[I (Pois(λS ) = n)]

[Kendall, Some Problems in the Theory of Queues, J. Roy. Stat. Soc., 1951.]



Moments

Total number of persons in all generations, no migration

Xn+1 =
Xn∑

ℓ=1

ζn(ℓ) , X1 = 1 , Y =
∞∑

n=1

Xn

E[Xn+1] = E[Xn ] E[ζn ] =
n∏

ℓ=1

E[ζℓ ] , E[Y ] = 1 +
∞∑

n=1

n∏

ℓ=1

E[ζℓ ]

With migration

Xn+1 =
Xn∑

ℓ=1

ζn(ℓ) + Bn

E[Xn+1] = E[Xn ] E[ζn ] + E[Bn ]

E[X 2
n+1] = E[X 2

n ] E[ζn ]2+E[Xn ](E[ζ2
n ]−E[ζn ]2)+E[B2

n ]+2 E[Bn ] E[Xn ] E[ζn ]
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Multiple types

X⃗n+1 =
K∑

k=1

Xn(k)∑

ℓ=1

ζ⃗n,k (ℓ)
︸ ︷︷ ︸

A⃗n(X⃗n)

+B⃗n



Moments

E[A⃗n(X⃗n)] =
K∑

k=1

E[Xn(k)] E[ζ⃗n,k ]
.
= AnE[Xn(k)]

E[A⃗n(X⃗n)A⃗n(X⃗n)′] =
K∑

k=1

K∑

ℓ=1

E[Xn(k)Xn(ℓ)] E[ζ⃗n,k ] E[ζ⃗ ′
n,ℓ ]

+
K∑

k=1

E[Xn(k)](E[ζ⃗n,k ζ⃗ ′
n,k ] − E[ζ⃗n,k ] E[ζ⃗ ′

n,k ])

.
=

K∑

k=1

(
E[Xn(k)] Bn,k +

K∑

ℓ=1

E[Xn(k)Xn(ℓ)] Cn,k,ℓ

)



Discrete-time M/PH/∞ queue
type 1 

type 2 

type 3 

π1 π2 

π3 

arrival 

α31 

α32 

α33 

departure 

Migration = new arrivals
Types = Phases of the service times
Offspring = At most one, the type being the next phase

[Altman. On stochastic recursive equations and infinite server queues. Infocom 2005]



Queue with M/PH/∞ input

Use the queue content process of the M/PH/∞ as arrival process of
another queue

Interpretation: packets produced during “sessions”

Key property: regeneration when there are no arrivals

Generalisation: queues with multi-type Galton-Watson input

[Fiems et al. Queues with Galton-Watson-type arrivals. BWWQT, 2009]



Polling systems

station 3 

station 2 

station 1 

station
 4 

Gated polling
Exhaustive polling
Globally gated polling
Gated-Exhaustive polling

Cyclic routing
Markovian routing

Feedback



Symmetric gated polling
N Stations are polled cyclically. At the nth polling instant, polling
stations are ordered as they will be visited.

X (1)
n queue content at the the polling station visited now

S (i )
n,k is the number of arrivals at station i during the service time of

the kth customer served after the nth polling instant

T (i )
n is the number of arrivals at station i during the switchover time

from n to n + 1

X (k)
n+1 = X (k+1)

n + T (k+1)
n +

X (1)
n∑

ℓ=1

S (k+1)
n,ℓ

X (N)
n+1 = T (1)

n +
X (1)

n∑

ℓ=1

S (1)
n,ℓ



Non-symmetric gated polling

Trick of “renumbering” the stations no longer works

Assume that the server arrives at the mth station at the nth polling
time

X (k)
n+1 = X (k)

n + T (k)
n +

X (m)
n∑

ℓ=1

S (k)
n,m,ℓ

X (m)
n+1 = T (m)

n +
X (m)

n∑

ℓ=1

S (m)
n,m,ℓ

Apply N times as to arrive at the same station → still branching
with migration!



Gated versus exhaustive

From gated to exhaustive → replace service times by busy periods

From exhaustive to gated → introduce an extra queue

gates 

ar
riv

al
s 

Moving everything from one queue to the other is also a branching
process



Is the branching property essential for analysis of the polling
system?
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Semi-linear processes

Stochastic recursive equation of the form:

Xn+1 = An(Xn) + Bn ,

where
1. For some k , y = y0 + y1 + ... + yk , then An(y ) can be

represented as

An(y ) =
k∑

i=0

Â(i )
n (y i ) ,

with Â(i )
n identically distributed with same distribution as An .

2. E[An(y )] = Ay and E[An(y )An(y )′] =
∑K

k=1

(
yk Bn,k +

∑K
ℓ=1 ykyℓ Cn,k,ℓ

) .
= F (yy ′) +

∑K
k=1 yk Bn,k

3. Bn is stationary ergodic



No independence!

Examples
▶ Linear recurrences (in RN or NN ):

Xn+1 = AnXn + Bn

▶ Branching in a random environment:

Xn+1 =
Xn∑

k=1

ζn(k ; En)

▶ Subordinators → recursion for the station times in polling
systems



Stability

Theorem
(i) For n > 0, Yn can be written in the form

Xn = X̃n+
(

n−1⊗

i=0

Â(0)
i

)
(X0) where X̃n =

n−1∑

j=0




n−1⊗

i=n−j

Â(n−j )
i



 (Bn−j−1)

(ii) there is a unique stationary solution X ∗
n of Xn = An(Xn−1) + Bn ,

distributed like

X ∗
n =d

∞∑

j=0




n−1⊗

i=n−j

Â(n−j )
i



 (Bn−j−1), n ∈ Z (1)

The sum on the right side of (1) converges absolutely almost surely
and limn→∞ |Xn − X ∗

n | = 0, almost surely. for any initial value X0.



Stationary ergodic migration
Correlation of the migration process does not affect means:

E[X⃗ ] = (I − A)−1 E[B⃗ ]

But affects the second order moments

Theorem
Assume E[B⃗ ] < ∞, E[B⃗B⃗ ′] < ∞ and limn→∞ F n = 0, then cov (X⃗ ) is
the unique solution of

cov (X⃗ ) = cov (B) +
∞∑

r=1

(
Ar B̂ (r ) +

[
Ar B̂ (r )

]T)

+ F (cov [X⃗ ]) +
d∑

k=1

E[X (k)]Γ(k)

with B̂ (r ) = E[B⃗0B⃗ ′
r ] − E[B⃗ ] E[B⃗ ]′



Lifting independence assumption on An

Assume an exogenous Markovian environment Yn with finite state
space

X⃗n+1 = A⃗n(X⃗n, Yn) + B⃗n(Yn)

The process Zn is semi-linear

Z⃗n = [X⃗nI (Yn = 1), X⃗nI (Yn = 2), . . . , X⃗nI (Yn = K )]′



Back to polling

F1(t)

F2(t)

FK(t)

ξn =2

G
(1)
n,2

G
(2)
n,2

G
(K)
n,2

. . .

ξn+1 =1

ξn+1 =K

random feedback

random polling

[Fiems and Altman, Gated polling with stationary ergodic walking times,
Markovian routing and random feedback, ANOR, 2012]



Continuous state-space model

▶ Gated polling policy
▶ Lévy arrivals (subordinators)
▶ Semi-linear feedback
▶ Markovian routing
▶ Different parameters for every station



Discrete state-space model

▶ Gated polling policy
▶ Batch Poisson arrivals, a batch may bring arrivals at different

stations
▶ Poisson feedback during service
▶ Feedback at the end of service
▶ Independent service times
▶ Markovian routing
▶ Different parameters for every station



Recursion

V (k)
n+1 = V (k)

n +
V (ξn )

n∑

i=1

R (k)
n (i ) + G (k)

n

(∑V (ξn )
n

i=1 Sn(i )
)

+ F (k)
n

(∑V (ξn )
n

i=1 Sn(i ) + W (Yn)
n

)
, for k ̸= ξn ,

V (ξn)
n+1 =

V (ξn )
n∑

i=1

R (ξn)
n (i ) + G (ξn)

n

(∑V (ξn )
n

i=1 Sn(i )
)

+ F (ξn)
n

(∑V (ξn )
n

i=1 Sn(i ) + W (Yn)
n

)



Semi-linear framework

V (θ(Yn))
n+1 =

V (θ(Yn ))
n∑

i=1

(
R (θ(Yn))

n (i ) + G (θ(Yn))
n,i (Sn(i )) + F (θ(Yn))

n,i (Sn(i ))
)

︸ ︷︷ ︸
A(θ(Yn ))

n (Vn,Yn)

+ F (θ(Yn))
n,0 (W (Yn)

n )
︸ ︷︷ ︸

B (θ(Yn ))
n (Yn)

.



Open question

For branching processes: “heavy traffic limit to Gamma distributed
random variable”
see [Vandermei, Towards a unifying theory on branching-type polling models in
heavy traffic. Queueing Systems]

What if semi-linear, and not branching?




