Branching Processes & Queuing Theory

Dieter Fiems

YEQT VI Eindhoven, The Netherlands

Basic recursion

$$X_{n+1} = \underbrace{\sum_{\ell=1}^{N} \zeta_n(\ell) + B_n}_{A_n(X_n)}$$

Applications

Busy periods

Number of customers served in a busy period

= Total number of persons in all generations

$$Pr[\zeta = n] = E[I(Pois(\lambda S) = n)]$$

[Kendall, Some Problems in the Theory of Queues, J. Roy. Stat. Soc., 1951.]

Moments

Total number of persons in all generations, no migration

$$X_{n+1} = \sum_{\ell=1}^{X_n} \zeta_n(\ell)$$
 , $X_1 = 1$, $Y = \sum_{n=1}^{\infty} X_n$

$$E[X_{n+1}] = E[X_n]E[\zeta_n] = \prod_{\ell=1}^n E[\zeta_\ell], \quad E[Y] = 1 + \sum_{n=1}^\infty \prod_{\ell=1}^n E[\zeta_\ell]$$

With migration

$$X_{n+1} = \sum_{\ell=1}^{X_n} \zeta_n(\ell) + B_n$$

$$\mathsf{E}[X_{n+1}] = \mathsf{E}[X_n] \, \mathsf{E}[\zeta_n] + \mathsf{E}[B_n]$$

$$\mathsf{E}[X_{n+1}^2] = \mathsf{E}[X_n^2] \, \mathsf{E}[\zeta_n]^2 + \mathsf{E}[X_n] (\mathsf{E}[\zeta_n^2] - \mathsf{E}[\zeta_n]^2) + \mathsf{E}[B_n^2] + 2 \, \mathsf{E}[B_n] \, \mathsf{E}[X_n] \, \mathsf{E}[\zeta_n]$$

Beyond queuing dynamics ...

Multiple types

$$\vec{X}_{n+1} = \underbrace{\sum_{k=1}^{K} \sum_{\ell=1}^{X_n(k)} \vec{\zeta}_{n,k}(\ell) + \vec{B}_n}_{\vec{A}_n(\vec{X}_n)}$$

Moments

$$\mathsf{E}[\vec{A}_n(\vec{X}_n)] = \sum_{i=1}^K \mathsf{E}[X_n(k)] \, \mathsf{E}[\vec{\zeta}_{n,k}] \stackrel{\cdot}{=} \mathcal{A}_n \mathsf{E}[X_n(k)]$$

$$\begin{split} \mathsf{E}[\vec{A}_{n}(\vec{X}_{n})\vec{A}_{n}(\vec{X}_{n})'] &= \sum_{k=1}^{K} \sum_{\ell=1}^{K} \mathsf{E}[X_{n}(k)X_{n}(\ell)] \, \mathsf{E}[\vec{\zeta}_{n,k}] \, \mathsf{E}[\vec{\zeta}_{n,\ell}'] \\ &+ \sum_{k=1}^{K} \mathsf{E}[X_{n}(k)] (\mathsf{E}[\vec{\zeta}_{n,k}\vec{\zeta}_{n,k}'] - \mathsf{E}[\vec{\zeta}_{n,k}] \, \mathsf{E}[\vec{\zeta}_{n,k}']) \\ &\dot{=} \sum_{k=1}^{K} \left(\mathsf{E}[X_{n}(k)] \, \mathcal{B}_{n,k} + \sum_{\ell=1}^{K} \mathsf{E}[X_{n}(k)X_{n}(\ell)] \, \mathcal{C}_{n,k,\ell} \right) \end{split}$$

Discrete-time $M/PH/\infty$ queue

Migration = new arrivals

Types = Phases of the service times

Offspring = At most one, the type being the next phase

[Altman. On stochastic recursive equations and infinite server queues. Infocom 2005]

Queue with $M/PH/\infty$ input

Use the queue content process of the $M/PH/\infty$ as arrival process of another queue

Interpretation: packets produced during "sessions"

Key property: regeneration when there are no arrivals

Generalisation: queues with multi-type Galton-Watson input

[Fiems et al. Queues with Galton-Watson-type arrivals. BWWQT, 2009]

Polling systems

Gated polling
Exhaustive polling
Globally gated polling
Gated-Exhaustive polling

Cyclic routing

Markovian routing

Feedback

Symmetric gated polling

 $\it N$ Stations are polled cyclically. At the $\it n$ th polling instant, polling stations are ordered as they will be visited.

 $X_n^{(1)}$ queue content at the the polling station visited now

 $S_{n,k}^{(i)}$ is the number of arrivals at station i during the service time of the kth customer served after the nth polling instant

 $\mathcal{T}_n^{(i)}$ is the number of arrivals at station i during the switchover time from n to n+1

$$X_{n+1}^{(k)} = X_n^{(k+1)} + T_n^{(k+1)} + \sum_{\ell=1}^{X_n^{(1)}} S_{n,\ell}^{(k+1)}$$
 $X_{n+1}^{(N)} = T_n^{(1)} + \sum_{\ell=1}^{X_n^{(1)}} S_{n,\ell}^{(1)}$

Non-symmetric gated polling

Trick of "renumbering" the stations no longer works

Assume that the server arrives at the mth station at the nth polling time

$$X_{n+1}^{(k)} = X_n^{(k)} + T_n^{(k)} + \sum_{\ell=1}^{X_n^{(m)}} S_{n,m,\ell}^{(k)}$$
 $X_{n+1}^{(m)} = T_n^{(m)} + \sum_{\ell=1}^{X_n^{(m)}} S_{n,m,\ell}^{(m)}$

Apply N times as to arrive at the same station \rightarrow still branching with migration!

Gated versus exhaustive

From gated to exhaustive \rightarrow replace service times by busy periods

From exhaustive to gated \rightarrow introduce an extra queue

Moving everything from one queue to the other is also a branching process

Is the branching property essential for analysis of the polling system?

Commercial break ...

ASMTA 2013

Analytical & Stochastic Modelling Techniques & Applications

Ghent, 8-10 July 2013

Semi-linear processes

Stochastic recursive equation of the form:

$$X_{n+1} = A_n(X_n) + B_n ,$$

where

1. For some k, $y = y^0 + y^1 + ... + y^k$, then $A_n(y)$ can be represented as

$$A_n(y) = \sum_{i=0}^k \widehat{A}_n^{(i)}(y^i) ,$$

with $\widehat{A}_n^{(i)}$ identically distributed with same distribution as A_n .

- 2. $E[A_n(y)] = Ay$ and $E[A_n(y)A_n(y)'] = \sum_{k=1}^{K} \left(y_k \, \mathcal{B}_{n,k} + \sum_{\ell=1}^{K} y_k y_\ell \, \mathcal{C}_{n,k,\ell} \right) \stackrel{\cdot}{=} F(yy') + \sum_{k=1}^{K} y_k \, \mathcal{B}_{n,k}$
- 3. B_n is stationary ergodic

No independence!

Examples

Linear recurrences (in \mathbb{R}^N or \mathbb{N}^N):

$$X_{n+1} = A_n X_n + B_n$$

Branching in a random environment:

$$X_{n+1} = \sum_{k=1}^{X_n} \zeta_n(k; E_n)$$

Subordinators → recursion for the station times in polling systems

Stability

Theorem

(i) For n > 0, Y_n can be written in the form

$$X_n = \widetilde{X}_n + \left(\bigotimes_{i=0}^{n-1} \widehat{A}_i^{(0)}\right)(X_0) \text{ where } \widetilde{X}_n = \sum_{j=0}^{n-1} \left(\bigotimes_{i=n-j}^{n-1} \widehat{A}_i^{(n-j)}\right)(B_{n-j-1})$$

(ii) there is a unique stationary solution X_n^* of $X_n = A_n(X_{n-1}) + B_n$, distributed like

$$X_n^* =_d \sum_{j=0}^{\infty} \left(\bigotimes_{i=n-j}^{n-1} \widehat{A}_i^{(n-j)} \right) (B_{n-j-1}), \qquad n \in \mathbb{Z}$$
 (1)

The sum on the right side of (1) converges absolutely almost surely and $\lim_{n\to\infty} |X_n-X_n^*|=0$, almost surely. for any initial value X_0 .

Stationary ergodic migration

Correlation of the migration process does not affect means:

$$\mathsf{E}[\vec{X}] = (\mathcal{I} - \mathcal{A})^{-1}\,\mathsf{E}[\vec{B}]$$

But affects the second order moments

Theorem

Assume $E[\vec{B}] < \infty$, $E[\vec{B}\vec{B}'] < \infty$ and $\lim_{n \to \infty} F^n = 0$, then $cov(\vec{X})$ is the unique solution of

$$cov(\vec{X}) = cov(B) + \sum_{r=1}^{\infty} \left(\mathcal{A}^r \widehat{\mathcal{B}}(r) + \left[\mathcal{A}^r \widehat{\mathcal{B}}(r) \right]^T \right) + F(cov[\vec{X}]) + \sum_{k=1}^{d} E[X(k)]^{-(k)}$$

with
$$\widehat{\mathcal{B}}(r) = \mathsf{E}[\vec{B}_0 \vec{B}_r'] - \mathsf{E}[\vec{B}] \mathsf{E}[\vec{B}]'$$

Lifting independence assumption on A_n

Assume an exogenous Markovian environment Y_n with finite state space

$$\vec{X}_{n+1} = \vec{A}_n(\vec{X}_n, Y_n) + \vec{B}_n(Y_n)$$

The process Z_n is semi-linear

$$\vec{Z}_n = [\vec{X}_n I(Y_n = 1), \vec{X}_n I(Y_n = 2), \dots, \vec{X}_n I(Y_n = K)]'$$

Back to polling

[Fiems and Altman, Gated polling with stationary ergodic walking times, Markovian routing and random feedback, ANOR, 2012]

Continuous state-space model

- Gated polling policy
- Lévy arrivals (subordinators)
- Semi-linear feedback
- Markovian routing
- Different parameters for every station

Discrete state-space model

- Gated polling policy
- Batch Poisson arrivals, a batch may bring arrivals at different stations
- Poisson feedback during service
- ► Feedback at the end of service
- ► Independent service times
- Markovian routing
- Different parameters for every station

Recursion

$$\begin{split} V_{n+1}^{(k)} &= V_{n}^{(k)} + \sum_{i=1}^{V_{n}^{(\xi_{n})}} R_{n}^{(k)}(i) + G_{n}^{(k)} \left(\sum_{i=1}^{V_{n}^{(\xi_{n})}} S_{n}(i) \right) \\ &+ F_{n}^{(k)} \left(\sum_{i=1}^{V_{n}^{(\xi_{n})}} S_{n}(i) + W_{n}^{(Y_{n})} \right) , \quad \text{for } k \neq \xi_{n}, \\ V_{n+1}^{(\xi_{n})} &= \sum_{i=1}^{V_{n}^{(\xi_{n})}} R_{n}^{(\xi_{n})}(i) + G_{n}^{(\xi_{n})} \left(\sum_{i=1}^{V_{n}^{(\xi_{n})}} S_{n}(i) \right) + F_{n}^{(\xi_{n})} \left(\sum_{i=1}^{V_{n}^{(\xi_{n})}} S_{n}(i) + W_{n}^{(Y_{n})} \right) \end{split}$$

Semi-linear framework

$$V_{n+1}^{(\theta(Y_n))} = \underbrace{\sum_{i=1}^{V_n^{(\theta(Y_n))}} \left(R_n^{(\theta(Y_n))}(i) + G_{n,i}^{(\theta(Y_n))}(S_n(i)) + F_{n,i}^{(\theta(Y_n))}(S_n(i)) \right)}_{A_n^{(\theta(Y_n))}(\mathbf{V}_n, Y_n)} + \underbrace{F_{n,0}^{(\theta(Y_n))}(W_n^{(Y_n)})}_{B_n^{(\theta(Y_n))}(Y_n)}.$$

Open question

For branching processes: "heavy traffic limit to Gamma distributed random variable"

see [Vandermei, Towards a unifying theory on branching-type polling models in heavy traffic. Queueing Systems]

What if semi-linear, and not branching?

