Branching Processes \& Queuing Theory

Dieter Fiems

YEQT VI
Eindhoven, The Netherlands

Basic recursion

Applications

Busy periods

Number of customers served in a busy period $=$ Total number of persons in all generations
$\operatorname{Pr}[\zeta=n]=\mathrm{E}[l(\operatorname{Pois}(\lambda S)=n)]$
[Kendall, Some Problems in the Theory of Queues, J. Roy. Stat. Soc., 1951.]

Moments

Total number of persons in all generations, no migration

$$
\begin{gathered}
X_{n+1}=\sum_{\ell=1}^{X_{n}} \zeta_{n}(\ell), \quad X_{1}=1, \quad Y=\sum_{n=1}^{\infty} X_{n} \\
\mathrm{E}\left[X_{n+1}\right]=\mathrm{E}\left[X_{n}\right] \mathrm{E}\left[\zeta_{n}\right]=\prod_{\ell=1}^{n} \mathrm{E}\left[\zeta_{\ell}\right], \quad \mathrm{E}[Y]=1+\sum_{n=1}^{\infty} \prod_{\ell=1}^{n} \mathrm{E}\left[\zeta_{\ell}\right]
\end{gathered}
$$

With migration

$$
x_{n+1}=\sum_{\ell=1}^{x_{n}} \zeta_{n}(\ell)+B_{n}
$$

$$
\mathrm{E}\left[X_{n+1}\right]=\mathrm{E}\left[X_{n}\right] \mathrm{E}\left[\zeta_{n}\right]+\mathrm{E}\left[B_{n}\right]
$$

$\mathrm{E}\left[X_{n+1}^{2}\right]=\mathrm{E}\left[X_{n}^{2}\right] \mathrm{E}\left[\zeta_{n}\right]^{2}+\mathrm{E}\left[X_{n}\right]\left(\mathrm{E}\left[\zeta_{n}^{2}\right]-\mathrm{E}\left[\zeta_{n}\right]^{2}\right)+\mathrm{E}\left[B_{n}^{2}\right]+2 \mathrm{E}\left[B_{n}\right] \mathrm{E}\left[X_{n}\right] \mathrm{E}\left[\zeta_{n}\right]$

Beyond queuing dynamics ...

Multiple types

$$
\vec{X}_{n+1}=\underbrace{\sum_{k=1}^{K} \sum_{\ell=1}^{X_{n}(k)} \vec{\zeta}_{n, k}(\ell)}_{\vec{A}_{n}\left(\vec{X}_{n}\right)}+\vec{B}_{n}
$$

Moments

$$
\begin{aligned}
& \mathrm{E}\left[\vec{A}_{n}\left(\vec{X}_{n}\right)\right]=\sum_{k=1}^{K} \mathrm{E}\left[X_{n}(k)\right] \mathrm{E}\left[\vec{\zeta}_{n, k}\right]=\mathcal{A}_{n} \mathrm{E}\left[X_{n}(k)\right] \\
& \mathrm{E}\left[\vec{A}_{n}\left(\vec{X}_{n}\right) \vec{A}_{n}\left(\vec{X}_{n}\right)^{\prime}\right]=\sum_{k=1}^{K} \sum_{\ell=1}^{K} \mathrm{E}\left[X_{n}(k) X_{n}(\ell)\right] \mathrm{E}\left[\vec{\zeta}_{n, k}\right] \mathrm{E}\left[\vec{\zeta}_{n, \ell}^{\prime}\right] \\
&+\sum_{k=1}^{K} \mathrm{E}\left[X_{n}(k)\right]\left(\mathrm{E}\left[\vec{\zeta}_{n, k} \vec{\zeta}_{n, k}^{\prime}\right]-\mathrm{E}\left[\vec{\zeta}_{n, k}\right] \mathrm{E}\left[\vec{\zeta}_{n, k}^{\prime}\right]\right) \\
&=\sum_{k=1}^{K}\left(\mathrm{E}\left[X_{n}(k)\right] \mathcal{B}_{n, k}+\sum_{\ell=1}^{K} \mathrm{E}\left[X_{n}(k) X_{n}(\ell)\right] \mathcal{C}_{n, k, \ell}\right)
\end{aligned}
$$

Discrete-time $M / P H / \infty$ queue

Migration $=$ new arrivals
Types $=$ Phases of the service times
Offspring = At most one, the type being the next phase
[Altman. On stochastic recursive equations and infinite server queues. Infocom 2005]

Queue with $M / P H / \infty$ input

Use the queue content process of the $M / P H / \infty$ as arrival process of another queue

Interpretation: packets produced during "sessions"
Key property: regeneration when there are no arrivals
Generalisation: queues with multi-type Galton-Watson input
[Fiems et al. Queues with Galton-Watson-type arrivals. BWWQT, 2009]

Polling systems

Gated polling
 Exhaustive polling
 Globally gated polling
 Gated-Exhaustive polling

Cyclic routing
Markovian routing
Feedback

Symmetric gated polling

N Stations are polled cyclically. At the nth polling instant, polling stations are ordered as they will be visited.
$X_{n}^{(1)}$ queue content at the the polling station visited now
$S_{n, k}^{(i)}$ is the number of arrivals at station i during the service time of the k th customer served after the nth polling instant
$T_{n}^{(i)}$ is the number of arrivals at station i during the switchover time from n to $n+1$

$$
\begin{aligned}
& X_{n+1}^{(k)}=X_{n}^{(k+1)}+T_{n}^{(k+1)}+\sum_{\ell=1}^{x_{n}^{(1)}} S_{n, \ell}^{(k+1)} \\
& X_{n+1}^{(N)}=T_{n}^{(1)}+\sum_{\ell=1}^{X_{n}^{(1)}} S_{n, \ell}^{(1)}
\end{aligned}
$$

Non-symmetric gated polling

Trick of "renumbering" the stations no longer works
Assume that the server arrives at the m th station at the nth polling time

$$
\begin{aligned}
& X_{n+1}^{(k)}=X_{n}^{(k)}+T_{n}^{(k)}+\sum_{\ell=1}^{X_{n}^{(m)}} S_{n, m, \ell}^{(k)} \\
& X_{n+1}^{(m)}=T_{n}^{(m)}+\sum_{\ell=1}^{x_{n}^{(m)}} S_{n, m, \ell}^{(m)}
\end{aligned}
$$

Apply N times as to arrive at the same station \rightarrow still branching with migration!

Gated versus exhaustive

From gated to exhaustive \rightarrow replace service times by busy periods

From exhaustive to gated \rightarrow introduce an extra queue

Moving everything from one queue to the other is also a branching process

Is the branching property essential for analysis of the polling system?

Commercial break ...

ASMTA 2013
Analytical \& Stochastic Modéling Techniques \& Applications

Ghent, 8-10 July 2013

Semi-linear processes

Stochastic recursive equation of the form:

$$
X_{n+1}=A_{n}\left(X_{n}\right)+B_{n}
$$

where

1. For some $k, y=y^{0}+y^{1}+\ldots+y^{k}$, then $A_{n}(y)$ can be represented as

$$
A_{n}(y)=\sum_{i=0}^{k} \widehat{A}_{n}^{(i)}\left(y^{i}\right)
$$

with $\widehat{A}_{n}^{(i)}$ identically distributed with same distribution as A_{n}.
2. $\mathrm{E}\left[A_{n}(y)\right]=\mathcal{A} y$ and $\mathrm{E}\left[A_{n}(y) A_{n}(y)^{\prime}\right]=$

$$
\sum_{k=1}^{K}\left(y_{k} \mathcal{B}_{n, k}+\sum_{\ell=1}^{K} y_{k} y_{\ell} \mathcal{C}_{n, k, \ell}\right)=F\left(y y^{\prime}\right)+\sum_{k=1}^{K} y_{k} \mathcal{B}_{n, k}
$$

3. B_{n} is stationary ergodic

No independence!

Examples

- Linear recurrences (in \mathbb{R}^{N} or \mathbb{N}^{N}):

$$
X_{n+1}=A_{n} X_{n}+B_{n}
$$

- Branching in a random environment:

$$
X_{n+1}=\sum_{k=1}^{X_{n}} \zeta_{n}\left(k ; E_{n}\right)
$$

- Subordinators \rightarrow recursion for the station times in polling systems

Stability

Theorem
(i) For $n>0, Y_{n}$ can be written in the form
$X_{n}=\widetilde{X}_{n}+\left(\bigotimes_{i=0}^{n-1} \widehat{A}_{i}^{(0)}\right)\left(X_{0}\right)$ where $\widetilde{X}_{n}=\sum_{j=0}^{n-1}\left(\bigotimes_{i=n-j}^{n-1} \widehat{A}_{i}^{(n-j)}\right)\left(B_{n-j-1}\right)$
(ii) there is a unique stationary solution X_{n}^{*} of $X_{n}=A_{n}\left(X_{n-1}\right)+B_{n}$, distributed like

$$
\begin{equation*}
X_{n}^{*}={ }_{d} \sum_{j=0}^{\infty}\left(\bigotimes_{i=n-j}^{n-1} \widehat{A}_{i}^{(n-j)}\right)\left(B_{n-j-1}\right), \quad n \in \mathbb{Z} \tag{1}
\end{equation*}
$$

The sum on the right side of (1) converges absolutely almost surely and $\lim _{n \rightarrow \infty}\left|X_{n}-X_{n}^{*}\right|=0$, almost surely. for any initial value X_{0}.

Stationary ergodic migration

Correlation of the migration process does not affect means:

$$
\mathrm{E}[\vec{X}]=(\mathcal{I}-\mathcal{A})^{-1} \mathrm{E}[\vec{B}]
$$

But affects the second order moments
Theorem
Assume $\mathrm{E}[\vec{B}]<\infty, \mathrm{E}\left[\vec{B} \vec{B}^{\prime}\right]<\infty$ and $\lim _{n \rightarrow \infty} F^{n}=0$, then $\operatorname{cov}(\vec{X})$ is the unique solution of

$$
\begin{aligned}
\operatorname{cov}(\vec{X})=\operatorname{cov}(B)+\sum_{r=1}^{\infty}\left(\mathcal{A}^{r} \widehat{\mathcal{B}}(r)\right. & \left.+\left[\mathcal{A}^{r} \widehat{\mathcal{B}}(r)\right]^{T}\right) \\
& +F(\operatorname{cov}[\vec{X}])+\sum_{k=1}^{d} \mathrm{E}[X(k)] \Gamma^{(k)}
\end{aligned}
$$

with $\widehat{\mathcal{B}}(r)=\mathrm{E}\left[\vec{B}_{0} \vec{B}_{r}^{\prime}\right]-\mathrm{E}[\vec{B}] \mathrm{E}[\vec{B}]^{\prime}$

Lifting independence assumption on A_{n}

Assume an exogenous Markovian environment Y_{n} with finite state space

$$
\vec{X}_{n+1}=\vec{A}_{n}\left(\vec{X}_{n}, Y_{n}\right)+\vec{B}_{n}\left(Y_{n}\right)
$$

The process Z_{n} is semi-linear

$$
\vec{Z}_{n}=\left[\vec{X}_{n} I\left(Y_{n}=1\right), \vec{X}_{n} I\left(Y_{n}=2\right), \ldots, \vec{X}_{n} I\left(Y_{n}=K\right)\right]^{\prime}
$$

Back to polling

[Fiems and Altman, Gated polling with stationary ergodic walking times,
Markovian routing and random feedback, ANOR, 2012]

Continuous state-space model

- Gated polling policy
- Lévy arrivals (subordinators)
- Semi-linear feedback
- Markovian routing
- Different parameters for every station

Discrete state-space model

- Gated polling policy
- Batch Poisson arrivals, a batch may bring arrivals at different stations
- Poisson feedback during service
- Feedback at the end of service
- Independent service times
- Markovian routing
- Different parameters for every station

Recursion

$$
\begin{aligned}
& V_{n+1}^{(k)}= V_{n}^{(k)}+ \\
& \sum_{i=1}^{V_{n}^{\left(\xi_{n}\right)}} R_{n}^{(k)}(i)+G_{n}^{(k)}\left(\sum_{i=1}^{V_{n}^{\left(\xi_{n}\right)}} S_{n}(i)\right) \\
&+F_{n}^{(k)}\left(\sum_{i=1}^{V_{n}^{\left(\xi_{n}\right)}} S_{n}(i)+W_{n}^{\left(Y_{n}\right)}\right), \quad \text { for } k \neq \xi_{n} \\
& V_{n+1}^{\left(\xi_{n}\right)}= \sum_{i=1}^{V_{n}^{\left(\xi_{n}\right)}} R_{n}^{\left(\xi_{n}\right)}(i)+G_{n}^{\left(\xi_{n}\right)}\left(\sum_{i=1}^{V_{n}^{\left(\xi_{n}\right)}} S_{n}(i)\right)+F_{n}^{\left(\xi_{n}\right)}\left(\sum_{i=1}^{V_{n}^{\left(\xi_{n}\right)}} S_{n}(i)+W_{n}^{\left(Y_{n}\right)}\right)
\end{aligned}
$$

Semi-linear framework

$$
\begin{array}{r}
V_{n+1}^{\left(\theta\left(Y_{n}\right)\right)}=\underbrace{\sum_{i=1}^{\left(\theta\left(Y_{n}\right)\right)}}_{A_{n}^{\left(\theta\left(Y_{n}\right)\right)}\left(\mathbf{V}_{n}, Y_{n}\right)}\left(R_{n}^{\left(\theta\left(Y_{n}\right)\right)}(i)+G_{n, i}^{\left(\theta\left(Y_{n}\right)\right)}\left(S_{n}(i)\right)+F_{n, i}^{\left(\theta\left(Y_{n}\right)\right)}\left(S_{n}(i)\right)\right) \\
+\underbrace{F_{n, 0}^{\left(\theta\left(Y_{n}\right)\right)}\left(W_{n}^{\left(Y_{n}\right)}\right)}_{B_{n}^{\left(\theta\left(Y_{n}\right)\right)}\left(Y_{n}\right)}
\end{array}
$$

Open question

For branching processes: "heavy traffic limit to Gamma distributed random variable"
see [Vandermei, Towards a unifying theory on branching-type polling models in heavy traffic. Queueing Systems]

What if semi-linear, and not branching?

