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Coupled queues

service is only possible if none of the queues are empty.
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I slow convergence of simulation results

I null-recurrence

I state-space explosion

I rather complicated matrix structure
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Kitting process
Decoupling inventory
Energy harvesting process

Decoupling inventory in a hybrid push-pull system

Raw materials are pushed into the semi-finished product inventory
while customers pulls products by placing orders
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Energy harvesting process

Energy harvesting is the process by which

I ambient energy is converted into electrical energy and

I this energy is stored in small autonomous devices called
sensor nodes.
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I Sparse matrix techniques

I Matrix-analytic methods
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Sparse matrix techniques

Sparse method

I sparse matrix: matrix with most of its elements equal to zero

I generator matrix of paired queues where e.g. C1 = C2 = 100:
I standard: 408042 elements
I sparse: 3x40804 elements

I less memory consumption and processing time than for
standard matrices

General Minimal Residual Method (GMRES)

I iterative method to solve sparse matrix equations

I fast and sufficiently accurate

I however, size of the state space is strictly limited
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QBD Processes

We define a Markov process with state
S = {(n, i) : n > 0, 1 6 i 6 m}

and with infinitesimal generator

The one-step transitions are restricted to states in the same level
(n, ∗) or in two adjacent levels (n + 1, ∗) or (n − 1, ∗).

The following equation determine the stationary distribution:
πn = π0R

n

with the rate matrix R, solution of the equation :
R = A0 + RA1 + R2A2
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decoupling inventory model
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I 3-dimensional modulating Markov chain with state (n,m, i)

I n = number of backlogged orders
I m = number of semi-finished products
I i = state of the modulating chain
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Numerical results

2 4 6 8 10 12
Tp
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inventoryorders

EQp

EQo

I capacity: Cp = 20

I product arrival rate: λp = 1

I order arrival rate: λo = 0.85

I order processing rate: µ = 1

I no set-up time
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block matrix structure for 3 finite capacity queues

Ci = 2 for queue i = {1, 2, 3}
generator matrix with a tridiagonal block structure



0 λ3 0 λ2 0 0 0 0 0 λ1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 λ3 0 λ2 0 0 0 0 0 λ1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 λ2 0 0 0 0 0 λ1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 λ3 0 λ2 0 0 0 0 0 λ1 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 λ3 0 λ2 0 0 0 0 0 λ1 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 λ2 0 0 0 0 0 λ1 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 λ3 0 0 0 0 0 0 0 λ1 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 λ3 0 0 0 0 0 0 0 λ1 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 λ1 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 λ3 0 λ2 0 0 0 0 0 λ1 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 λ3 0 λ2 0 0 0 0 0 λ1 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 λ2 0 0 0 0 0 λ1 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 λ3 0 λ2 0 0 0 0 0 λ1 0 0 0 0 0
µ 0 0 0 0 0 0 0 0 0 0 0 0 0 λ3 0 λ2 0 0 0 0 0 λ1 0 0 0 0
0 µ 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 λ2 0 0 0 0 0 λ1 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 λ3 0 0 0 0 0 0 0 0 0 λ1

0 0 0 µ 0 0 0 0 0 0 0 0 0 0 0 0 0 λ3 0 0 0 0 0 0 0 λ1 0
0 0 0 0 µ 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 λ1

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 λ3 0 λ2 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 λ3 0 λ2 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 λ2 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 λ3 0 λ2 0 0
0 0 0 0 0 0 0 0 0 µ 0 0 0 0 0 0 0 0 0 0 0 0 0 λ3 0 λ2 0
0 0 0 0 0 0 0 0 0 0 µ 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 λ2

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 λ3 0
0 0 0 0 0 0 0 0 0 0 0 0 µ 0 0 0 0 0 0 0 0 0 0 0 0 0 λ3

0 0 0 0 0 0 0 0 0 0 0 0 0 µ 0 0 0 0 0 0 0 0 0 0 0 0 0


1
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Taylor series expansion approach

Consider a family of (continuous-time) Markov processes {Xε(t)}
over a finite state space X of size M with generator matrix

Qε = Q(0) + εQ(1),

πε denotes the corresponding stationary distribution

πεQε = 0

Numerical computation of the steady-state vector has an
asymptotic time complexity of O(M3)
Models that suffer from state-space explosion stay generally out of
reach of a numerical analysis
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Taylor series expansion around ε = 0

Vector πε is required to be analytic in a neighbourhood of ε = 0

I we only consider finite state space

I entries of the generator matrix depend analytically on the
parameter

I only one recurrent class for ε = 0

“Regular perturbation”

From now on: assume Q0 = Q(0) is a generator matrix with one
recurrent class
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Recursive solution of the series expansion

π(0)Q(0) = 0

π(n+1)Q(0) = −π(n)Q(1)

We have to solve a linear system of equations for each term π(i) in
the expansion
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I Impose the extra condition that Q(0) for some ordering of the
state space be triangular

I Solution by backward substitutions → O(M2)

I In practice Q(0) and Q(1) often sparse → O(M)
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Kitting process with K parts

C1

C2

CK

λ1

λ2

λK

µ

I system of K queues, queue i having finite capacity Ci

I Poisson arrivals in each of the queues at rate λi
I exponentially distributed service rate µ

I Lexicographical order

I Expansion around ε = µ = 0, all queues are full for ε = 0
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1. Balance equation

π(i1, i2, . . . , iK )

(
µ

K∏
`=1

1{i`>0} +
K∑
`=1

1{i`<C`}λ`

)
=

π(i1 + 1, i2 + 1, . . . , iK + 1)µ
K∏
`=1

1{i`<C`}

+
K∑
`=1

π(i1, . . . , i`−1, i` − 1, i`+1, . . . , iK )λ`1{i`>0}

Eline De Cuypere Koen De Turck and Dieter Fiems Analysis of coupled queues



Applications
Numerical techniques

Conclusion

Sparse matrix techniques
Matrix-analytic methods
Taylor series expansion approach

2. Expansion

π(i) =
∞∑
n=0

πn(i)µn

3. Substitution

∞∑
n=0

πn(i1, i2, . . . , iK )µn

(
µ

K∏
`=1

1{i`>0} +
K∑
`=1

1{i`<C`}λ`

)
=

∞∑
n=0

πn(i1 + 1, i2 + 1, . . . , iK + 1)µn+1
K∏
`=1

1{i`<C`}

+
∞∑
n=0

K∑
`=1

πn(i1, . . . , i`−1, i` − 1, i`+1, . . . , iK )λ`µ
n1{i`>0}
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4. Compare terms in µn

πn(i1, i2, . . . , iK ) =
1∑K

`=1 1{i`<C`}λ`
×

(
1{n>0}πn−1(i1 + 1, i2 + 1, . . . , iK + 1)

K∏
`=1

1{i`<C`}

+
K∑
`=1

πn(i1, . . . , i`−1, i` − 1, i`+1, . . . , iK )λ`1{i`>0}

− 1{n>0}πn−1(i1, i2, . . . , iK )
K∏
`=1

1{i`>0}

)

Eline De Cuypere Koen De Turck and Dieter Fiems Analysis of coupled queues



Applications
Numerical techniques

Conclusion

Sparse matrix techniques
Matrix-analytic methods
Taylor series expansion approach

5. Normalisation condition

π0([C1,C2, . . . ,CK ]) = 1

πn([C1,C2, . . . ,CK ]) = −
∑
i∈C∗

πn(i)

with C∗ = C \ {[C1,C2, . . . ,CK ]}
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What’s the speed?

C \ N 5 10 20 50 100

10 0.340 0.376 0.415 0.534 0.735

20 0.796 1.237 2.144 4.678 8.960

30 3.783 6.842 12.984 32.856 64.660

40 14.640 30.422 53.202 128.375 257.236

Table: Computation time in seconds for 5 queues
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Numerical results

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
µ

7.0

7.5

8.0

8.5

9.0

9.5

10.0
Mean number of items

N = 1

N = 2

N = 5

simulation
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Conclusion
I Numerical analysis of coupled queues in a Markovian setting

I Sparse-matrix techniques
I Matrix-analytic methods
I Taylor series expansion approach

Future work

I Compare the analysis methodology

I Investigate the matrix-analytic methods to cope with the
tridiagonal block matrix structure of the generator matrix for
the multidimensional case.

I Investigate other methods: mean field analysis, stochastic
fluid model,. . .
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