Queueing models with multiple waiting lines: Direct methods

Technische Universiteit **Eindhoven** University of Technology

TU

YEQT-VI 2012, Friday Nov 2

What is steady-state queue length distribution?

What is the waiting time distribution?

What is the mean waiting time?

/department of mechanical engineering

What is steady-state queue length distribution?

What is the waiting time distribution?

What is the mean waiting time?

3/50

States are grid points (m, n) where

- *m* is length of shortest queue
- *n* is difference between longest and shortest queue

What is steady-state queue length distribution $p_{m,n}$?

Balance equations ($\lambda + 2\mu = 1$)

$$p_{m,n} = p_{m-1,n+1}\lambda + p_{m,n+1}\mu + p_{m+1,n-1}\mu$$

$$p_{m,1} = p_{m-1,2}\lambda + p_{m,2}\mu + p_{m,0}2\mu + p_{m+1,0}\lambda$$

$$p_{m,0} = p_{m,1}\lambda + p_{m+1,1}\mu$$

$$p_{0,n} = p_{0,n}\mu + p_{0,n+1}\mu + p_{1,n-1}\mu$$

/department of mechanical engineering

Balance equations ($\lambda + 2\mu = 1$)

$$p_{m,n} = p_{m-1,n+1}\lambda + p_{m,n+1}\mu + p_{m+1,n-1}\mu$$

$$p_{m,1} = p_{m-1,2}\lambda + p_{m,2}\mu + (p_{m,1}\lambda + p_{m+1,1}\mu)2\mu + (p_{m-1,1}\lambda + p_{m,1}\mu)\lambda$$

$$p_{0,n} = p_{0,n}\mu + p_{0,n+1}\mu + p_{1,n-1}\mu$$

/department of mechanical engineering

Basis solutions are products $\alpha^m \beta^n$ satisfying

$$p_{m,n} = p_{m-1,n+1}\lambda + p_{m,n+1}\mu + p_{m+1,n-1}\mu$$

so α and β are on the curve

$$\alpha\beta = \beta^2\lambda + \alpha\beta^2\mu + \alpha^2\mu$$

The curve of basis solutions

$$\alpha\beta = \beta^2\lambda + \alpha\beta^2\mu + \alpha^2\mu$$

Initial basis solution satisfies balance equations for n = 1:

 $p_{m,n} \approx c_0 \alpha_0^m \beta_0^n$

with
$$\alpha_0 = \rho^2$$
, $\beta_0 = \rho^2/(2+\rho)$ where $\rho = \frac{\lambda}{2\mu}$

Initial term $c_0 \alpha_0^n \beta_0^m$ violates balance equations for m = 0

YEQT-VI

Add new term to compensate for this error:

$$p_{m,n} \approx c_0 \alpha_0^m \beta_0^n + c_1 \alpha_1^m \beta_1^n$$

where
$$\beta_1 = \beta_0$$
 and $c_1 = -c_0 \frac{\alpha_1 - \beta_1}{\alpha_0 - \beta_0}$

/department of mechanical engineering

TU/e Technische Universiteit Eindhoven University of Technology

However, $c_1 \alpha_1^n \beta_1^m$ violates balance equations for n = 1

Add again term:

$$p_{m,n} \approx c_0 \alpha_0^m \beta_0^n + c_1 \alpha_1^m \beta_1^n + c_2 \alpha_2^m \beta_2^n$$

where
$$\alpha_2 = \alpha_1$$
 and $c_2 = -c_1 \frac{(\alpha_2 + \rho)/\beta_2 - (1+\rho)}{(\alpha_1 + \rho)/\beta_1 - (1+\rho)}$

/department of mechanical engineering

Steady-state queue length distribution is given by:

 $p_{m,n} = c_0 \alpha_0^m \beta_0^n + c_1 \alpha_1^m \beta_1^n + c_2 \alpha_2^m \beta_2^n + c_3 \alpha_3^m \beta_3^n + \cdots$

/department of mechanical engineering

$$p_{m,n} = \sum_{i=0}^{\infty} c_i \alpha_i^m \beta_i^n$$

Observations:

•
$$\frac{1}{\alpha_i}, \frac{1}{\beta_i}$$
 are of form $A + B\left(ab^i + \frac{1}{ab^i}\right)$, so $\alpha_i, \beta_i \downarrow 0$ as $i \to \infty$

13/50

- series converges absolutely, faster further away from origin
- distribution of shortest queue

$$p_m = \sum_{n=0}^{\infty} p_{m,n} = \sum_{i=0}^{\infty} d_i (1 - \alpha_i) \alpha_i^m$$

distribution and mean of waiting time

$$P(W > t) = \sum_{i=0}^{\infty} d_i \alpha_i e^{-\mu(1-\alpha_i)t}, \quad E(W) = \sum_{i=0}^{\infty} d_i \frac{\alpha_i}{\mu(1-\alpha_i)}$$

Random walk in quarter plane

Then

$$p_{m,n} = \sum_{i=0}^{\infty} c_i \alpha_i^m \beta_i^n$$

14/50

/department of mechanical engineering

Random walk in quarter plane

Then

$$p_{m,n} = \sum_{i=0}^{\infty} c_i \alpha_i^m \beta_i^n$$

if no transitions to North, North-East and East:

 $q_{0,1} = q_{1,1} = q_{1,0} = 0$

/department of mechanical engineering

YEQT-VI

Random walk in quarter plane

 $q_{0,1} = q_{1,1} = q_{1,0} = 0$ implies that α , β -curve is of the above form which guarantees that α_i , $\beta_i \to 0$ as $i \to \infty$

16/50

/department of mechanical engineering

 $m_1 \rightarrow$

States are grid points (m_1, m_2) where

- *m*¹ is length of shortest queue
- *m*² is length of longest queue

 $m_1 \rightarrow$

Average cost ($\lambda + 2\mu = 1$):

- $c(m_1, m_2) = m_1 + m_2 \text{ cost per period}$
- g is long-run average cost (mean number in system): Bounds for g?

echnische Universiteit E**indhoven** Iniversity of Technology

 $m_1 \rightarrow$

Precedence relations: state (m_1, m_2) is more attractive than (n_1, n_2) if

 $v_t(m_1, m_2) \le v_t(n_1, n_2), \quad t = 0, 1, 2, \dots$

where $v_t(m_1, m_2)$ is the *t*-period expected cost starting in (m_1, m_2)

 $m_1 \rightarrow$

- Redirect some transitions to more attractive states
- Then $g \geq \tilde{g}$ where \tilde{g} is long-run average cost of new chain

21/50

Bounds work well, even for very large systems (say 50 queues)!

/department of mechanical engineering

What is steady-state queue length distribution?

What is the waiting time distribution?

What is the mean waiting time?

/department of mechanical engineering

What is steady-state queue length distribution?

What is the waiting time distribution?

What is the mean waiting time? $E(W) = \frac{\rho}{(1-\rho)\mu}$ with $\rho = \frac{2\lambda}{\mu}$

/department of mechanical engineering

States are grid points (*m*, *n*) where

- *m* is number in idle queue
- *n* is number in service queue

What is steady-state queue length distribution $p_{m,n}$?

Balance equations $(2\lambda + \mu = 1)$

$$p_{m,n} = p_{m,n+1}\mu + p_{m-1,n}\lambda + p_{m,n-1}\lambda$$

$$p_{m,1} = p_{m,2}\mu + p_{m-1,1}\lambda$$

$$p_{0,n} = p_{0,n+1}\mu + p_{n,1}\mu + p_{0,n-1}\lambda$$

TU/e Technische Universiteit Eindhoven University of Technology

25/50

Basis solutions are formed by products $\alpha^m \beta^{n-1}$ satisfying

$$p_{m,n} = p_{m,n+1}\mu + p_{m-1,n}\lambda + p_{m,n-1}\lambda$$

so α and β are on the curve

$$\alpha\beta = \alpha\beta^2\mu + \beta\lambda + \alpha\lambda$$

/department of mechanical engineering

The curve of basis solutions

$$\alpha\beta = \beta\lambda + \alpha\beta^2\mu + \alpha\lambda$$

Iteration? Initial term? Cannot find one!

/department of mechanical engineering

YEQT-VI

Different iteration:

Let

$$P(z) = \sum_{m=0}^{\infty} p_{m,1} z^m$$

then

$$P(z) = P(h(z)) - p_{0,1}(1 - h(z))$$

where $h(z) = \eta(\lambda(1-z))$ and $\eta(\cdot)$ is LST of BP of $M(\lambda)/M(\mu)/1$

Iterating yields

$$P(z) = \sum_{m=0}^{\infty} p_{m,1} - p_{0,1} \sum_{k=1}^{\infty} (1 - h^{(k)}(z))$$

where $h^{(k)}(z) = h(h^{(k-1)}(z))$, $h^{(0)}(z) = z$

- Gated service
- PP(λ) joins idle queue

/department of mechanical engineering

YEQT-VI

States are grid points (m, n) where

- *m* is number in idle queue
- *n* is number in service queue

What is steady-state queue length distribution $p_{m,n}$?

Balance equations ($\lambda + \mu = 1$)

$$p_{m,n} = p_{m-1,n}\lambda + p_{m,n+1}\mu$$

 $p_{0,n} = p_{n,1}\mu + p_{0,n+1}\mu$

TU/e Technische Universiteit Eindhoven University of Technology

31/50

Basis solutions are products $\alpha^m \beta^{n-1}$ satisfying

 $p_{m,n} = p_{m-1,n}\lambda + p_{m,n+1}\mu$

so α and β are on the curve

 $\alpha = \lambda + \alpha \beta \mu$

The curve of basis solutions

$$\alpha = \lambda + \alpha \beta \mu$$

33/50

Initial product satisfies balance equations for m > 0:

 $p_{m,n}\approx c_0\alpha_0^m\beta_0^{n-1}$

with $\alpha_0 = \lambda$, $\beta_0 = 0$

34/50

Initial product $c_0 \alpha_0^m \beta_0^{n-1}$ violates balance equations for m = 0

Add new product to compensate for this error:

$$p_{m,n} \approx c_0 \alpha_0^m \beta_0^{n-1} + c_1 \alpha_1^m \beta_1^{n-1}$$

where $\beta_1 = \alpha_0$

35/50

Steady-state queue length distribution is given by:

$$p_{m,n} = c_0 \alpha_0^m \beta_0^{n-1} + c_1 \alpha_1^m \beta_1^{n-1} + c_2 \alpha_2^m \beta_2^{n-1} + \cdots$$

where $\alpha_i \rightarrow \lambda/\mu$ and $\beta_i \rightarrow \lambda/\mu$ as $i \rightarrow \infty$

and this random walk in the quarter plane has transitions to the East

36/50

/department of mechanical engineering

Different iteration:

Let

$$P(z) = \sum_{m=0}^{\infty} p_{m,1} z^n$$

then

$$P(z) = P(h(z)) - p_{0,1}(1 - h(z))$$

where

$$h(z) = \frac{\mu}{\mu + \lambda(1 - z)}$$

Iterating yields

$$P(z) = \sum_{m=0}^{\infty} p_{m,1} - p_{0,1} \sum_{k=1}^{\infty} (1 - h^{(k)}(z))$$

/department of mechanical engineering

Smart gated polling: Another look

38/50

which is a particle randomly circulating in the plane

/department of mechanical engineering

What is steady-state queue length distribution?

What is the waiting time distribution?

What is the mean waiting time?

39/50

/department of mechanical engineering

What is steady-state queue length distribution?

What is the waiting time distribution?

What is the mean waiting time? $E(W) = \frac{\rho}{(1-\rho)\mu}$ with $\rho = \frac{\lambda}{\mu}$

40/50

States are grid points (m, n) in the right half plane where

- *m* is length of shortest queue
- *n* is difference between idle and service queue

What is steady-state queue length distribution $p_{m,n}$?

Balance equations ($\lambda + \mu = 1$)

$$p_{m,n} = p_{m-1,n+1}\lambda + p_{m+1,n-1}\mu$$

 $p_{m,-n} = p_{m-1,-n-1}\lambda + p_{m,-n-1}\mu$

TU/e Technische Universiteit Eindhoven University of Technology

42/50

/department of mechanical engineering

Basis solutions for $n \ge 0$ are products $\alpha^m \beta^n$ satisfying

$$p_{m,n} = p_{m-1,n+1}\lambda + p_{m+1,n-1}\mu$$

so α and β are on the curve

$$\alpha\beta = \beta^2\lambda + \alpha^2\mu$$
 or $(\alpha - \beta)(\alpha\mu - \beta\lambda) = 0$

/department of mechanical engineering

The curves of basis solutions for $n \ge 0$

 $\alpha = \beta, \qquad \mu \alpha = \lambda \beta$

Curve of basis solutions for n < -1

$$\alpha = \frac{\lambda\beta}{1-\mu\beta}$$

Initial product:

$$p_{m,n} = \begin{cases} c_0 \alpha_0^m \beta_0^n, & m > 0, n \ge 0, \\ d_0 \alpha_0^m, & m > 0, n = -1, \\ 0, & m \ge 0, n < -1, \end{cases}$$

where
$$\alpha_0 = \beta_0 = \rho^2$$

/department of mechanical engineering

YEQT-VI

Compensation on vertical boundary of $c_0 \alpha_0^m \beta_0^n$, m > 0, $n \ge 0$:

$$p_{m,n} = \begin{cases} c_0 \alpha_0^m \beta_0^n + c_1 \alpha_1^m \beta_1^n, & m > 0, n \ge 0, \\ c_2 \alpha_2^m \beta_2^{-n}, & m \ge 0, n < -1, \end{cases}$$

where $\beta_2 = \beta_1 = \beta_0$ (so two new terms!)

/department of mechanical engineering

YEQT-VI

Compensation on horizontal boundary of $c_1 \alpha_1^m \beta_1^n$, m > 0, $n \ge 0$:

$$p_{m,n} = \begin{cases} c_1 \alpha_1^m \beta_1^n + c_3 \alpha_3^m \beta_3^n, & m > 0, n \ge 0, \\ d_3 \alpha_3^m, & m > 0, n = -1, \\ 0, & m \ge 0, n < -1, \end{cases}$$

where $\alpha_3 = \alpha_1$

/department of mechanical engineering

YEQT-VI

Compensation on horizontal boundary of $c_2 \alpha_2^m \beta_2^{-n}$, $m \ge 0$, n < -1:

$$p_{m,n} = \begin{cases} c_4 \alpha_4^m \beta_4^n, & m > 0, n \ge 0, \\ d_4 \alpha_4^m, & m > 0, n = -1, \\ c_2 \alpha_2^m \beta_2^{-n}, & m \ge 0, n < -1, \end{cases}$$

where $\alpha_4 = \alpha_2$

/department of mechanical engineering

Results in tree of terms:

- $c_i \alpha_i^m \beta_i^n$ live in Upper quadrant
- $c_i \alpha_i^m \beta_i^{-n}$ live in Lower quadrant

$$p_{m,n} = \sum_{i \in U} c_i \alpha_i^m \beta_i^n, \qquad m \ge 1, n \ge 0$$

$$p_{m,-1} = \sum_{i \in U \cup L} d_i \alpha_i^m, \quad m \ge 1, n = -1$$
$$p_{m,n} = \sum c_i \alpha_i^m \beta_i^{-n}, \quad m \ge 0, n < -1$$

• $\alpha_i, \beta_i \downarrow 0$ as $i \to \infty$

 $i \in L$

- series converge absolutely, faster further away from origin
- distribution of shortest queue and waiting time (in service queue)

$$p_m = \sum_{i \in U \cup L} D_i (1 - \alpha_i) \alpha_i^m, \quad P(W > t) = \sum_{i \in U \cup L} D_i \alpha_i e^{-\mu (1 - \alpha_i)t}$$

50/50