## Queueing models with multiple waiting lines: Direct methods



## Shortest queue and polling



What is steady-state queue length distribution?
What is the waiting time distribution?
What is the mean waiting time?

## Shortest queue



What is steady-state queue length distribution?
What is the waiting time distribution?
What is the mean waiting time?

## Shortest queue



States are grid points ( $m, n$ ) where

- $m$ is length of shortest queue
- $n$ is difference between longest and shortest queue

What is steady-state queue length distribution $p_{m, n}$ ?

## Shortest queue



Balance equations $(\lambda+2 \mu=1)$

$$
\begin{aligned}
p_{m, n} & =p_{m-1, n+1} \lambda+p_{m, n+1} \mu+p_{m+1, n-1} \mu \\
p_{m, 1} & =p_{m-1,2} \lambda+p_{m, 2} \mu+p_{m, 0} 2 \mu+p_{m+1,0} \lambda \\
p_{m, 0} & =p_{m, 1} \lambda+p_{m+1,1} \mu \\
p_{0, n} & =p_{0, n} \mu+p_{0, n+1} \mu+p_{1, n-1} \mu
\end{aligned}
$$

## Shortest queue



Balance equations $(\lambda+2 \mu=1)$

$$
\begin{aligned}
p_{m, n}= & p_{m-1, n+1} \lambda+p_{m, n+1} \mu+p_{m+1, n-1} \mu \\
p_{m, 1}= & p_{m-1,2} \lambda+p_{m, 2} \mu+ \\
& \left(p_{m, 1} \lambda+p_{m+1,1} \mu\right) 2 \mu+\left(p_{m-1,1} \lambda+p_{m, 1} \mu\right) \lambda \\
p_{0, n}= & p_{0, n} \mu+p_{0, n+1} \mu+p_{1, n-1} \mu
\end{aligned}
$$

## Shortest queue



Basis solutions are products $\alpha^{m} \beta^{n}$ satisfying

$$
p_{m, n}=p_{m-1, n+1} \lambda+p_{m, n+1} \mu+p_{m+1, n-1} \mu
$$

so $\alpha$ and $\beta$ are on the curve

$$
\alpha \beta=\beta^{2} \lambda+\alpha \beta^{2} \mu+\alpha^{2} \mu
$$

## Shortest queue



The curve of basis solutions

$$
\alpha \beta=\beta^{2} \lambda+\alpha \beta^{2} \mu+\alpha^{2} \mu
$$

## Shortest queue



Initial basis solution satisfies balance equations for $n=1$ :

$$
p_{m, n} \approx c_{0} \alpha_{0}^{m} \beta_{0}^{n}
$$

with $\alpha_{0}=\rho^{2}, \beta_{0}=\rho^{2} /(2+\rho)$ where $\rho=\frac{\lambda}{2 \mu}$

## Shortest queue



Initial term $c_{0} \alpha_{0}^{n} \beta_{0}^{m}$ violates balance equations for $m=0$
Add new term to compensate for this error:

$$
p_{m, n} \approx c_{0} \alpha_{0}^{m} \beta_{0}^{n}+c_{1} \alpha_{1}^{m} \beta_{1}^{n}
$$

where $\beta_{1}=\beta_{0}$ and $c_{1}=-c_{0} \frac{\alpha_{1}-\beta_{1}}{\alpha_{0}-\beta_{0}}$

## Shortest queue



However, $c_{1} \alpha_{1}^{n} \beta_{1}^{m}$ violates balance equations for $n=1$
Add again term:

$$
p_{m, n} \approx c_{0} \alpha_{0}^{m} \beta_{0}^{n}+c_{1} \alpha_{1}^{m} \beta_{1}^{n}+c_{2} \alpha_{2}^{m} \beta_{2}^{n}
$$

where $\alpha_{2}=\alpha_{1}$ and $c_{2}=-c_{1} \frac{\left(\alpha_{2}+\rho\right) / \beta_{2}-(1+\rho)}{\left(\alpha_{1}+\rho\right) / \beta_{1}-(1+\rho)}$

## Shortest queue



Steady-state queue length distribution is given by:

$$
p_{m, n}=c_{0} \alpha_{0}^{m} \beta_{0}^{n}+c_{1} \alpha_{1}^{m} \beta_{1}^{n}+c_{2} \alpha_{2}^{m} \beta_{2}^{n}+c_{3} \alpha_{3}^{m} \beta_{3}^{n}+\cdots
$$

## Shortest queue

$$
p_{m, n}=\sum_{i=0}^{\infty} c_{i} \alpha_{i}^{m} \beta_{i}^{n}
$$

Observations:

- $\frac{1}{\alpha_{i}}, \frac{1}{\beta_{i}}$ are of form $A+B\left(a b^{i}+\frac{1}{a b^{i}}\right)$, so $\alpha_{i}, \beta_{i} \downarrow 0$ as $i \rightarrow \infty$
- series converges absolutely, faster further away from origin
- distribution of shortest queue

$$
p_{m}=\sum_{n=0}^{\infty} p_{m, n}=\sum_{i=0}^{\infty} d_{i}\left(1-\alpha_{i}\right) \alpha_{i}^{m}
$$

- distribution and mean of waiting time

$$
P(W>t)=\sum_{i=0}^{\infty} d_{i} \alpha_{i} e^{-\mu\left(1-\alpha_{i}\right) t}, \quad E(W)=\sum_{i=0}^{\infty} d_{i} \frac{\alpha_{i}}{\mu\left(1-\alpha_{i}\right)}
$$

## Random walk in quarter plane



Then

$$
p_{m, n}=\sum_{i=0}^{\infty} c_{i} \alpha_{i}^{m} \beta_{i}^{n}
$$

## Random walk in quarter plane



Then

$$
p_{m, n}=\sum_{i=0}^{\infty} c_{i} \alpha_{i}^{m} \beta_{i}^{n}
$$

if no transitions to North, North-East and East:

$$
q_{0,1}=q_{1,1}=q_{1,0}=0
$$

## Random walk in quarter plane


$q_{0,1}=q_{1,1}=q_{1,0}=0$ implies that $\alpha, \beta$-curve is of the above form
which guarantees that $\alpha_{i}, \beta_{i} \rightarrow 0$ as $i \rightarrow \infty$

## Shortest queue: Bounds



States are grid points ( $m_{1}, m_{2}$ ) where

- $m_{1}$ is length of shortest queue
- $m_{2}$ is length of longest queue


## Shortest queue: Bounds



Average cost $(\lambda+2 \mu=1)$ :

- $c\left(m_{1}, m_{2}\right)=m_{1}+m_{2}$ cost per period
- $g$ is long-run average cost (mean number in system): Bounds for $g$ ?


## Shortest queue: Bounds



$$
m_{1} \rightarrow
$$

Precedence relations: state ( $m_{1}, m_{2}$ ) is more attractive than $\left(n_{1}, n_{2}\right)$ if

$$
v_{t}\left(m_{1}, m_{2}\right) \leq v_{t}\left(n_{1}, n_{2}\right), \quad t=0,1,2, \ldots
$$

where $v_{t}\left(m_{1}, m_{2}\right)$ is the $t$-period expected cost starting in $\left(m_{1}, m_{2}\right)$

## Shortest queue: Bounds



$$
m_{1} \rightarrow
$$

- Redirect some transitions to more attractive states
- Then $g \geq \tilde{g}$ where $\tilde{g}$ is long-run average cost of new chain


## Shortest queue: Bounds




One Infinite Buffer


Threshold Killing



Bounds work well, even for very large systems (say 50 queues)!

## Exhaustive polling



What is steady-state queue length distribution?
What is the waiting time distribution?
What is the mean waiting time?

## Exhaustive polling



What is steady-state queue length distribution?
What is the waiting time distribution?
What is the mean waiting time? $E(W)=\frac{\rho}{(1-\rho) \mu}$ with $\rho=\frac{2 \lambda}{\mu}$

## Exhaustive polling



States are grid points ( $m, n$ ) where

- $m$ is number in idle queue
- $n$ is number in service queue

What is steady-state queue length distribution $p_{m, n}$ ?

## Exhaustive polling



Balance equations $(2 \lambda+\mu=1)$

$$
\begin{aligned}
p_{m, n} & =p_{m, n+1} \mu+p_{m-1, n} \lambda+p_{m, n-1} \lambda \\
p_{m, 1} & =p_{m, 2} \mu+p_{m-1,1} \lambda \\
p_{0, n} & =p_{0, n+1} \mu+p_{n, 1} \mu+p_{0, n-1} \lambda
\end{aligned}
$$

## Exhaustive polling



Basis solutions are formed by products $\alpha^{m} \beta^{n-1}$ satisfying

$$
p_{m, n}=p_{m, n+1} \mu+p_{m-1, n} \lambda+p_{m, n-1} \lambda
$$

so $\alpha$ and $\beta$ are on the curve

$$
\alpha \beta=\alpha \beta^{2} \mu+\beta \lambda+\alpha \lambda
$$

## Exhaustive polling



The curve of basis solutions

$$
\alpha \beta=\beta \lambda+\alpha \beta^{2} \mu+\alpha \lambda
$$

Iteration? Initial term? Cannot find one!

## Exhaustive polling

## Different iteration:

Let

$$
P(z)=\sum_{m=0}^{\infty} p_{m, 1} z^{m}
$$

then

$$
P(z)=P(h(z))-p_{0,1}(1-h(z))
$$

where $h(z)=\eta(\lambda(1-z))$ and $\eta(\cdot)$ is LST of BP of $M(\lambda) / M(\mu) / 1$
Iterating yields

$$
P(z)=\sum_{m=0}^{\infty} p_{m, 1}-p_{0,1} \sum_{k=1}^{\infty}\left(1-h^{(k)}(z)\right)
$$

where $h^{(k)}(z)=h\left(h^{(k-1)}(z)\right), \quad h^{(0)}(z)=z$

## Smart gated polling



- Gated service
- $\operatorname{PP}(\lambda)$ joins idle queue


## Smart gated polling



States are grid points ( $m, n$ ) where

- $m$ is number in idle queue
- $n$ is number in service queue

What is steady-state queue length distribution $p_{m, n}$ ?

## Smart gated polling



Balance equations ( $\lambda+\mu=1$ )

$$
\begin{aligned}
p_{m, n} & =p_{m-1, n} \lambda+p_{m, n+1} \mu \\
p_{0, n} & =p_{n, 1} \mu+p_{0, n+1} \mu
\end{aligned}
$$

## Smart gated polling



Basis solutions are products $\alpha^{m} \beta^{n-1}$ satisfying

$$
p_{m, n}=p_{m-1, n} \lambda+p_{m, n+1} \mu
$$

so $\alpha$ and $\beta$ are on the curve

$$
\alpha=\lambda+\alpha \beta \mu
$$

## Smart gated polling



The curve of basis solutions

$$
\alpha=\lambda+\alpha \beta \mu
$$

## Smart gated polling



Initial product satisfies balance equations for $m>0$ :

$$
p_{m, n} \approx c_{0} \alpha_{0}^{m} \beta_{0}^{n-1}
$$

with $\alpha_{0}=\lambda, \beta_{0}=0$

## Smart gated polling



Initial product $c_{0} \alpha_{0}^{m} \beta_{0}^{n-1}$ violates balance equations for $m=0$
Add new product to compensate for this error:

$$
p_{m, n} \approx c_{0} \alpha_{0}^{m} \beta_{0}^{n-1}+c_{1} \alpha_{1}^{m} \beta_{1}^{n-1}
$$

where $\beta_{1}=\alpha_{0}$

## Smart gated polling



Steady-state queue length distribution is given by:

$$
p_{m, n}=c_{0} \alpha_{0}^{m} \beta_{0}^{n-1}+c_{1} \alpha_{1}^{m} \beta_{1}^{n-1}+c_{2} \alpha_{2}^{m} \beta_{2}^{n-1}+\cdots
$$

where $\alpha_{i} \rightarrow \lambda / \mu$ and $\beta_{i} \rightarrow \lambda / \mu$ as $i \rightarrow \infty$
and this random walk in the quarter plane has transitions to the East

## Smart gated polling

## Different iteration:

Let

$$
P(z)=\sum_{m=0}^{\infty} p_{m, 1} z^{n}
$$

then

$$
P(z)=P(h(z))-p_{0,1}(1-h(z))
$$

where

$$
h(z)=\frac{\mu}{\mu+\lambda(1-z)}
$$

Iterating yields

$$
P(z)=\sum_{m=0}^{\infty} p_{m, 1}-p_{0,1} \sum_{k=1}^{\infty}\left(1-h^{(k)}(z)\right)
$$

## Smart gated polling: Another look


which is a particle randomly circulating in the plane

## Shortest queue and polling



What is steady-state queue length distribution?
What is the waiting time distribution?
What is the mean waiting time?

## Shortest queue and polling



What is steady-state queue length distribution?
What is the waiting time distribution?
What is the mean waiting time? $E(W)=\frac{\rho}{(1-\rho) \mu}$ with $\rho=\frac{\lambda}{\mu}$

## Shortest queue and polling



States are grid points $(m, n)$ in the right half plane where

- $m$ is length of shortest queue
- $n$ is difference between idle and service queue

What is steady-state queue length distribution $p_{m, n}$ ?

## Shortest queue and polling



Balance equations ( $\lambda+\mu=1$ )

$$
\begin{aligned}
p_{m, n} & =p_{m-1, n+1} \lambda+p_{m+1, n-1} \mu \\
p_{m,-n} & =p_{m-1,-n-1} \lambda+p_{m,-n-1} \mu
\end{aligned}
$$

## Shortest queue and polling



Basis solutions for $n \geq 0$ are products $\alpha^{m} \beta^{n}$ satisfying

$$
p_{m, n}=p_{m-1, n+1} \lambda+p_{m+1, n-1} \mu
$$

so $\alpha$ and $\beta$ are on the curve

$$
\alpha \beta=\beta^{2} \lambda+\alpha^{2} \mu \quad \text { or } \quad(\alpha-\beta)(\alpha \mu-\beta \lambda)=0
$$

## Shortest queue and polling



The curves of basis solutions for $n \geq 0$

$$
\alpha=\beta, \quad \mu \alpha=\lambda \beta
$$

Curve of basis solutions for $n<-1$

$$
\alpha=\frac{\lambda \beta}{1-\mu \beta}
$$

## Shortest queue and polling



Initial product:

$$
p_{m, n}= \begin{cases}c_{0} \alpha_{0}^{m} \beta_{0}^{n}, & m>0, n \geq 0, \\ d_{0} \alpha_{0}^{m}, & m>0, n=-1, \\ 0, & m \geq 0, n<-1,\end{cases}
$$

where $\alpha_{0}=\beta_{0}=\rho^{2}$

## Shortest queue and polling



Compensation on vertical boundary of $c_{0} \alpha_{0}^{m} \beta_{0}^{n}, m>0, n \geq 0$ :

$$
p_{m, n}= \begin{cases}c_{0} \alpha_{0}^{m} \beta_{0}^{n}+c_{1} \alpha_{1}^{m} \beta_{1}^{n}, & m>0, n \geq 0, \\ c_{2} \alpha_{2}^{m} \beta_{2}^{-n}, & m \geq 0, n<-1,\end{cases}
$$

where $\beta_{2}=\beta_{1}=\beta_{0}$ (so two new terms!)

## Shortest queue and polling



Compensation on horizontal boundary of $c_{1} \alpha_{1}^{m} \beta_{1}^{n}, m>0, n \geq 0$ :

$$
p_{m, n}= \begin{cases}c_{1} \alpha_{1}^{m} \beta_{1}^{n}+c_{3} \alpha_{3}^{m} \beta_{3}^{n}, & m>0, n \geq 0 \\ d_{3} \alpha_{3}^{m}, & m>0, n=-1 \\ 0, & m \geq 0, n<-1\end{cases}
$$

where $\alpha_{3}=\alpha_{1}$

## Shortest queue and polling



Compensation on horizontal boundary of $c_{2} \alpha_{2}^{m} \beta_{2}^{-n}, m \geq 0, n<-1$ :

$$
p_{m, n}= \begin{cases}c_{4} \alpha_{4}^{m} \beta_{4}^{n}, & m>0, n \geq 0, \\ d_{4} \alpha_{4}^{m}, & m>0, n=-1, \\ c_{2} \alpha_{2}^{m} \beta_{2}^{-n}, & m \geq 0, n<-1,\end{cases}
$$

where $\alpha_{4}=\alpha_{2}$

## Shortest queue and polling

## Results in tree of terms:

- $c_{i} \alpha_{i}^{m} \beta_{i}^{n}$ live in Upper quadrant
- $c_{i} \alpha_{i}^{m} \beta_{i}^{-n}$ live in Lower quadrant



## Shortest queue and polling

$$
\begin{aligned}
& p_{m, n}=\sum_{i \in U} c_{i} \alpha_{i}^{m} \beta_{i}^{n}, \quad m \geq 1, n \geq 0 \\
& p_{m,-1}=\sum_{i \in U \cup L} d_{i} \alpha_{i}^{m}, \quad m \geq 1, n=-1 \\
& p_{m, n}=\sum_{i \in L} c_{i} \alpha_{i}^{m} \beta_{i}^{-n}, \quad m \geq 0, n<-1
\end{aligned}
$$

Observations:

- $\alpha_{i}, \beta_{i} \downarrow 0$ as $i \rightarrow \infty$
- series converge absolutely, faster further away from origin
- distribution of shortest queue and waiting time (in service queue)

$$
p_{m}=\sum_{i \in U \cup L} D_{i}\left(1-\alpha_{i}\right) \alpha_{i}^{m}, \quad P(W>t)=\sum_{i \in U \cup L} D_{i} \alpha_{i} e^{-\mu\left(1-\alpha_{i}\right) t}
$$

