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The model

An extension of the machine repair model.
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FCFS repairs

When machines are repaired
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in the order of breakdown, exact analysis
of the queue lengths is already hard.

Approximations can be derived by, e.g.,

assuming a certain dependence structure in consecutive downtimes;

interpolating between light-traffic and heavy-traffic results.



Today’s main question

FCFS repairs might not lead to optimal queue lengths. What is the
optimal dynamic repair policy?
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Or, how to dynamically allocate the repairman’s capacity in order to
minimise

g = c1E[X1] + c2E[X2],

when given information on the current queue lengths and state of the
machines?



Today’s agenda

How to dynamically assign the fractions q1
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and q2 of repair capacity to the machines?

We study this question by using theory
on Markov decision processes (MDPs).

Formulation as a Markov decision process.

Derivation of structural properties of the optimal policy.

Derivation of a near-optimal policy.



Formulation as an MDP

Let
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xi be the number of type-i products in the
system and wi = 1{Machine i is operational}.

Then, the MDP is characterised by

State s = (x1, x2,w1,w2) ∈ S = N2 × {0, 1}2,

Action a = (q1, q2) ∈ As = {(q1, q2) : q1 ∈ [0, 1− w1], q2 ∈
[0, 1− w2], q1 + q2 ≤ 1},
Transition probabilities, i = 1, 2:

Pa(s, s + ei ) = λi , (product arrivals)
Pa(s, s − ei ) = µiwi1{xi>0}, (product services)
Pa(s, s − ei+2) = σiwi , (machine breakdowns)
Pa(s, s + ei+2) = qiνi , (machine repairs)
Pa(s, s) = 1− λi − wi (µi1{xi>0} + σi ) −qiνi ,

Cost function c(s) = c1x1 + c2x2.
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Formulation as an MDP

Ultimate goal

Analytic expression for optimal policy πopt : S → A that minimises the
long-run expected costs per time unit.

The relative value function V *(s) is the long-term difference in expected
total costs accrued when starting in state s instead of some reference
state under policy π* .

The value g * represents the long-run expected costs per time unit under
policy π* .

V opt and gopt satisfy Bellman’s optimality equations:

V opt(s) + gopt = min
a∈As

{
c(s) +

∑
s′∈S

Pa(s, s ′)V opt(s ′)
}



Structural properties

We can prove that the optimal policy
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is work-conserving, i.e., q1 + q2 = 1− w1w2.

Minimising action in state s is given by

πopt(s) = arg min
(q1,q2)∈As

{q1ν1(V opt(x1, x2, 1,w2)− V opt(x1, x2, 0,w2))

+ q2ν2(V opt(x1, x2,w1, 1)− V opt(x1, x2,w1, 0))}.

Value iteration: iterate

V n+1(s) = min
a∈As

{
c(s) +

∑
s′∈S

Pa(s, s ′)V n(s ′)
}

starting with arbitrary V 0.

If a structural property ‘survives’ an iteration, it applies to V opt by
induction.

Prove that V1(x1, x2, 1,w2)− V1(x1, x2, 0,w2) ≥ 0, if
V 0(x1, x2, 1,w2)− V 0(x1, x2, 0,w2) ≥ 0.



Structural properties

The optimal policy is a threshold policy.
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No dot: full capacity to machine 1, blue dot: full capacity to machine 2.



Derivation of a near-optimal policy

Near-optimal policies can be derived by using a one-step policy
improvement.

Policy iteration: for any π* ,

π′(s) = arg min
(q1,q2)∈As

{q1ν1(V *(x1, x2, 1,w2)− V *(x1, x2, 0,w2))

+ q2ν2(V *(x1, x2,w1, 1)− V *(x1, x2,w1, 0))}

If π′ = π* , then this is the optimal policy. Otherwise, set π* = π′

and repeat.

Problem: V ′(x1, x2,w1,w2) usually does not allow for analytic, and
sometimes not even for numerical solutions.

Norman (1972):
1 Choose an initial policy that allows decomposition of the large

Markov process into multiple small Markov processes;
2 Perform one step of policy iteration.
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Static policy as an initial policy

Suppose the repairman always reserves a fraction p of his capacity for
machine 1, and (1− p) for machine 2.

The system can then be decomposed into simpler subsystems:

R M 2 

M 1 

x 1 

x 2 

λ 2 

µ 2 

σ 2 

(1-p)ν 2 

µ 1 

σ 1 

pν 1 

λ 1 
R 1 

2 

Analysis of M/M/1 queue with exponential server vacations!



Static policy as an initial policy

Solving the subsystem:
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Poisson equations

V (x ,w) + g =x + λV (x + 1,w) + µwV ((x − 1)+, 0)

+ σwV (x , 0) + ν(1− w)V (x , 1)

+ (1− λ− (µ+ σ)w − ν(1− w))V (x ,w)

Solution of V (x ,w) is a second-order polynomial in x with coefficients
dependent on w . Back to the complete model:

V sta(x1, x2,w1,w2) = c1V1(x1,w1) + c2V2(x2,w2)



Static policy as an initial policy

One-step policy improvement:

Determine optimal static policy, i.e., optimal value p.

Obtain improved policy:

arg min
(q1,q2)∈A(x1,x2,w1,w2)

{q1ν1(V sta(x1, x2, 1,w2)− V sta(x1, x2, 0,w2))

+ q2ν2(V sta(x1, x2,w1, 1)− V sta(x1, x2,w1, 0))}.

The improved policy is expressed analytically and meets the structural
properties of the optimal policy:

πoss(x1, x2,w1,w2) =


(0, 0) if w1 = w2 = 1,
(1, 0) if w1 = 1− w2 = 0, or if w1w2 = 0 and

c1ν1
c2ν2

((α1,1−α2,1)x1−α3,1)+α3,2

α1,2−α2,2
≤ x2,

(0, 1) otherwise



Priority policy as an initial policy

There might not be a ‘stable’ static policy available. Alternative: take a
priority policy as initial policy.

Under this policy, the repairman always gives priority to M1 by taking the
action (q1, q2) = ((1− w1),w1(1− w2)).
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V prio(x1, x2,w1,w2) = c1V1(x1,w1) + c2V2(x2,w1,w2)

No complete decomposition, and therefore hard to analyse!



Priority policy as an initial policy

V prio(x1, x2,w1,w2) = V1(x1,w1) + V2(x2,w1,w2)

No complete decomposition, and therefore hard to analyse!

However we conjecture that, as x2 →∞, V2(x2,w1,w2) behaves like a
second-order polynomial in x2:

V2(x2,w1,w2)− V2(x2 − 1,w1,w2) asymptotically equals expected
time for the queue to empty when starting in (x2,w1,w2).

(w1(t),w2(t)) moves to equilibrium, so any service delaying effect
imposed by w1 = w1(0) is conjectured to build up to constant.

Other than the effect of w1, the system behaves like a M/Ph/1
queue with vacations.

First-order and second-order coefficients can be obtained by studying the
Poisson equations.



Priority policy as an initial policy

V prio(x1, x2,w1,w2) = V1(x1,w1) + V2(x2,w1,w2)

By using the asymptotic version of V2 in the above, we obtain an
improved policy:

Determine optimal priority policy.

Perform one-step policy improvement. The result is again a
work-conserving threshold policy:

πosp(x1, x2,w1,w2) =


(0, 0) if w1 = w2 = 1,
(1, 0) if w1 = 1− w2 = 0, or if w1w2 = 0

and ν1c1((α1−α2)x1−α3)
c2(ν1∆1,0−ν2∆0,1) ≤ x2,

(0, 1) otherwise



Conclusion

Suggested policy: use one-step
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improved static policy if it exists, otherwise
use one-step improved priority policy.

The obtained policy

can be expressed analytically;

allows for more machines due to decomposition properties;

is almost always feasible;

performs generally well. Cumulative breakdown of the relative
performance of this policy w.r.t. the optimal policy in 1296 systems:

< 0.1% < 1% < 5% < 10%
Cumulative % of perf. 32.02% 56.17% 85.49% 95.14%


