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X = {X (t) = (C(t),N(t)) : t ≥ 0},

on S = {0, ..., c} × {0, 1, 2, ...}, where C(t) is the number of busy servers, and
N(t) is the number of customers in orbit at time t. If S = ∪∞j=0l(j) with
l(j) = {(i , j − i) : 0 ≤ i ≤ min(j , c)}, then X is a LD-QBD process
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The quality of service (QoS) is usually measured in terms of
classical queueing performance descriptors:

Expected queue length.

Waiting time.

Stationary queue length distribution.

Assuming a stationary regime (ρ = λ/(cν) < 1) is needed to
guarantee the existence, and subsequent computation, of most
classical queueing measures.

Alternative: Maximum queue length distribution (Xmax) in a busy
period (the period that starts when the process leaves the state
(0, 0) and ends at the first epoch thereafter that the process visits
the state (0, 0) again).
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The distribution of Xmax is a performance descriptor of practical
relevance in the M/M/c retrial queue:

It is a measure of system congestion.
It gives support to the adoption of drastic decisions such as an
increase of the number of agents or rescheduling of common
resources.
It can be computed even in non-stationary regime, but it
might be defective (i.e., P(Xmax <∞) < 1).

See for example:

Artalejo JR, Economou A, López Herrero MJ. “Algorithmic
analysis of the maximum queue length in a busy period for the
M/M/c retrial queue”. INFORMS Journal on Computing, in
revision.
Artalejo JR, Economou A, Gómez-Corral A. “Applications of
maximum queue lengths to call center management”.
Computers & Operations Research, (2007) 983 - 996.
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Accuracy of the solution

Instead of Xmax , we may be interested in

Z (t0) : maximum number of customers in the system
(servers + orbit) during a predetermined interval [0, t0],

which is a non-defective random variable.

Objective

Computation of

P (Z (t0) ≤ x |C (0) = i ,N(0) = j ) , for x ≥ i + j and (i , j) ∈ S,

since P (Z (t0) ≤ x |C (0) = i ,N(0) = j ) = 0 if x < i + j .
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For x ≥ i + j and (i , j) ∈ S, the conditional probability

P (Z (t0) > x |C (0) = i ,N(0) = j )

is equivalent to the probability that, starting from X (0) = (i , j),
the process X (x) visits the absorbing state x + 1 at time t0.

X (x) = {X (t) : t ≥ 0},
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We consider an auxiliary absorbing process X (x) = {X (t) : t ≥ 0}
defined on the state space

S(x) =
x⋃

k=0

l(k) ∪ {x + 1},

where the kth level l(k) is given by

l(k) = {(i , k − i) : 0 ≤ i ≤ min(k , c)}, k ≥ 0,

and the state x + 1 is obtained by lumping the states of
∪∞k=x+1l(k) together to make a single absorbing state. Transitions
between level l(x) and the state x + 1 are obtained from those
transitions from level l(x) to level l(x + 1).
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The infinitesimal generator of X (x) has the form

Q(x) =


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. . .
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=

(
T(x) tx+1(x)

0TJ(x) 0

)
, x ≤ c , or x ≥ c + 1?

and its standard transition function P(t0; x) can be expressed as

P(t0; x) =

(
P∗(t0; x) px+1(t0; x)

0TJ(x) 1

)
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Therefore, we have

P(Z (t0) ≤ x |C (0) = i ,N(0) = j) = 1− eJ(x)(i , j)px+1(t0; x),

where eJ(x)(i , j) is a row vector of order J(x) such that all its
entries are equal to 0, except for the entry associated with the
state (i , j) which is equal to 1. Since P(t0; x) = exp{Q(x)t0},

P(Z(t0) ≤ x |C(0) = i ,N(0) = j) = 1− eJ(x)(i , j)
(
IJ(x)−

− exp{T(x)t0})
(
−T−1(x)

)
tx+1(x).

In this expression,

The matrix (−T−1(x))tx+1(x) = eJ(x) consists of the
conditional probabilities that the absorption into x + 1 occurs
in a finite time.

The matrix exponential exp{T(x)t0} has to be explicitly or
numerically computed.
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In principle, exp{T(x)t0} could be computed in many ways:

Series methods: Taylor series, Padé approximation, scaling
and squaring, Chebyshev rational approximation

Ordinary differential equation methods: general purpose
O.D.E. solver, single step / multistep O.D.E. solvers

Polynomial methods: Cayley-Hamilton, Lagrange
interpolation, Newton interpolation, Vandermonde, inverse
Laplace transforms, companion matrix

Matrix decomposition methods: eigenvectors, triangular
systems of eigenvectors, Jordan canonical form, Schur, block
diagonal

Splitting methods

An interesting survey is the paper by Moler and Van Loan (2003)
Software: MathLab, Mathematica, Mapple, ISML library, etc.
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In practice, consideration of computational stability and efficiency
indicates that some of the methods are preferable to others, but
that none are completely satisfactory when they are implemented
as general-purpose algorithms

For a value x ≥ i + j , the dimension of exp{T(x)t0} is given by

J(x) = (x+1)(x+2)
2 if 1 ≤ x ≤ c , and (c+1)(c+2)

2 + (x − c)(c + 1) if
x ≥ c + 1.

As a result,

Increasing values of x will imply more demanding memory
requirements

General-purpose algorithms will fail to give satisfactory results
as x progressively increases
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Splitting methods

For a certain splitting T(x) = U(x) + V(x), it is known that

exp{T(x)t0} = exp{U(x)t0} exp{V(x)t0}

if and only if U(x) and V(x) commute

As U(x) and V(x) do not commute, the exponentials of the
matrices U(x) and V(x) are directly related to that of T(x) by

exp{T(x)t0} = lim
p→∞

(
exp

{
U(x)

t0

p

}
exp

{
V(x)

t0

p

})p

.

Moller and Van Loan (2003) suggest the approximation

exp{T(x)t0} w (exp {U(x)t} exp {V(x)t})p0 ,

where t = p−1
0 t0, for an appropriately selected integer p0.
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exp{T(x)t0}

Case 1: 1 ≤ x ≤ c .
Case 2: x ≥ c + 1.

Case 1: 1 ≤ x ≤ c .
T(x) = U(x) + V(x) is defined by

U(x) =


A00 A01

A11 A12

. . .
. . .

Ax−1,x−1 Ax−1,x

Axx

 ,

V(x) =


0

A10

A21

. . .

Ax ,x−1 0(x+1)×(x+1)

 .
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For 1 ≤ x ≤ c, it is seen that

exp{V(x)t} =
x∑

k=0

tk

k!
Vk(x)

=


M(0; 0)
M(1; 0) M(1; 1)

...
...

. . .

M(x − 1; 0) M(x − 1; 1) · · · M(x − 1; x − 1)
M(x ; 0) M(x ; 1) · · · M(x ; x − 1) M(x ; x)

 ,

where

M(y ; y ′) =

{
Iy+1 if 1 ≤ y ≤ x ,
Ay ,y−1 · ... · Ay ′+1,y ′ , if 0 ≤ y ′ ≤ y − 1, 1 ≤ y ≤ x .
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Technical condition: For 1 ≤ x ≤ c , the eigenvalues of the
matrix U(x) are all distinct if and only if

(A.1) [Eigenvalues of the sub-matrix Ayy are all distinct]:

ν 6= µ

(A.2) [Eigenvalues of sub-matrices Ayy and Ay ′y ′ with y < y ′

are also distinct]:

ν 6=
(

1 +
y ′ − y

l − l ′

)
µ,

for every pair (y , y ′) of integers with 0 ≤ y < y ′ ≤ x , and
integers 0 ≤ l ≤ y and 0 ≤ l ′ ≤ y ′ with l 6= l ′
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Under the technical condition, we derive the decomposition
formula U(x) = Rxdiag[r(0; 0), ..., r(x ; x)]R−1

x , which implies

exp{U(x)t} = Rx


er(0;0)t

er(1;0)t

er(1;1)t

. . .

er(x ;x)t

R−1
x ,

where r(y ; l) = −(λ+ lν + (y − l)µ) and Rx consists of the right
eigenvectors of U(x) associated with the eigenvalues r(y ; l), for
0 ≤ l ≤ y ≤ x .
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The matrix Rx has the structured form

Rx =



P00 P01 P02 · · · P0,x−1 P0x

P11 P12 · · · P1,x−1 P1x

P22 · · · P2,x−1 P2x

. . .
...

...
Px−1,x−1 Px−1,x

Pxx


=

(
Rx−1 Nx

Pxx

)
,

where the columns in Py′y = [p(y ′, y ; 0), p(y ′, y ; 1), ..., p(y ′, y ; y)] are given by

p(y ′, y ; l) =

{
v(y ; l), if y ′ = y ,∏y−1

k=y ′ (r(y ; l)Ik+1 − Akk)−1 Ak,k+1v(y ; l), if 0 ≤ y ′ ≤ y − 1.
,

and v(y ; l) denotes the right eigenvector of Ayy associated with the eigenvalue
r(y ; l) = −(λ+ lν + (y − l)µ).

(r(y ; l)Ik+1 − Akk)
−1 =

k∑
l′=0

v(k; l ′)w(k; l ′)

r(y ; l)− r(k; l ′)
, 1 ≤ k ≤ c.
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Right eigenvector v(y ; l) of Ayy with 0 ≤ y ≤ c associated with
the eigenvalue r(y ; l) = −(λ+ lν + (y − l)µ), for 0 ≤ l ≤ y :

vl ′(y ; l) =


(y−l ′
y−l
) (

1− ν
µ

)−(l−l ′)
, if 0 ≤ l ′ ≤ l − 1,

1, if l ′ = l ,
0, if l + 1 ≤ l ′ ≤ y .

Left eigenvector w(y ; l) of Ayy with 0 ≤ y ≤ c , associated with
the eigenvalue r(y ; l) = −(λ+ lν + (y − l)µ), for 0 ≤ l ≤ y :

wl ′(y ; l) =


0, if 0 ≤ l ′ ≤ l − 1,
1, if l ′ = l ,( y−l
y−l ′
) (

ν
µ − 1

)−(l ′−l)
, if l + 1 ≤ l ′ ≤ y .
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Starting with exp{U(0)t} = e−λt , the matrix exponential
exp{U(x)t} is evaluated from

exp{U(x)t} =

(
exp{U(x − 1)t} Nx(t)
0(x+1)×J(x−1) exp{Axx t}

)
, 1 ≤ x ≤ c ,

where exp{Axx t} = PxxTxx(t)P−1
xx with

Nx(t) = (NxTxx(t)− exp{U(x − 1)t}Nx)P−1
xx ,

Txx(t) = diag[er(x ;0)t , er(x ;1)t , ..., er(x ;x)t ],

Pxx = [v(x ; 0), v(x ; 1), ..., v(x ; x)],

P−1
xx =


c−1(x ; 0)w(x ; 0)
c−1(x ; 1)w(x ; 1)

...
c−1(x ; x)w(x ; x)

 ,

and c(x ; l) =
∑x

k=0(w(x ; l))k(v(x ; l))k .
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Case 2: x ≥ c + 1.
T(x) = U(x) + V(x) is defined by

U(x) =



A00 A01
A11 A12

. . .
. . .

Ac−1,c−1 Ac−1,c
Acc Ac,c+1

A∗c+1,c+1 Ac+1,c+2

. . .
. . .

A∗x−1,x−1 Ax−1,c

A∗x,x



,

V(x) =



0
A10

A21

. . .

Ac,c−1 0(c+1)×(c+1)

Ac+1,c A
∗
c+1,c+1

Ac+2,c+1 A
∗
c+2,c+2

. . .
. . .

Ax,x−1 A
∗
xx



,
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where

A
∗
yy =


0 0 · · · 0 0
0 0 · · · 0 0
...

...
...

...
0 0 · · · 0 0
0 0 · · · 0 (y − c)µ

 , y ≥ c + 1,

and the matrix A∗yy is given by



−λ− yµ yµ
−λ− ν − (y − 1)µ (y − 1)µ

. . .
. . .

−λ− (c − 1)ν − (y − c + 1)µ (y − c + 1)µ
−λ− cν − (y − c)µ

 .
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For x ≥ c + 1, the matrix exponential exp{V(x)t} has the
structured form

M(0; 0)
M(1; 0) M(1; 1)

...
...

. . .

M(c; 0) M(c; 1) · · · M(c; c)

M(c + 1; 0) M(c + 1; 1) · · · M(c + 1; c) M(c + 1; c + 1)
...

...
...

...
. . .

M(x ; 0) M(x ; 1) · · · M(x ; c) M(x ; c + 1) · · · M(x ; x)


,

where

M(y ; y) =

(
Ic

e(y−c)µt

)
, c + 1 ≤ y ≤ x ,

M(y ; y ′) =

 ty−y′

(y−y ′)! Ic

((y − c)µ)y
′−y
(

e(y−c)µt −
∑y−1−y ′

k=0
((y−c)µt)k

k!

)×
×Ay ,y−1 · ... · Ay ′+1,y ′ , 0 ≤ y ′ ≤ y − 1, c + 1 ≤ y ≤ x .
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For values x ≥ c + 1,

exp{U(x)t} =

(
exp{U(x − 1)t} Nx(t)
0(c+1)×J(x−1) exp{A∗xx t}

)
, x ≥ c ,

where exp{A∗xx t} = PxxTxx(t)P−1
xx with

Nx(t) = (NxTxx(t)− exp{U(x − 1)t}Nx)P−1
xx ,

Txx(t) = diag[er(x ;0)t , er(x ;1)t , ..., er(x ;c)t ],

Pxx = [v(x ; 0), v(x ; 1), ..., v(x ; c)],

P−1
xx =


c−1(x ; 0)w(x ; 0)
c−1(x ; 1)w(x ; 1)

...
c−1(x ; x)w(x ; c)

 ,

and c(x ; l) =
∑c

k=0(w(x ; l))k(v(x ; l))k .
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Right eigenvector v(y ; l) of Ayy with 0 ≤ y ≤ c and A∗yy with
c + 1 ≤ y , associated with the eigenvalue
r(y ; l) = −(λ+ lν + (y − l)µ), for 0 ≤ l ≤ min(y , c):

vl ′(y ; l) =


(y−l ′
y−l
) (

1− ν
µ

)−(l−l ′)
, if 0 ≤ l ′ ≤ l − 1,

1, if l ′ = l ,
0, if l + 1 ≤ l ′ ≤ min(y , c).

Left eigenvector w(y ; l) of Ayy with 0 ≤ y ≤ c and A∗yy with
c + 1 ≤ y , associated with the eigenvalue
r(y ; l) = −(λ+ lν + (y − l)µ), for 0 ≤ l ≤ min(y , c):

wl ′(y ; l) =


0, if 0 ≤ l ′ ≤ l − 1,
1, if l ′ = l ,( y−l
y−l ′
) (

ν
µ − 1

)−(l ′−l)
, if l + 1 ≤ l ′ ≤ min(y , c).
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For values x ≥ 1, the technical condition becomes

The eigenvalues of U(x) are all distinct if and only if ν 6= µ and

ν 6=
(

1 +
y ′ − y

l − l ′

)
µ,

for every pair of integers 0 ≤ y < y ′ ≤ x, and every integers
0 ≤ l ≤ min(y , c) and 0 ≤ l ′ ≤ min(y ′, c) with l 6= l ′.
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Selection of p0: In the approximation

exp{T(x)t0} w (exp {U(x)t} exp {V(x)t})p0 ,

where t = p−1
0 t0, we choose p0 such that∣∣∣∣exp{T(x)t0} − (exp {U(x)t} exp {V(x)t})p0

∣∣∣∣
∞ < ε,

where the maximum row sum matrix norm is defined by
||W||∞ = max1≤i≤k

∑k
j=1 |wij |.

Then, it is seen that∣∣∣∣exp{T(x)t0} − (exp {U(x)t} exp {V(x)t})p0
∣∣∣∣
∞ ≤ h(x ; t0)

2p0
,

where µ∞(·) is the logarithmic norm of a matrix and

h(x ; t0) = ||U(x)V(x)− V(x)U(x)||∞t2
0 e(µ∞(U(x))+µ∞(V(x)))t0 .
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In particular,

µ∞(U(x)) = 0, x ≥ 1,

µ∞(V(x)) =

{
xν, if 1 ≤ x ≤ c ,
cν + (x − c)µ, if c + 1 ≤ x ,

For 1 ≤ x ≤ c , it is readily seen that

||U(x)V(x)− V(x)U(x)||∞ =

{
νµx , if λ+ ν ≤ µ,
ν(λ+ ν)x , if λ+ ν > µ.

(Similar expressions for ||U(x)V(x)− V(x)U(x)||∞ in the case
c + 1 ≤ x are readily obtained.)
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In the expression for P(Z (t0) ≤ x |C (0) = i ,N(0) = j), that is,

1− ēJ(x)(i , j)
(
IJ(x) − exp{T(x)t0}

)
eJ(x),

we suggest to replace exp{T(x)t0} by

(exp{U(x)t} exp{V(x)t})p0 ,

with t = p−1
0 t0, provided that p0 is such that p0 > h(x ; t0)(2ε)−1,

for a predetermined small value ε > 0. As a result,∣∣∣P(Z (t0) ≤ x |C (0) = i ,N(0) = j)− P̂(Z (t0) ≤ x |C (0) = i ,N(0) = j)
∣∣∣

≤
∣∣∣∣exp{T(x)t0} − (exp{U(x)t} exp{V(x)t})p0

∣∣∣∣
∞

≤ h(x ; t0)

2p0
< ε.
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The mass function of Z(t0) versus ρ for retrial queues with c = 6, ν = 3.0
√

2.0 and µ = 2.5. Values of the

traffic load: ρ = 0.8, 1.0 and 1.2 (from left to right); interval length: t0 = 1.0; initial state: (i, j) = (0, 0)
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The mass function of Z(t0) versus µ for retrial queues with c = 6, ν = 3.0
√

2.0 and ρ = 1.0. Values of the

retrial rate: µ = 2.5, 5.0, 7.5 and 10.0 (from left to right); interval length: t0 = 1.0; initial state: (i, j) = (0, 0)
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The mass function of Z(t0) versus t0 for retrial queues with c = 6, ν = 3.0
√

2.0 and µ = 2.5. Traffic load:

ρ = 1.5; values of the interval length: t0 = 1/3, 2/3 and 1.0 (from left to right); interval length: t0 = 1.0;

initial state: (i, j) = (0, 0)
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A few remarks on the time-dependent descriptor:

It has always got a non-defective distribution, even if the
LD-QBD process is not positive recurrent.

Its probability distribution function has a matrix exponential
form.

We present simple conditions on the service rate ν and the
retrial rate µ for the matrix exponential solution to be explicit
or algorithmically tractable.

We present an iterative scheme for computing the matrix
exponential solution.

A particularly appealing feature of this iterative solution based
on splitting methods and eigenvalues/eigenvectors is that it
allows us to obtain global error control.
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Thank you for your attention

martin lopez@mat.ucm.es
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