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The model

Infinite waiting space (transportation station)

Poisson(λ) customers’ arrival process

1 server (bus)

Renewal server’s visiting process {M(t)}
Times between two visits: X1, X2, X3, . . . ∼ F (x)

Random server’s capacities: C1, C2, C3, . . . ∼ (gk, k = 1, 2, . . .)

When a server with capacity k visits the system:

serves k customers instantaneously,
the others abandon the system
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The model

Infinite waiting space (transportation station)

Poisson(λ) customers’ arrival process

1 server (bus)

Renewal server’s visiting process {M(t)}
Times between two visits: X1, X2, X3, . . . ∼ F (x)

Random server’s capacities: C1, C2, C3, . . . ∼ (gk, k = 1, 2, . . .)

When a server with capacity k visits the system:

serves k customers instantaneously,
the others abandon the system

State description

N(t): number of customers at time t

R(t): remaining time until
the next server’s visit at time t

⇒ {(N(t), R(t))} C.T.M.P.
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⇓

symmetric game among customers
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Customers’ waiting cost K per time unit
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The problem: economic analysis of customer behavior
join or balk
⇓

symmetric game among customers

Information level:

Unobservable case: observes nothing

Observable case: observes N(t)

Reward-Cost structure:

Customers’ reward R for completing service

Customers’ waiting cost K per time unit

Decisions:

Upon arrival a customer decides to join or to balk

Decisions are irrevocable

Customers’ purpose: maximization of individual expected net
benefit
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Symmetric non-cooperative game

S: Set of strategies
U(s1, s2): Payoff function of a tagged player, who follows the s1

strategy, when all other players follow the s2 strategy
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Symmetric non-cooperative game

S: Set of strategies
U(s1, s2): Payoff function of a tagged player, who follows the s1

strategy, when all other players follow the s2 strategy

Definition (Best Response)

A strategy s∗1 is said to be a best response against a strategy s2, iff

U(s∗1, s2) ≥ U(s1, s2), ∀s1 ∈ S
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Symmetric non-cooperative game

S: Set of strategies
U(s1, s2): Payoff function of a tagged player, who follows the s1

strategy, when all other players follow the s2 strategy

Definition (Best Response)

A strategy s∗1 is said to be a best response against a strategy s2, iff

U(s∗1, s2) ≥ U(s1, s2), ∀s1 ∈ S

Definition (Symmetric Nash Equilibrium)

A strategy s∗1 is said to be a symmetric Nash equilibrium iff it is a
best response against itself, i.e.

U(s∗1, s
∗
1) ≥ U(s1, s

∗
1), ∀s1 ∈ S
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OBSERVABLE CASE

⇓

customers observe N(t)

⇓

strategies: q = (q0, q1, q2, . . .), qn ∈ [0, 1], n = 0, 1, . . .

(qn=probability of joining, when N(t) = n)
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Sn(q): expected net benefit of a tagged customer , who finds
n present customers and decides to join, given that
all other customers follow strategy q.

Sn(q) = RP [service|n,q]−KE[sojourn time|n,q]
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OBSERVABLE CASE

⇓

customers observe N(t)

⇓

strategies: q = (q0, q1, q2, . . .), qn ∈ [0, 1], n = 0, 1, . . .

(qn=probability of joining, when N(t) = n)

Sn(q): expected net benefit of a tagged customer , who finds
n present customers and decides to join, given that
all other customers follow strategy q.

Sn(q) = RP [service|n,q]︸ ︷︷ ︸
q

−KE[sojourn time|n,q]

∑∞
k=n+1 gk
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E[sojourn time|n,q]

q

expected residual service time at the arrival instant of a customer,
who finds n present customers,given that all other customers follow

strategy q
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Let
Rq(t): residual service time at time t, when the customers follow a strategy q,
Nq(t): number of customers in the system at time t, when the customers follow a
strategy q,
{P (t), t ≥ 0}: Poisson process at rate λ,
then

 {(Nq(u), Rq(u)), 0 ≤ u ≤ t},
{P (t+ u)− P (t), u ≥ 0}

independent

: Lack of Anticipation assumption

⇓(PASTA)

residual service time at the arrival instant of a customer, given that he finds n
present customers and that all other customers follow strategy q

q

residual service time at arbitrary instant, given that there are n present customers
in the system and that all customers follow strategy q
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Let
n̄(q) = inf{n ≥ 0 : qi > 0 for i < n and qn = 0}
and
{Pn(t), t ≥ 0}: Poisson process at rate λqn, n = 0, 1, . . . , n̄(q)− 1
then


{(Nq(u), Rq(u)), 0 ≤ u ≤ t},
{Pn(t+ u)− Pn(t), u ≥ 0}

independent

: Lack of Anticipation assumption

⇓(Conditional PASTA)

residual service time at the arrival instant of a customer, who joins, given
that he finds n present customers and that all customers follow strategy q

q

residual service time at arbitrary instant, given that there are n present
customers in the system and that all customers follow strategy q



Introduction The Game The observable case Bibliography Expected sojourn time Equilibrium strategies

For 0 ≤ n < n̄(q)

residual service time at the arrival instant of a customer, given that he finds n
present customers and that all other customers follow strategy q

q

residual service time at arbitrary instant, given that there are n present customers
in the system and that all customers follow strategy q

q

residual service time at the arrival instant of a customer, who joins, given that he
finds n present customers and that all customers follow strategy q

q

Rn,q
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For 0 ≤ n = n̄(q)

residual service time at the arrival instant of a customer, given that he finds n
present customers and that all other customers follow strategy q

q

residual service time at arbitrary instant, given that there are n present customers
in the system and that all customers follow strategy q

q

Rn,q
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Recursive scheme for Rn,q

R0,q
d
= R(X), n̄(q) = 0

R0,q
d
= (X − Tλq0 |X ≥ Tλq0), n̄(q) > 0,

where Tλq0 ∼ Exp(λq0)

Rn,q
d
= R(Rn−1,q), n̄(q) = n > 0

Rn,q
d
= (Rn−1,q − Tλqn |Rn−1,q ≥ Tλqn), n̄(q) > n ≥ 1,

where Tλqn ∼ Exp(λqn)
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Recursive scheme for LSTs of Rn,q

Lemma

Let T1, T2 and Y be independent random variables, with T1 and T2
being exponentially distributed with parameters λ1 and λ2,
respectively, and Y being a non-negative generally distributed random
variable with LST F̃Y (s). Then we have the following formulas.

Pr[Y ≤ T1] = F̃Y (λ1), (1)

Pr[Y ≤ T1 + T2] =
λ2

λ2 − λ1
F̃Y (λ1) +

λ1
λ1 − λ2

F̃Y (λ2), λ1 6= λ2,(2)

Pr[Y ≤ T1 + T2] = F̃Y (λ1)− λ1F̃ ′Y (λ1), λ1 = λ2. (3)
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Recursive scheme for LSTs of Rn,q

F̃n,q(s): the LST of Rn,q
F̃ (s): the LST of X

If n̄(q) = 0,

R0,q
d
= R(X)⇒ F̃0,q(s) =

−(1−F̃ (s))

sF̃ ′(0)
(4)

If n̄(q) > 0,
Ts ∼ Exp(s)
R0,q

d
= (X − Tλq0 |X ≥ Tλq0 ) ⇒

Pr[Ts ≥ R0,q] = Pr[Ts ≥ (X − Tλq0 )|(X ≥ Tλq0 )]⇒

Pr[Ts ≥ R0,q] =
Pr[Ts≥X−Tλq0 ,X≥Tλq0 ]

Pr[X≥Tλq0 ]
⇒

Pr[Ts ≥ R0,q] =
Pr[X≤Tλq0+Ts]−Pr[X<Tλq0 ]

Pr[X≥Tλq0 ]
(5)

if s 6= λq0, (5)
(1),(2)
=⇒ F̃0,q(s) =

λq0(F̃ (λq0)−F̃ (s))

(s−λq0)(1−F̃ (λq0))
(6)

if s = λq0, (5)
(1),(3)
=⇒ F̃0,q(λq0) =

−λq0F̃ ′(λq0)
1−F̃ (λq0)

(7)
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Recursive scheme for LSTs of Rn,q

If n̄(q) = n ≥ 1,

Rn,q
d
= R(Rn−1,q)⇒ F̃n,q(s) =

−(1−F̃n−1,q(s))

sF̃ ′n−1,q(0)
(8)

If n̄(q) > n ≥ 1 and s 6= λqn,

Rn,q
d
= (Rn−1,q − Tλqn |Rn−1,q ≥ Tλqn )⇒

F̃n,q(s) =
λqn(F̃n−1,q(λqn)−F̃n−1,q(s))

(s−λqn)(1−F̃n−1,q(λqn))
(9)

If n̄(q) > n ≥ 1 and s = λqn,

Rn,q
d
= (Rn−1,q − Tλqn |Rn−1,q ≥ Tλqn )⇒

F̃n,q(λqn) =
−λqnF̃ ′n−1,q(λqn)

1−F̃n−1,q(λqn)
(10)

F̃n,q(s) depends on q only through qn = (q0, q1, q2, . . . , qn). So, we can write

F̃n,q(s) = F̃n,qn (s)

F̃n,qn (s) is continuous in qn



Introduction The Game The observable case Bibliography Expected sojourn time Equilibrium strategies

Recursive scheme for E[Rn,q]

Corollary (Expected sojourn times)

Consider the observable model of a transportation station, where customers join
the system according to a strategy q = (q0, q1, q2, . . .). For the expected
conditional residual service times, E[Rn,qn ], we have the following recursive
scheme

E[Rn,qn ] =
E[Rn−1,qn−1

]

1− F̃n−1,qn−1
(λqn)

−
1

λqn
, qi 6= 0, i = 0, 1, . . . , n, n ≥ 1,

E[Rn,qn ] =
E[R2

n−1,qn−1
]

2E[Rn−1,qn−1
]
, qi 6= 0, i = 0, 1, . . . , n− 1, qn = 0, n ≥ 1,

with initial condition

E[R0,q0 ] =
E[X]

1− F̃ (λq0)
−

1

λq0
, q0 6= 0

E[R0,q0 ] =
E[X2]

2E[X]
, q0 = 0.
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Proposition (Expected net benefit)

Consider the observable model of a transportation station, where the customers
join the system according to a strategy q = (q0, q1, q2, . . .). Then, the expected
net benefit Sn(q) of an arriving customer, who finds n present customers in the
system and decides to join, is given by the formulas

Sn(q) = R
∞∑

k=n+1

gk −K
[

E[Rn−1,qn−1
]

1− F̃n−1,qn−1
(λqn)

−
1

λqn

]
, qi 6= 0,

i = 0, 1, . . . , n, n ≥ 1,

Sn(q) = R
∞∑

k=n+1

gk −K
E[(Rn−1,qn−1

)2]

2E[Rn−1,qn−1
]
, qi 6= 0, i = 0, 1, . . . , n− 1,

qn = 0, n ≥ 1,

S0(q) = R−K
[

E[X]

1− F̃ (λq0)
−

1

λq0

]
, q0 6= 0,

S0(q) = R−K
E[X2]

2E[X]
, q0 = 0.
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Equilibrium strategies

Recursive scheme for the computation of equilibrium probabilities:
• Computation of qe0

Theorem(Equilibrium probability qe0)

Consider the observable model of a transportation station. Then, an equilibrium
probability qe0 for joining when finding the system empty exists. Specifically, we
have the following comprehensive (but not necessarily mutually exclusive) cases:

Case I: R
K
≤ E[X2]

2E[X]
.

Then, qe0 = 0.

Case II: R
K
≥ E[X]

1−F̃ (λ)
− 1
λ

.

Then, qe0 = 1.

Case III:
E[X2]
2E[X]

< R
K
<

E[X]

1−F̃ (λ)
− 1
λ

.

Then, there exists a q′0 such that 0 < q′0 < 1 and
E[X]

1−F̃ (λq′0)
− 1
λq′0

= R
K

. The equilibrium joining probability is

qe0 = q′0.
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• Computation of qen, given the qen−1

Theorem(Equilibrium probability qen)

Consider the observable model of a transportation station. Then, assuming that
an equilibrium joining probability vector qen−1 is known, an equilibrium
probability qen for joining when finding n present customers in the system exists.
Specifically, we have the following cases:

Case I:
R

∑∞
k=n+1 gk
K

≤
E[(Rn−1,qe

n−1
)2]

2E[Rn−1,qe
n−1

]
.

Then, qen = 0.

Case II:
R

∑∞
k=n+1 gk
K

≥
E[Rn−1,qe

n−1
]

1−F̃n−1,qe
n−1

(λ)
− 1
λ

.

Then, qen = 1.

Case III:
E[(Rn−1,qe

n−1
)2]

2E[Rn−1,qe
n−1

]
<

R
∑∞
k=n+1 gk
K

<
E[Rn−1,qe

n−1
]

1−F̃n−1,qe
n−1

(λ)
− 1
λ

.

Then, there exists a q′n such that 0 < q′n < 1 and
E[Rn−1,qe

n−1
]

1−F̃n−1,qen−1(λq
′
n)
− 1
λq′n

=
R

∑∞
k=n+1 gk
K

. The equilibrium

joining probability is qen = q′n.
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Thank you!
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