Strategic Customers in a Transportation Station: When is it Optimal to Wait?

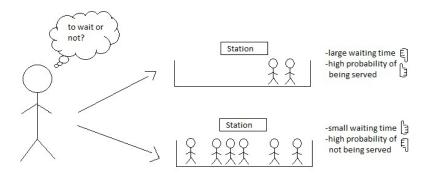
Athanasia Manou University of Athens, Greece

joint work with Antonis Economou and Fikri Karaesmen

Eindhoven, November 2012

(日) (四) (日) (日) (日)

The motivation



The model

- Infinite waiting space (transportation station)
- $Poisson(\lambda)$ customers' arrival process
- 1 server (bus)
- Renewal server's visiting process $\{M(t)\}$ Times between two visits: $X_1, X_2, X_3, \ldots \sim F(x)$
- Random server's capacities: $C_1, C_2, C_3, \ldots \sim (g_k, k = 1, 2, \ldots)$

◆□▶ ◆□▶ ◆豆▶ ◆豆▶ 三豆 - のへで

- When a server with capacity k visits the system:
 - serves k customers instantaneously,
 - the others abandon the system

The model

- Infinite waiting space (transportation station)
- Poisson(λ) customers' arrival process
- 1 server (bus)
- Renewal server's visiting process $\{M(t)\}$ Times between two visits: $X_1, X_2, X_3, \ldots \sim F(x)$
- Random server's capacities: $C_1, C_2, C_3, \ldots \sim (g_k, k = 1, 2, \ldots)$
- When a server with capacity k visits the system:
 - serves k customers instantaneously,
 - the others abandon the system

State description

- N(t):
- number of customers at time tremaining time until $\Rightarrow \{(N(t), R(t))\}$ C.T.M.P. R(t): remaining time until the next server's visit at time t

◆□▶ ◆□▶ ◆豆▶ ◆豆▶ 三豆 - のへで

The problem: economic analysis of customer behavior *join* or *balk* ↓ symmetric game among customers

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

The problem: economic analysis of customer behavior *join* or *balk* ↓ symmetric game among customers

◆□▶ ◆□▶ ◆豆▶ ◆豆▶ 三豆 - のへで

Information level:

- Unobservable case: observes nothing
- Observable case: observes N(t)

The problem: economic analysis of customer behavior join or balk \downarrow symmetric game among customers

Information level:

- Unobservable case: observes nothing
- Observable case: observes N(t)

Reward-Cost structure:

• Customers' reward R for completing service

▲ロト ▲母ト ▲国ト ▲国ト 三国 - のんの

• Customers' waiting cost K per time unit

The problem: economic analysis of customer behavior join or balk 1

symmetric game among customers

Information level:

- Unobservable case: observes nothing
- Observable case: observes N(t)

Reward-Cost structure:

- Customers' reward R for completing service
- Customers' waiting cost K per time unit

Decisions:

- Upon arrival a customer decides to join or to balk
- Decisions are irrevocable
- Customers' purpose: maximization of individual expected net benefit

Symmetric non-cooperative game

S: Set of strategies

 $U(s_1, s_2)$: Payoff function of a tagged player, who follows the s_1 strategy, when all other players follow the s_2 strategy

◆□▶ ◆□▶ ◆三▶ ◆三▶ ○○ ○○

Symmetric non-cooperative game

S: Set of strategies

 $U(s_1, s_2)$: Payoff function of a tagged player, who follows the s_1 strategy, when all other players follow the s_2 strategy

Definition (Best Response)

A strategy s_1^* is said to be a best response against a strategy s_2 , iff

 $U(s_1^*, s_2) \ge U(s_1, s_2), \ \forall s_1 \in S$

◆□▶ ◆□▶ ◆豆▶ ◆豆▶ 三豆 - のへで

Symmetric non-cooperative game

S: Set of strategies

 $U(s_1, s_2)$: Payoff function of a tagged player, who follows the s_1 strategy, when all other players follow the s_2 strategy

Definition (Best Response)

A strategy s_1^* is said to be a best response against a strategy s_2 , iff

 $U(s_1^*, s_2) \ge U(s_1, s_2), \ \forall s_1 \in S$

Definition (Symmetric Nash Equilibrium)

A strategy s_1^* is said to be a symmetric Nash equilibrium iff it is a best response against itself, i.e.

 $U(s_1^*, s_1^*) \ge U(s_1, s_1^*), \ \forall s_1 \in S$

OBSERVABLE CASE

₩

customers observe N(t)

₩

strategies: $\mathbf{q} = (q_0, q_1, q_2, \ldots), q_n \in [0, 1], n = 0, 1, \ldots$

 $(q_n = \text{probability of joining, when } N(t) = n)$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

OBSERVABLE CASE

₩

customers observe N(t)

₩

strategies: $\mathbf{q} = (q_0, q_1, q_2, \ldots), q_n \in [0, 1], n = 0, 1, \ldots$

 $(q_n = \text{probability of joining, when } N(t) = n)$

 $S_n(\mathbf{q})$: expected net benefit of a tagged customer, who finds *n* present customers and decides to join, given that all other customers follow strategy \mathbf{q} .

$$S_n(\mathbf{q}) = RP[\text{service}|n, \mathbf{q}] - KE[\text{sojourn time}|n, \mathbf{q}]$$

OBSERVABLE CASE

∜

customers observe N(t)

₩

strategies: $\mathbf{q} = (q_0, q_1, q_2, \ldots), q_n \in [0, 1], n = 0, 1, \ldots$

 $(q_n = \text{probability of joining, when } N(t) = n)$

◆□▶ ◆□▶ ◆三▶ ◆三▶ ○○ ○○

 $S_n(\mathbf{q})$: expected net benefit of a tagged customer, who finds *n* present customers and decides to join, given that all other customers follow strategy \mathbf{q} .

$$S_n(\mathbf{q}) = R \underbrace{P[\text{service}|n, \mathbf{q}]}_{\sum_{k=n+1}^{\infty} g_k} - KE[\text{sojourn time}|n, \mathbf{q}]$$

$E[\text{sojourn time}|n, \mathbf{q}]$

Ш

expected residual service time at the arrival instant of a customer, who finds n present customers, given that all other customers follow strategy \mathbf{q}

◆□▶ ◆□▶ ◆□▶ ◆□▶ = つくで

Let

 $R_{\mathbf{q}}(t)$: residual service time at time t, when the customers follow a strategy \mathbf{q} , $N_{\mathbf{q}}(t)$: number of customers in the system at time t, when the customers follow a strategy \mathbf{q} , $(\mathbf{P}(t) \in \mathbf{Q})$.

 $\{P(t), t \ge 0\}$: Poisson process at rate λ , then

$$\left\{\begin{array}{l} \{(N_{\mathbf{q}}(u), R_{\mathbf{q}}(u)), \ 0 \le u \le t\}, \\ \{P(t+u) - P(t), \ u \ge 0\} \\ \text{independent} \end{array}\right\}: \text{ Lack of Anticipation assumption}$$

$\Downarrow(\mathrm{PASTA})$

residual service time at the arrival instant of a customer, given that he finds n present customers and that all other customers follow strategy \mathbf{q}

П

residual service time at arbitrary instant, given that there are n present customers in the system and that all customers follow strategy \mathbf{q}

Let

$$\bar{n}(\mathbf{q}) = \inf\{n \ge 0 : q_i > 0 \text{ for } i < n \text{ and } q_n = 0\}$$

and
 $\{P_n(t), t \ge 0\}$: Poisson process at rate $\lambda q_n, n = 0, 1, \ldots, \bar{n}(\mathbf{q}) - 1$
then

$$\left\{\begin{array}{l} \{(N_{\mathbf{q}}(u), R_{\mathbf{q}}(u)), \ 0 \le u \le t\},\\ \{P_n(t+u) - P_n(t), \ u \ge 0\}\\ \text{independent}\end{array}\right\}: \text{ Lack of Anticipation assumption}$$

 \Downarrow (Conditional PASTA)

residual service time at the arrival instant of a customer, who joins, given that he finds n present customers and that all customers follow strategy **q**

Ш

residual service time at arbitrary instant, given that there are n present customers in the system and that all customers follow strategy \mathbf{q} For $0 \le n < \bar{n}(\mathbf{q})$

residual service time at the arrival instant of a customer, given that he finds n present customers and that all other customers follow strategy \mathbf{q}

П

residual service time at arbitrary instant, given that there are n present customers in the system and that all customers follow strategy \mathbf{q}

П

residual service time at the arrival instant of a customer, who joins, given that he finds n present customers and that all customers follow strategy \mathbf{q}

 $R_{n,\mathbf{q}}$

◆□▶ ◆□▶ ◆豆▶ ◆豆▶ 三豆 - のへで

For $0 \le n = \bar{n}(\mathbf{q})$

residual service time at the arrival instant of a customer, given that he finds n present customers and that all other customers follow strategy \mathbf{q}

П

residual service time at arbitrary instant, given that there are n present customers in the system and that all customers follow strategy \mathbf{q}

П

 $R_{n,\mathbf{q}}$

◆□▶ ◆□▶ ◆□▶ ◆□▶ = つくで

Recursive scheme for $R_{n,q}$

•
$$R_{0,\mathbf{q}} \stackrel{d}{=} R(X), \quad \bar{n}(\mathbf{q}) = 0$$

•
$$R_{0,\mathbf{q}} \stackrel{d}{=} (X - T_{\lambda q_0} | X \ge T_{\lambda q_0}), \quad \bar{n}(\mathbf{q}) > 0,$$

where $T_{\lambda q_0} \sim \operatorname{Exp}(\lambda q_0)$

•
$$R_{n,\mathbf{q}} \stackrel{d}{=} R(R_{n-1,\mathbf{q}}), \quad \bar{n}(\mathbf{q}) = n > 0$$

•
$$R_{n,\mathbf{q}} \stackrel{d}{=} (R_{n-1,\mathbf{q}} - T_{\lambda q_n} | R_{n-1,\mathbf{q}} \ge T_{\lambda q_n}), \quad \bar{n}(\mathbf{q}) > n \ge 1,$$

where $T_{\lambda q_n} \sim \operatorname{Exp}(\lambda q_n)$

◆□ → ◆□ → ◆三 → ◆三 → ● ● ● ● ●

Recursive scheme for LSTs of $R_{n,q}$

Lemma

Let T_1 , T_2 and Y be independent random variables, with T_1 and T_2 being exponentially distributed with parameters λ_1 and λ_2 , respectively, and Y being a non-negative generally distributed random variable with LST $\tilde{F}_Y(s)$. Then we have the following formulas.

$$\Pr[Y \le T_1] = \tilde{F}_Y(\lambda_1), \tag{1}$$

$$\Pr[Y \le T_1 + T_2] = \frac{\lambda_2}{\lambda_2 - \lambda_1} \tilde{F}_Y(\lambda_1) + \frac{\lambda_1}{\lambda_1 - \lambda_2} \tilde{F}_Y(\lambda_2), \ \lambda_1 \ne \lambda_2(2)$$

$$\Pr[Y \le T_1 + T_2] = \tilde{F}_Y(\lambda_1) - \lambda_1 \tilde{F}_Y'(\lambda_1), \ \lambda_1 = \lambda_2.$$
(3)

▲ロト ▲圖 ▶ ▲ 画 ▶ ▲ 画 ▶ ▲ ● ◆ ● ●

Recursive scheme for LSTs of $R_{n,q}$

 $\tilde{F}_{n,\mathbf{q}}(s)$: the LST of $R_{n,\mathbf{q}}$ $\tilde{F}(s)$: the LST of X

• If
$$\bar{n}(\mathbf{q}) = 0$$
,
 $R_{0,\mathbf{q}} \stackrel{d}{=} R(X) \Rightarrow \tilde{F}_{0,\mathbf{q}}(s) = \frac{-(1-\tilde{F}(s))}{s\tilde{F}'(0)}$ (4)

• If
$$\bar{n}(\mathbf{q}) > 0$$
,
 $T_s \sim Exp(s)$
 $R_{0,\mathbf{q}} \stackrel{d}{=} (X - T_{\lambda q_0} | X \ge T_{\lambda q_0}) \Rightarrow$
 $\Pr[T_s \ge R_{0,\mathbf{q}}] = \Pr[T_s \ge (X - T_{\lambda q_0}) | (X \ge T_{\lambda q_0})] \Rightarrow$
 $\Pr[T_s \ge R_{0,\mathbf{q}}] = \frac{\Pr[T_s \ge X - T_{\lambda q_0}, X \ge T_{\lambda q_0}]}{\Pr[X \ge T_{\lambda q_0}]} \Rightarrow$
 $\Pr[T_s \ge R_{0,\mathbf{q}}] = \frac{\Pr[X \le T_{\lambda q_0} + T_s] - \Pr[X < T_{\lambda q_0}]}{\Pr[X \ge T_{\lambda q_0}]} (5)$
if $s \ne \lambda q_0$, $(5) \xrightarrow{(1),(2)} \tilde{F}_{0,\mathbf{q}}(s) = \frac{\lambda q_0(\tilde{F}(\lambda q_0) - \tilde{F}(s))}{(s - \lambda q_0)(1 - \tilde{F}(\lambda q_0))} (6)$
if $s = \lambda q_0$, $(5) \xrightarrow{(1),(3)} \tilde{F}_{0,\mathbf{q}}(\lambda q_0) = \frac{-\lambda q_0 \tilde{F}'(\lambda q_0)}{1 - \tilde{F}(\lambda q_0)} (7)$

◆□▶ ◆□▶ ◆□▶ ◆□▶ □ のへで

Recursive scheme for LSTs of $R_{n,q}$

• If
$$\bar{n}(\mathbf{q}) = n \ge 1$$
,
 $R_{n,\mathbf{q}} \stackrel{d}{=} R(R_{n-1,\mathbf{q}}) \Rightarrow \tilde{F}_{n,\mathbf{q}}(s) = \frac{-(1-\tilde{F}_{n-1,\mathbf{q}}(s))}{s\tilde{F}'_{n-1,\mathbf{q}}(0)}$ (8)

• If
$$\bar{n}(\mathbf{q}) > n \ge 1$$
 and $s \ne \lambda q_n$,
 $R_{n,\mathbf{q}} \stackrel{d}{=} (R_{n-1,\mathbf{q}} - T_{\lambda q_n} | R_{n-1,\mathbf{q}} \ge T_{\lambda q_n}) \Rightarrow$
 $\tilde{F}_{n,\mathbf{q}}(s) = \frac{\lambda q_n (\tilde{F}_{n-1,\mathbf{q}}(\lambda q_n) - \tilde{F}_{n-1,\mathbf{q}}(s))}{(s - \lambda q_n)(1 - \tilde{F}_{n-1,\mathbf{q}}(\lambda q_n))}$ (9)

• If
$$\bar{n}(\mathbf{q}) > n \ge 1$$
 and $s = \lambda q_n$,
 $R_{n,\mathbf{q}} \stackrel{d}{=} (R_{n-1,\mathbf{q}} - T_{\lambda q_n} | R_{n-1,\mathbf{q}} \ge T_{\lambda q_n}) \Rightarrow$
 $\tilde{F}_{n,\mathbf{q}}(\lambda q_n) = \frac{-\lambda q_n \tilde{F}'_{n-1,\mathbf{q}}(\lambda q_n)}{1 - \tilde{F}_{n-1,\mathbf{q}}(\lambda q_n)}$ (10)

 $\tilde{F}_{n,\mathbf{q}}(s)$ depends on \mathbf{q} only through $\mathbf{q}_n = (q_0, q_1, q_2, \dots, q_n)$. So, we can write $\tilde{F}_{n,\mathbf{q}}(s) = \tilde{F}_{n,\mathbf{q}_n}(s)$ $\tilde{F}_{n,\mathbf{q}_n}(s)$ is continuous in q_n

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Recursive scheme for $E[R_{n,\mathbf{q}}]$

Corollary (Expected sojourn times)

Consider the observable model of a transportation station, where customers join the system according to a strategy $\mathbf{q} = (q_0, q_1, q_2, \ldots)$. For the expected conditional residual service times, $E[R_{n,\mathbf{q}_n}]$, we have the following recursive scheme

$$E[R_{n,\mathbf{q}_n}] = \frac{E[R_{n-1,\mathbf{q}_{n-1}}]}{1 - \tilde{F}_{n-1,\mathbf{q}_{n-1}}(\lambda q_n)} - \frac{1}{\lambda q_n}, \ q_i \neq 0, \ i = 0, 1, \dots, n, \ n \ge 1,$$

$$E[R_{n,\mathbf{q}_n}] = \frac{E[R_{n-1,\mathbf{q}_{n-1}}^2]}{2E[R_{n-1,\mathbf{q}_{n-1}}]}, \ q_i \neq 0, \ i = 0, 1, \dots, n-1, \ q_n = 0, \ n \ge 1,$$

with initial condition

$$\begin{split} E[R_{0,q_0}] &= \frac{E[X]}{1 - \tilde{F}(\lambda q_0)} - \frac{1}{\lambda q_0}, \ q_0 \neq 0 \\ E[R_{0,q_0}] &= \frac{E[X^2]}{2E[X]}, \ q_0 = 0. \end{split}$$

▲ロト ▲御 ト ▲ 臣 ト ▲ 臣 ト ● ○ の Q ()

Proposition (Expected net benefit)

Consider the observable model of a transportation station, where the customers join the system according to a strategy $\mathbf{q} = (q_0, q_1, q_2, \ldots)$. Then, the expected net benefit $S_n(\mathbf{q})$ of an arriving customer, who finds n present customers in the system and decides to join, is given by the formulas

$$S_{n}(\mathbf{q}) = R \sum_{k=n+1}^{\infty} g_{k} - K \left[\frac{E[R_{n-1}, \mathbf{q}_{n-1}]}{1 - \tilde{F}_{n-1}, \mathbf{q}_{n-1} (\lambda q_{n})} - \frac{1}{\lambda q_{n}} \right], \ q_{i} \neq 0,$$

$$i = 0, 1, \dots, n, \ n \geq 1,$$

$$S_{n}(\mathbf{q}) = R \sum_{k=n+1}^{\infty} g_{k} - K \frac{E[(R_{n-1}, \mathbf{q}_{n-1})^{2}]}{2E[R_{n-1}, \mathbf{q}_{n-1}]}, \ q_{i} \neq 0, \ i = 0, 1, \dots, n-1,$$

$$q_{n} = 0, \ n \geq 1,$$

$$S_{0}(\mathbf{q}) = R - K \left[\frac{E[X]}{1 - \tilde{F}(\lambda q_{0})} - \frac{1}{\lambda q_{0}} \right], \ q_{0} \neq 0,$$

$$S_{0}(\mathbf{q}) = R - K \frac{E[X^{2}]}{2E[X]}, \ q_{0} = 0.$$

Equilibrium strategies

Recursive scheme for the computation of equilibrium probabilities:

• Computation of q_0^e

Theorem (Equilibrium probability q_0^e)

Consider the observable model of a transportation station. Then, an equilibrium probability q_0^e for joining when finding the system empty exists. Specifically, we have the following comprehensive (but not necessarily mutually exclusive) cases:

$$\begin{array}{lll} \text{Case I:} & \frac{R}{K} \leq \frac{E[X^2]}{2E[X]}. \\ & \text{Then, } q_0^e = 0. \\ \text{Case II:} & \frac{R}{K} \geq \frac{E[X]}{1-\tilde{F}(\lambda)} - \frac{1}{\lambda} \ . \\ & \text{Then, } q_0^e = 1. \\ \text{Case III:} & \frac{E[X^2]}{2E[X]} < \frac{R}{K} < \frac{E[X]}{1-\tilde{F}(\lambda)} - \frac{1}{\lambda}. \\ & \text{Then, there exists a } q_0' \text{ such that } 0 < q_0' < 1 \text{ and} \\ & \frac{E[X]}{1-\tilde{F}(\lambda q_0')} - \frac{1}{\lambda q_0'} = \frac{R}{K}. \\ \text{The equilibrium joining probability is} \\ & q_0^e = q_0'. \end{array}$$

• Computation of q_n^e , given the \mathbf{q}_{n-1}^e

Theorem (Equilibrium probability q_n^e)

Consider the observable model of a transportation station. Then, assuming that an equilibrium joining probability vector \mathbf{q}_{n-1}^e is known, an equilibrium probability q_n^e for joining when finding *n* present customers in the system exists. Specifically, we have the following cases:

BIBLIOGRAPHY

- Burnetas, A. and Economou, A. (2007) Equilibrium customer strategies in a single server Markovian queue with setup times. *Queueing Systems* 56, 213-228.
- 2 Economou, A. and Kanta, S. (2008b) Equilibrium balking strategies in the observable single-server queue with breakdowns and repairs. *Operations Research Letters* 36, 696-699.
- Hassin, R. (2007) Information and uncertainty in a queuing system. Probability in the Engineering and Informational Sciences 21, 361-380.
- Hassin, R. and Haviv, M. (1997) Equilibrium threshold strategies: the case of queues with priorities. *Operations Research* 45, 966-973.
- Hassin, R. and Haviv, M. (2003) To Queue or Not to Queue: Equilibrium Behavior in Queueing Systems. Kluwer Academic Publishers, Boston.

Thank you!

◆□▶ ◆□▶ ◆□▶ ◆□▶ □ のへで