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Analysis of queueing models with multiple waiting lines:
complex-function methods

Onno Boxma
Eindhoven University of Technology and Eurandom
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1. Introduction
In queueing theory, there is a sharp division between easy and hard.

Single server queue: much is known.

Two-queue models: various techniques for special cases
(like the compensation approach and the boundary value technique).

N -queue models with N > 2: exact analysis in exceptional cases
(like product-form networks and polling systems).
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Example: tandem queue.

B
(1)

B
(2)

Pois( )l

B(i) ∼ exp(µi), i = 1, 2:
product-form network, independence of queue lengths Xi:

P(X1 = n1, X2 = n2) =

2∏
i=1

(1− ρi)ρni
i ,

with ρi := λEB(i) = λ
µi
< 1.

B(2) general: queue lengths still independent, product form.

B(1) general, B(2) ∼ exp: boundary value problem
Blanc, Iasnogorodski and Nain (1988).

B(1) and B(2) general: hopeless?



12

4/26

Starting-point often: balance equations for queue lengths.
Two M/M/1 queues in series:

(λ+µ1+µ2)p(m,n) = λp(m−1, n)Im≥1+µ1p(m+1, n−1)In≥1+µ2p(m,n+1).

Together with
∑ ∑

p(m,n) = 1, this contains all the information.

Now take generating functions, with P (x, y) :=
∑∞

m=0

∑∞
n=0 x

mynp(m,n):

K(x, y)P (x, y) = H(x, y)P (x, 0) + V (x, y)P (0, y) + O(x, y)P (0, 0).

In addition, P (1, 1) = 1, and P (x, y) is analytic for |x| ≤ 1, |y| ≤ 1.
Together, this contains all the information needed to determine P (x, y).
For the tandem queue, prove that

P (x, y) =
1− ρ1

1− ρ1x

1− ρ2

1− ρ2y
.
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K(x, y)P (x, y) = H(x, y)P (x, 0) + V (x, y)P (0, y) + O(x, y)P (0, 0).

Approach:
Consider all zeros (x̂, ŷ) of kernel K(x, y) with |x̂| ≤ 1, |ŷ| ≤ 1.

Embarrassment of choice!
What is a good, systematic choice?
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The uniformization method determines a suitable set of zero pairs
(x̂(z), ŷ(z)), z ∈ L, for some smooth closed contour L which is itself
determined;
and |x̂(z)| ≤ 1, |ŷ(z)| ≤ 1,
and x̂(z) analytic in L+, ŷ(z) analytic in L−.

Then necessarily, for all z ∈ L:

H(x̂(z), ŷ(z))P (x̂(z), 0) = −V (x̂(z), ŷ(z))P (0, ŷ(z))−O(x̂(z), ŷ(z))P (0, 0).

analytic in L+ analytic in L−

Now try to formulate a boundary value problem,
to solve P (x̂(z), 0), z ∈ L+, and P (0, ŷ(z)), z ∈ L−.
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Some historical remarks:
Breakthrough for two-dimensional queues: Fayolle and Iasnogorodski
(1979)
Joint queue length distribution for two coupled processors with exponential
service times: reduction to a Riemann-Hilbert problem.

B1 B2

l
1

speed: { 1
r > 11

speed: { 1
r > 12

l
2

Further development of the theory: Cohen and Boxma (1983), Cohen (1992).
General service times, reduction to a Riemann or Riemann-Hilbert or
Wiener-Hopf problem or Fredholm singular integral equation.
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Outline of the talk

1. Introduction

2. The GI/GI/1 queue: The Wiener-Hopf boundary value technique

3. Two coupled processors: The Wiener-Hopf boundary value technique

4. Closing remarks: relation between the compensation approach and
complex function techniques
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2. TheGI/GI/1 queue: The Wiener-Hopf boundary value technique
Norbert Wiener and Eberhard Hopf (1931):
radiation of stars =⇒ integral equation =⇒ boundary value problem for
analytic functions

i.i.d. interarrival times A1, A2, . . .; LST α(s) = E[e−sA].
i.i.d. service times B1, B2, . . .; LST β(s) = E[e−sB]. Load ρ := EB

EA < 1.

Vt

B1

B2

B3

W2 W3W1 = 0

A2 A3 A4

t

waiting time Wn+1: Wn+1 = max(0,Wn + Bn − An+1), n = 1, 2, . . .



12

10/26

Let |r| ≤ 1 and

Φ(r, s) :=

∞∑
n=1

rnE[e−sWn|W1 = 0], Re s ≥ 0,

Ψ(r, s) :=

∞∑
n=1

rnE[e−smin(0,Wn+Bn−An+1)|W1 = 0], Re s ≤ 0.

Use the identity

e−sWn+1 = e−s(Wn+Bn−An+1) − e−smin(0,Wn+Bn−An+1) + 1,

to get, for |r| < 1 and Re s = 0:

Φ(r, s)[1− rα(−s)β(s)] =
r

1− r
− rΨ(r, s).
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Wiener-Hopf boundary value problem:

Find Φ(r, s) and Ψ(r, s), such that,
(i) for |r| < 1 and Re s = 0:

Φ(r, s)[1− rα(−s)β(s)] =
r

1− r
− rΨ(r, s).

(ii) Φ(r, s) is analytic for Re s > 0, continuous for Re s ≥ 0,
bounded (by r

1−r ) for Re s ≥ 0.

(iii) Ψ(r, s) is analytic for Re s < 0, continuous for Re s ≤ 0,
bounded (by r

1−r ) for Re s ≤ 0.
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Φ(r, s)[1− rα(−s)β(s)] =
r

1− r
− rΨ(r, s).

Wiener-Hopf technique: rewrite

1

1− rα(−s)β(s)
= φ+(r, s)φ0(r)φ−(r, s),

with φ+(r, s) (φ−(r, s)) analytic and non-zero in Re s > 0 (< 0).

Then
Φ(r, s)

φ+(r, s)
= [

1

1− r
− Ψ(r, s)]rφ0(r)φ−(r, s).

LHS: analytic for Re s > 0. RHS: analytic for Re s < 0.

Let Z(r, s) := LHS for Re s ≥ 0 and Z(r, s) := RHS for Re s ≤ 0.
Then Z(r, s) is analytic, and also bounded, in the whole s-plane.
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Liouville’s theorem: a function of s that is analytic and bounded in the
whole s-plane is a constant. So here: Z(r, s) = C(r).

Consequence:
Φ(r, s)

φ+(r, s)
= C(r), Re s ≥ 0;

[
1

1− r
− Ψ(r, s)]rφ0(r)φ−(r, s) = C(r), Re s ≤ 0.

Using Φ(r, 0) = r
1−r one obtains

Φ(r, s) = C(r)φ+(r, s) =
r

1− r
φ+(r, s)

φ+(r, 0)
, Re s ≥ 0.

Similarly Ψ(r, s).
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The hard part: how to factorize

1

1− rα(−s)β(s)
= φ+(r, s)φ0(r)φ−(r, s).

Spitzer’s identity (with Sn :=
∑n

k=1(Bk − Ak+1)):

1

1− rα(−s)β(s)
= exp[−ln(1− rα(−s)β(s))]

= exp[

∞∑
n=1

rn

n
{α(−s)β(s)}n] = exp[

∞∑
n=1

rn

n
E[e−sSn]]

= exp[

∞∑
n=1

rn

n
E[e−sSnI(Sn>0)]]exp[

∞∑
n=1

rn

n
E[e−sSnI(Sn<0)]]

× exp[

∞∑
n=1

rn

n
E[e−sSnI(Sn=0)]].



12

15/26

Special case: M/G/1; α(s) = λ
λ+s .

Φ(r, s)
λ− s− rλβ(s)

λ− s
=

r

1− r
− rΨ(r, s), |r| < 1, Re s = 0.

LHS: one pole s = λ > 0 and one zero s = δ(r) in Re s ≥ 0, for |r| < 1.
Hence

Φ(r, s)
λ− s− rλβ(s)

s− δ(r)
= [

r

1− r
− rΨ(r, s)]

λ− s
s− δ(r)

.

LHS: analytic for Re s > 0; bounded. RHS: analytic for Re s < 0; bounded.
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Φ(r, s)
λ− s− rλβ(s)

s− δ(r)
= [

r

1− r
− rΨ(r, s)]

λ− s
s− δ(r)

.

LHS: analytic for Re s > 0; bounded. RHS: analytic for Re s < 0: bounded.

Liouville’s theorem: both sides equal some function D(r).
Taking s = 0 shows that D(r) = − λr

δ(r).
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2. Two coupled processors: The Wiener-Hopf boundary value technique

Example of the boundary value method for workloads: Coupled proces-
sor model.

B1 B2

l
1

speed: { 1
r > 11

speed: { 1
r > 12

l
2

Two M/G/1 queues, arrival rates λ1, λ2, general service requirements
B1, B2. Coupled via speeds.
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Vi steady-state workload at processor i, i = 1, 2.

Ψ(s1, s2) := E[e−s1V1−s2V2], Ψ0 := P(V1 = 0, V2 = 0),

Ψ1(s2) := E[e−s2V2I(V1 = 0)], Ψ2(s1) := E[e−s1V1I(V2 = 0)].

Fundamental equation:

{λ1(1− E[e−s1B1])− s1 + λ2(1− E[e−s2B2])− s2}Ψ(s1, s2) =

− [(r1 − 1)s1 + (r2 − 1)s2]Ψ0

+ [(r1 − 1)s1 − s2]Ψ2(s1) + [(r2 − 1)s2 − s1]Ψ1(s2). (1)

Look for pairs of zeroes (s1, s2) with Re s1, s2 ≥ 0 of the kernelK(s1, s2) :=
λ1(1− E[e−s1B1])− s1 + λ2(1− E[e−s2B2])− s2
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K(s1, s2) = λ1(1− E[e−s1B1])− s1 + λ2(1− E[e−s2B2])− s2

is a separable kernel (makes sense!):

K(s1, s2) = γ1(s1) + γ2(s2) = γ1(s1) + w + γ2(s2)− w.

Uniformization method:
Look for zeroes of γ1(s1) + w and of γ2(s2)− w.
Under certain conditions one may show that γ1(s1) +w = 0, for Re w ≥ 0,
w 6= 0, has exactly one zero s1 = δ1(w) in Re s1 ≥ 0, with multiplicity one;
and δ1(w) is analytic in Re w > 0, continuous in Re w ≥ 0.
Similarly for γ2(s2)− w, but now with the w signs reversed: s2 = δ2(w).
Because of the analyticity of Ψ(s1, s2) for these zero pairs (s1, s2), the right
hand side of (1) must be zero for those (s1, s2).
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Hence, for 1
r1

+ 1
r2
6= 1 (there is a simpler approach if 1

r1
+ 1

r2
= 1), for

Re w = 0:

[(1− 1

r1
)δ1(w)− 1

r1
δ2(w)][

1

r2
(Ψ2(δ1(w))− Ψ0)−

Ψ0

r1r2

1

1− 1
r1
− 1

r2

]

= −[(1− 1

r2
)δ2(w)− 1

r2
δ1(w)][

1

r1
(Ψ1(δ2(w))− Ψ0)−

Ψ0

r1r2

1

1− 1
r1
− 1

r2

],

(2)

Observe that Ψ1(δ2(w)) is analytic for Re w < 0, continuous for Re w ≤ 0,
whereas Ψ2(δ1(w)) is analytic for Re w > 0, continuous for Re w ≥ 0.
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A careful analysis of the factors in front of the Ψ functions in (2) reveals a
way to factorize them as products of terms which are analytic in the left- and
right half planes. One finally ends up with a Wiener-Hopf boundary value
problem of the form: For Re w = 0 (the boundary),

AL(w)[
1

r2
(Ψ2(δ1(w))− Ψ0)−

Ψ0

r1r2

1

1− 1
r1
− 1

r2

] = −

AR(w)[
1

r1
(Ψ1(δ2(w))− Ψ0)−

Ψ0

r1r2

1

1− 1
r1
− 1

r2

], (3)

where the left hand side is analytic for Re w > 0, continuous for Re w ≥ 0,
and the right hand side is analytic for Re w < 0, continuous for Re w ≤ 0.
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So both sides are each other’s analytic continuations.
Liouville’s theorem: both sides are constants.
This determines Ψ1(δ2(w)) for Re w ≤ 0 and Ψ2(δ1(w)) for Re w ≥ 0, and
next Ψ1(s2) for Re s2 ≥ 0 and Ψ2(s1) for Re s1 ≥ 0 (this may first require
analytic continuation).

Finally, Ψ(s1, s2) follows from (1).
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The case r1 = 1, r2 = 2: relation to a tandem queue with continuous outflow
from Q1 and Q2, and speeds 1 and 2.

l
1

l
2

B1 B2

l
1

speed: { 1
r > 11

speed: { 1
r > 12

l
2

Same two-dimensional workload process!
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Generalization of the coupled processor model and of the tandem model:
Lévy input process instead of compound Poisson (joint work with Jevgenijs
Ivanovs)
(tandem queue: Miyazawa and Rolski (2009)).
The kernel

K(s1, s2) = λ1(1− E[e−s1B1])− s1 + λ2(1− E[e−s2B2])− s2

becomes:
K(s1, s2) = γ1(s1) + γ2(s2),

with γi(si) the Laplace exponent of the ith Lévy process.
Again a separable kernel;
again look for zeros of γ2(s2)− w = 0 (and of γ1(s1) + w = 0).
This is the inverse of the Laplace exponent.
Relation to entrance time of the Lévy process:

E[e−wT (u)] = e−uγ
−1
2 (w) = e−uδ2(w).
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4. Closing remarks: relation between the compensation approach and
complex function techniques
Compensation approach (Ivo Adan) for a class of RW in first quadrant:
pm,n =

∑∞
i=0 ciα

m
i β

n
i .

This corresponds to
P (x, y) =

∑∞
i=0

ci
(1−αix)(1−βiy)

,

hence P (x, 0) =
∑∞

i=0
ci

1−αix
, P (0, y) =

∑∞
i=0

ci
1−βiy

.

These are meromorphic functions: the only singularities are isolated
poles 1

αi
, 1
βi
∈ C−.
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The pairs (αi, βi) satisfy the balance equations in the interior.
The pairs ( 1

αi
, 1
βi

) = (x̂i, ŷi) are zero pairs of the kernel K(x, y).
Now consider the boundaries:

H(x̂i, ŷi)P (x̂i, 0) = −V (x̂i, ŷi)P (0, ŷi)−O(x̂i, ŷi)P (0, 0).

Each contribution of an x̂i pole is compensated by a contribution of a ŷi
pole, which is subsequently compensated by a contribution of an x̂i+1 pole,
etc.

For the tandem queue, the process stops after one term,
since V (x̂0, ŷ0) = 0:

P (x, 0) = (1− ρ2)
1− ρ1

1− ρ1x
.


