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1. Introduction
In queueing theory, there is a sharp division between easy and hard.

Single server queue: much is known.

Two-queue models: various techniques for special cases
(like the compensation approach and the boundary value technique).

N-queue models with N > 2: exact analysis in exceptional cases
(like product-form networks and polling systems).
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Example: tandem queue.

Poisp) —— [0 —— 00D

B(1) B(Z)

BY ~ exp(;), i = 1,2:
product-form network, independence of queue lengths X;:

2

P(X; =ny, Xo =ny) = H(1 — pi)pis

1=1

with p; == AEB" = MA < L

()

B® general: queue lengths still independent, product form.

BW general, B® ~ exp: boundary value problem
Blanc, Iasnogorodski and Nain (1988).

BWY and B® general: hopeless?
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Starting-point often: balance equations for queue lengths.
Two M /M /1 queues in series:

(A+M1+N2>p(m7 n) - )\p<m_17 n>]m21+,ulp(m+17 n_1>[n21+,u2p(m7 n+1)

Together with )~ > " p(m, n) = 1, this contains all the information.

Now take generating functions, with P(z,y) := > > > > 2™y "p(m,n):
K(z,y)P(z,y) = H(z,y)P(z,0) + V(z,y)P(0,y) + O(z,y) P(0,0).

In addition, P(1,1) = 1, and P(z,y) i
Together, this contains all the information needed to determine P(z,y).
For the tandem queue, prove that

L—=p1 1—po
L =pixl = poy

P(l’,y) -
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K(z,y)P(z,y) = H(z,y)P(z,0) + V(z,y)P(0,y) + Oz, y) P(0,0).

Approach:
Consider all zeros (, y) of kernel K (z,y) with |z] < 1, |y| < 1.

Embarrassment of choice!
What is a good, systematic choice?
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The uniformization method determines a suitable set of zero pairs
(2(2),9(z)), z € L, for some smooth closed contour L which is itself
determined;

and [i(2)] < 1, 5(2)] < 1,

and Z(z) analyticin L™, §(z) analytic in L.

Then necessarily, for all z € L:

H((2),9(2))P(2(2),0) = =V(2(2),9(2)) P(0,9(2))-O(z(2), (2)) P(0,0).

analytic in L™ analytic in L~

Now try to formulate a boundary value problem,
to solve P(z(z),0), z € L*,and P(0,y5(2)), 2 € L.
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Some historical remarks:

Breakthrough for two-dimensional queues: Fayolle and Iasnogorodski
(1979)

Joint queue length distribution for two coupled processors with exponential
service times: reduction to a Riemann-Hilbert problem.

s O Oe

] T
1 1 ]
r>1|-

1

1

r,>1

speed:{

speed:{

Further development of the theory: Cohen and Boxma (1983), Cohen (1992).
General service times, reduction to a Riemann or Riemann-Hilbert or

Wiener-Hopf problem or Fredholm singular integral equation.

7/26



technische universiteit eindhoven L&

EURANDOM

Outline of the talk
1. Introduction

2. The GI/GI/1 queue: The Wiener-Hopf boundary value technique

3. Two coupled processors: The Wiener-Hopf boundary value technique

4. Closing remarks: relation between the compensation approach and
complex function techniques
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2. The GI/GI/1 queue: The Wiener-Hopf boundary value technique
Norbert Wiener and Eberhard Hopf (1931):

radiation of stars = integral equation = boundary value problem for
analytic functions

i.i.d. interarrival times A, A,,...; LST a(s) = Ele*
i.i.d. service times By, By, . . .; LST B(s) = Ele~ B] Load p =

Vi

By

Wi=0
Ay As

waiting time W, 1: W,,,1 = max(0, W, + B, — A1), n=1,2,...




technische universiteit eindhoven L&

EURANDOM

Let |r| < 1and

O(r,s) =y r"Ele™""|W; =0}, Res>0,

n=1

@(T, S) — ZrnE[e—smin(o,WnJan—AnH)‘Wl _ O], Re s < 0.

n=1

Use the identity

—sWyi1 — e_S(Wn+Bn_An+1) —smin(O,Wn+Bn—An+1) _|_ 1

€ — €

Y

to get, for |r| < 1 and Re s = 0:

O(r, )1 — ra(—s)8(s)] = —— — rU(r, ).

1 —7r
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Wiener-Hopf boundary value problem:

Find ®(r, s) and V(r, s), such that,
(i) for |r| < 1 and Re s = 0:

T

O(r, s)[1 —ra(—s)8(s)] = — rU(r, s).

I

(ii) P(r, s) is analytic for Re s > 0, continuous for Re s > 0,
bounded (by ) for Re s > 0.

(iii) W(r, s) is analytic for Re s < 0, continuous for Re s <0,
bounded (by ) for Re s < 0.
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D(r, s)[L = ra(=s)(s)] = T— — r¥(r.s).
—r
Wiener-Hopf technique: rewrite
1

1 —ra(—s)B(s)

= ¢(r, 8)¢o(r)o-(r, ),

with ¢ (r, s) (¢_(, s)) analytic and non-zero in Re s > 0 (< 0).

Then o(r. 5 1
s = Ty Yrnsllréo(r)é-(r.s).

LHS: analytic for Re s > 0. RHS: analytic for Re s < 0.

1 —r

Let Z(r,s) .= LHS for Res > 0and Z(r,s) := RHS for Re s < 0.
Then Z(r, s) is analytic, and also bounded, in the whole s-plane.
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Liouville’s theorem: a function of s that is analytic and bounded in the
whole s-plane is a constant. So here: Z(r, s) = C(r).

Consequence:

O(r, s)
¢+(T7 S)

— U(r, s)|rgg(r)p_(r,s) = C(r), Res <0.

=C(r), Res>0;

1
1l —r

[

Using ®(r, 0) = ;- one obtains

r ¢+ (Tv S)

¥(r,) = Cr)ou(r, ) = 71 SL

Re s > 0.

Similarly W(r, s).
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The hard part: how to factorize
1
1 —ra(—s)5(s)
Spitzer’s identity (with S, ;== > (Br — Aj11)):
1
1 —ra(—s)3(s)

— ¢+<7°, 3)¢0(T)¢—(T7 S)‘

— exp[—ln(l — 7”04(_5)5(5»]

00
r

(Y2 " fal—)(s)}] = 30 e

o0
,’,.TL

exp[) %E[e—85n1<sn>0)nexp[z EIE:,[e—ssnf<sn<0)]]

n=1 n=1

exp[> %E[e‘ssnl(snzo)]].
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Special case: M/G/1; a(s) = -

A+s

A—8S—1T\
O(r, s) S)\_Tsﬁ()zlir—r\lf('r,s), 7| <1, Res=0.

LHS: one pole s = A > 0 and one zero s = §(r) in Re s > 0, for || < 1.
Hence

A—s—1A3(s) r A—s

d(r, s) —rW(r,s)]

s —o(r) :[1—7" s—0o(r)

LHS: analytic for Re s > 0; bounded. RHS: analytic for Re s < 0; bounded.
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A—s—rA3(s) | T U s A—s
s —o(r) _[1—7“ i, )]3—5(7“)'

LHS: analytic for Re s > 0; bounded. RHS: analytic for Re s < 0: bounded.

O(r, s)

Liouville’s theorem: both sides equal some function D(r).
Taking s = 0 shows that D(r) = —2~.

o(r)
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2. Two coupled processors: The Wiener-Hopf boundary value technique
Example of the boundary value method for workloads: Coupled proces-

sor model.
-0 Or

L] L]
speed'{1
r, > 1|

Two M/G/1 queues, arrival rates A;, Ay, general service requirements
By, B,. Coupled via speeds.
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V; steady-state workload at processor 7, 7 = 1, 2.

\Ij(Sl, 82) = E[G_SIVI_SZVQ], ‘Ijo = P(‘/l = O, ‘/2 = O),

Uy (sy) = Ele " 1(V; = 0)], Wy(sy) := Ele "I (V, = 0)].
Fundamental equation:
M1 —Ele™P1]) — 51 + \y(1 — Ele %)) — 55} W (s, 55) =

— [(r1 = 1)sy + (1 — 1) 9] Wy
+ [(r1 — 1)s; — $9|Wa(sy) + [(12 — 1)so — 51| W1(83).

Look for pairs of zeroes (1, $) with Re s, $5 > 0 of the kernel K (sy, $5) :=
M1 —=Ele™P]) — 51 + X1 — E[e™P]) — s
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K(s1,85) = M(1 — E[e™P]) — 51 + \y(1 — E[fe ™)) — s,

is a separable kernel (makes sense!):

K(s1,52) = 1(81) + 72(82) = 1(81) +w + 7a(s2) — w

Uniformization method:

Look for zeroes of 71 (s1) + w and of y5(s3) — w.

Under certain conditions one may show that v, (s;) +w = 0, for Rew > 0,
w # 0, has exactly one zero s; = d;(w) in Re s; > 0, with multiplicity one;
and 0, (w) is analytic in Re w > 0, continuous in Re w > 0.

Similarly for y5(s9) — w, but now with the w signs reversed: s, = dy(w).
Because of the analyticity of W(sy, $5) for these zero pairs (sy, S3), the right
hand side of (1) must be zero for those (s, $2).
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Hence, for r—i + % # 1 (there is a simpler approach if % + % = 1), for
Re w = 0:

()] (Wa(8, (1)) — Wg) — — L]

1
T9 7o ]. - =

= [0 - D)) - Lo () - ) - oL

Ty Tlrgl—l——

1 T2

(2)

Observe that W, (dy(w)) is analytic for Re w < 0, continuous for Re w < 0,
whereas W5(d;(w)) is analytic for Re w > 0, continuous for Re w > 0.
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A careful analysis of the factors in front of the W functions in (2) reveals a
way to factorize them as products of terms which are analytic in the left- and
right half planes. One finally ends up with a Wiener-Hopf boundary value
problem of the form: For Re w = 0 (the boundary),

A= (6 (1)) — W) — —& L

1
T9 IR 1 - 7“2

1 \\} 1
- =k (3)

AR(w)[T—l(‘Iﬁ@@)) — W) — gl — L — L

1 T2

where the left hand side is analytic for Re w > 0, continuous for Re w > 0,
and the right hand side is analytic for Re w < 0, continuous for Re w < 0.
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So both sides are each other’s analytic continuations.

Liouville’s theorem: both sides are constants.
This determines W;(d5(w)) for Re w < 0 and Wy(6;(w)) for Re w > 0, and
next Wy(sy) for Re s > 0 and Wy(s;) for Re s; > 0 (this may first require

analytic continuation).

Finally, W (s, s2) follows from (1).
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The case ry = 1, ry = 2: relation to a tandem queue with continuous outflow
from ()1 and ()5, and speeds 1 and 2.

Ay

—— O _L',—O

2O O

Same two-dimensional workload process!
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Generalization of the coupled processor model and of the tandem model:
Lévy input process instead of compound Poisson (joint work with Jevgenijs
Ivanovs)

(tandem queue: Miyazawa and Rolski (2009)).

The kernel

K(s1,8) = M(1 = E[e ®P1]) — 51 4+ \y(1 — E[e 272]) — s,

becomes:
K(S1, SQ) = '}/1(81) + 72(52)7

with ;(s;) the Laplace exponent of the ith Lévy process.

Again a separable kernel;

again look for zeros of y,(s9) — w = 0 (and of v, (s;) + w = 0).
This is the inverse of the Laplace exponent.

Relation to entrance time of the Lévy process:

E[e—wT(U)] — e—u%*l(w) _ G_WSQ(w),
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4. Closing remarks: relation between the compensation approach and
complex function techniques
Compensation approach (Ivo Adan) for a class of RW in first quadrant:

Pmn = Zzo Cz@;nﬁzn

This corresponds to

P(Z, y) — Zzo (1—aim§i(1—ﬁiy)’
hence P(z,0) = > ") = 0z’  P0,y) =205, 1_0—53/

These are meromorphic functions: the only singularities are isolated
poles aiﬁi cC .
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The pairs (q; ﬁ ) satisfy the balance equations in the interior.
The pairs (- g +) = (&, ;) are zero pairs of the kernel K (z, y).
Now consider the boundaries:

Each contribution of an x; pole is compensated by a contribution of a y;
pole, which is subsequently compensated by a contribution of an Z;; pole,
etc.

For the tandem queue, the process stops after one term,
since V' (Zg, 3o) = O:

P(z,0) =




