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Matrix-Analytic Methods

• In the 1970s and 1980s Marcel Neuts proposed a class
of techniques for analysing Markov chains with
block-structured transition matrices that have become
known as matrix-analytic methods.

• More recently, other classes of models have been
analysed using similar techniques.

• The interaction of mathematical analysis and physical
insight has played an important role in the development
of results in this area.

• There is an emphasis on computability of performance
measures and, in particular, on algorithmic development.
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Matrix-Analytic Methods

I shall discuss physical interpretations of Matrix-Analytic
algorithms in the context of

• block-structured continuous-time Markov chains -
specifically chains of GI/M/1-type, M/G/1-type and
Quasi-Birth-and-Death processes (QBDs), and

• stochastic fluid models.

In each case, my emphasis will be on understanding the
nature of sample paths that are taken into account at different
stages of the algorithm.
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Block-structured Markov chains

A discrete-time Markov chain of GI/M/1-type has a
two-dimensional state space. The first dimension is
countably-infinite and the second dimension is finite. When
the chain is in state (k, i), we say that it is in level k and phase
i. With a suitable ordering of the states, the transition matrix
can be written in the form

P =

















Ã1 A0 0 0 · · ·

Ã2 A1 A0 0 · · ·

Ã3 A2 A1 A0 · · ·

Ã4 A3 A2 A1 · · ·
...

...
...

...
. . .

















.
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Block-structured Markov chains

The terminology Markov chain of GI/M/1-type comes from the
fact that the embedded Markov chain generated by a GI/M/1
queue observed at arrival points has a transition matrix of the
form

PG =

















ã1 a0 0 0 · · ·

ã2 a1 a0 0 · · ·

ã3 a2 a1 a0 · · ·

ã4 a3 a2 a1 · · ·
...

...
...

...
. . .

















where ak is the probability that there are k services during an
inter-arrival interval and ãk =

∑

∞

ℓ=k aℓ.
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Block-structured Markov chains

A discrete-time Markov chain of M/G/1-type has a state space
of identical structure. Rather than being block skip-free to the
right, it is block skip-free to the left, so that its transition matrix
can be written in the form

P =

















Ã1 Ã2 Ã3 Ã4 · · ·

A0 A1 A2 A3 · · ·

0 A0 A1 A2 · · ·

0 0 A0 A1 · · ·
...

...
...

...
. . .

















.
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Block-structured Markov chains

As for Markov chains of GI/M/1-type, the terminology comes
from the fact that the embedded Markov chain generated by a
M/G/1 queue observed at departure points has a transition
matrix of the form

P =

















ã1 ã2 ã3 ã4 · · ·

a0 a1 a2 a3 · · ·

0 a0 a1 a2 · · ·

0 0 a0 a1 · · ·
...

...
...

...
. . .

















where ak is the probability that there are k arrivals during a
service time and ãk is the probability that the first service time
in a busy period will finish with k − 1 customers waiting in the
queue. In this simple case, ãk = ak−1.
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Block-structured Markov chains

From a modelling point of view, the second dimension has
many uses. For example, it can be used to denote

• the state of an independently-moving environment,
• the number of transmitting sources,
• the progress of one or more phase-type random

variables,
• the number of customers in an associated queue,
• the underlying state of a hidden Markov chain model,
• information about customer mix,
• etc.
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Block-structured Markov chains

Markov chains that are both of GI/M/1-type and M/G/1-type
are known as Quasi-Birth-and-Death Processes (QBDs). Their
transition matrices can be written in the form

P =

















Ã1 Ã0 0 0 · · ·

A2 A1 A0 0 · · ·

0 A2 A1 A0 · · ·

0 0 A2 A1 · · ·
...

...
...

...
. . .

















.
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A Quasi-Birth-and-Death Process
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Chains of GI/M/1-type

For a discrete-time chain of GI/M/1-type, let x be the solution
to

x

[

∞
∑

k=0

Ak

]

= x.

Then the chain is positive recurrent, null recurrent or transient
according as

xA0e
′ − x

[

∞
∑

k=2

(k − 1)Ak

]

e
′,

is less than, equal to or greater than zero.
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Chains of GI/M/1-type

Write the stationary distribution of a discrete-time positive
recurrent chain of GI/M/1-type as π = (π0,π1, . . .). Then
there exists a matrix R such that

πn = π0R
n.

The vector π0 satisfies

π0

[

∞
∑

k=0

RkÃk+1

]

= π0.

This is the well-known matrix-geometric form of the stationary
distribution.
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Chains of GI/M/1-type

The matrix R is the minimal nonnegative solution to the matrix
equation

∞
∑

k=0

RkAk = R.

The(i, j)th entry of the matrix R is the expected number of
visits to phase j of level 1 before first return to level 0
conditional on the process starting in phase i of level 0.

In general, R has spectral radius which is less than or equal to
one, and the chain is positive recurrent if and only if the
spectral radius of R is less than one.
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Chains of M/G/1-type

Chains of M/G/1-type do not have a matrix-geometric
stationary distribution. To derive the stationary distribution, we
use the fact that π = (π0,π1, . . . ,πn) is proportional to the
stationary distribution of the finite-state Markov chain with
transition matrix

P =

























Ã1 Ã2 Ã3 · · · Ãn

∑

∞

k=0 Ãk+n+1G
k

A0 A1 A2 A3 · · ·
...

0 A0 A1 A2 · · ·
...

0 0 A0 A1 · · ·
...

...
...

...
...

. . .
∑

∞

k=0Ak+2G
k

0 0 0 · · · A0

∑

∞

k=0Ak+1G
k

























.
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Chains of M/G/1-type

The (i, j)th entry of the matrix G is the probability that the
chain hits level k − 1 in finite time, and does so in phase j,
given that it starts in phase i of level k.

Clearly G is substochastic and it is stochastic if and only if the
chain is recurrent.

Elementary arguments show that the matrix G is the minimal
nonnegative solution to the matrix equation

∞
∑

k=0

AkG
k = G.
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Chains of M/G/1-type

G is a matrix of probabilities, rather than a matrix of expected
values (as R is). As such, it is a ‘nicer’ object to work with.
Furthermore, for a QBD, the matrix R can be written in terms
of the matrix G via the relation

R = A2 [I − A1 −A0G]−1

and, for a chain of GI/M/1-type, the matrix R can be written
in terms of the matrix G for the dual chain of M/G/1-type. For
this reason, we concentrate on algorithms for calculating G.

To keep the notation simple, I shall discuss the QBD special
case.
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Calculating the matrix G

In the QBD special case, G is the minimal nonnegative
solution to the matrix quadratic equation

A2 +A1G+ A0G
2 = G.

This equation has an analytic solution only in a few special
cases. In general, we have to resort to numerical solution.
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A simple procedure

For an irreducible QBD, A1 is invertible. So, an obvious first
approach to solving this equation is to transform it into a
fixed-point equation:

(I − A1)G = A2 +A0G
2

⇒ G = (I −A1)
−1

[

A2 +A0G
2
]

and use the iterative procedure

Gn+1 = (I − A1)
−1

[

A2 + A0G
2
n

]

with G0 = 0.
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A simple procedure

Neuts showed that, with this iteration, Gn does converge to G.

Furthermore, except when the QBD is null-recurrent, this
convergence is linear. That is, there exists a constant
γ ∈ (0, 1) such that

lim sup
n→∞

||Gn −G||1/n = γ.
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Physical interpretations

The type of question that we shall be interested in is

Can we give a physical interpretation to the nth iterate of
procedures such as the one described above?

For Neuts’ original iteration, this question has not had a
precise answer until recently. I shall say something about it at
the conclusion of the talk.

In general, to understand physical interpretations of the type
that I shall discuss here, we need to know about censoring.
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Censoring

Consider an irreducible, finite-state discrete-time Markov
chain whose states are partitioned into two sets E1 and E2.
This induces a partitioning of its transition matrix T so that

T =

[

T11 T12

T21 T22

]

.

The stationary distribution π = (π1, π2) that satisfies πT = π
also satisfies

π1 = π1
[

T11 + T12 (I − T22)
−1 T21

]

with
π2 = π1T12 (I − T22)

−1 .
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Censoring

Note that

(I − T22)
−1 =

∞
∑

k=0

T k
22

and so

π1
[

T11 + T12 (I − T22)
−1 T21

]

= π1

[

T11 + T12

[

∞
∑

k=0

T k
22

]

T21

]

and so we can interpret π1 as the stationary distribution of the
discrete-time Markov chain, censored so that it is observed
only when it is in E1.

Similar comments can be made in the case where E2 is
infinite as long as

∑

∞

k=0 T
k
22 converges elementwise, which is

the case when it leaves E2 with probability one.
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Censoring

In fact, we can say more:

It is not just the case that π1 is the stationary distribution of the
discrete-time Markov chain, censored so that it is observed
only when it is in E1, but

[

T11 + T12

[

∞
∑

k=0

T k
22

]

T21

]

is the transition matrix of this chain. This is true even if the
matrix is substochastic, in which case there is a positive
probability that it may leave E1 and not return.
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Censoring

We can also observe that the (i, j)th entry of

[I − T22]
−1 T21 =

[

∞
∑

k=0

T k
22

]

T21

is the probability that the Markov chain first enters E1 in state
j given that it started in state i of E2.
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Another Linear Algorithm

Above, I claimed that it was hard to give a physical
interpretation of Neuts’ original algorithm.

We can, however, easily give a physical interpretation for a
related algorithm due to Latouche.

Write the basic equation for G in a different way:

(I −A1 − A0G)G = A2

⇒ G = (I −A1 − A0G)−1A2,

and use the iteration

Gn+1 = (I − A1 − A0Gn)
−1A2,

with G0 = 0.



AUSTRALIAN RESEARCH COUNCIL
Centre of Excellence for Mathematics
and Statistics of Complex Systems

Another Linear Algorithm

The matrix G1 = (I − A1)
−1A2 =

[
∑

∞

k=0A1

]

A2, whose (i, j)th
entry is the probability that the chain hits level k − 1 in finite
time, and does so in phase j, given that it starts in phase i of
level k and given that it never reaches level k + 1.

We can use induction to show that the (i, j)th entry of Gn is
the probability that the chain hits level k − 1 in finite time, and
does so in phase j, given that it starts in phase i of level k and
given that it never reaches level k + n.

Thus, the successive iterates of this algorithm have the same
physical interpretation as that of the matrix G, but with a
linearly increasing taboo level.
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A Quadratic Algorithm

In (1993), Latouche and Ramaswami proposed the
logarithmic-reduction algorithm. This works by evaluating the
closed-form expression

G =

∞
∑

ℓ=0

[

ℓ−1
∏

i=0

U i

]

Dℓ.
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A Quadratic Algorithm

where the matrices U ℓ and Dℓ satisfy the recursion

U ℓ+1 =
[

I − U ℓDℓ −DℓU ℓ
]

−1 [
U ℓ

]2

and
Dℓ+1 =

[

I − U ℓDℓ −DℓU ℓ
]

−1 [
Dℓ

]2
,

with U0 = (I −A1)
−1A0 and D0 = (I −A1)

−1A2.
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A Quadratic Algorithm

If we let

Ĝn =

n
∑

ℓ=0

[

ℓ−1
∏

i=0

U i

]

Dℓ.

then, except when the QBD is null-recurrent, Ĝn converges to
G quadratically. That is, there exists a constant γ ∈ (0, 1) such
that

lim sup
n→∞

||Ĝn −G||1/2
n

= γ.
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A Quadratic Algorithm

This algorithm also has a neat physical interpretation in terms
of taboo probabilities.

The (i, j)th entry of the matrix Ĝn is the probability that the
QBD will first enter level k − 1 in phase j and does not visit
any level higher than k + 2n+1 − 2 in between, given that it
starts in phase i of level k.

Notice that the taboo level increases exponentially fast in
terms of the number of iterates, which is consistent with the
quadratic convergence of the algorithm.
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A Quadratic Algorithm

The matrices U0 = (I − A1)
−1A0 and D0 = (I − A1)

−1A2 are,
respectively the transition matrices of the discrete-time QBD
derived from the original discrete-time QBD by observing it at
the time points at which it changes level.

We can use induction to see that

U ℓ+1 =
[

I − U ℓDℓ −DℓU ℓ
]

−1 [
U ℓ

]2

and
Dℓ+1 =

[

I − U ℓDℓ −DℓU ℓ
]

−1 [
Dℓ

]2
,

are the transition matrices of the discrete-time QBD derived
from the original discrete-time QBD by observing it at the time
points at which it hits levels of the form k +m× 2ℓ+1.
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A Quadratic Algorithm

So the summand on the right hand side of

G =

∞
∑

ℓ=0

[

ℓ−1
∏

i=0

U i

]

Dℓ.

takes into account sample paths that hit levels
k + 1, k + 3, . . . , k + 2ℓ − 1, all with level k − 1 taboo, and then
hits level k − 1 with level k + 2ℓ+1 − 1 taboo.
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Further Work

The numerical analysis community has become interested in
these problems.

In 1995, Bini and Meini adapted the Cyclic Reduction Algorithm
to the calculation of G for processes of M/G/1 type. This
algorithm uses a similar censoring idea to the logarithmic
reduction algorithm, but organises the calculations slightly
differently.

A number of speed-up features, such as transforming the
matrices to move eigenvalues away from the unit circle and
using Fast Fourier Transforms are now included in
implementations. Benny Van Houdt maintains a web-site with
state-of-the-art Matlab code.
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Newton’s Method

In deriving Latouche’s linearly-convergent algorithm, we used
the fact that

A2 +A1G+A0G
2 = G

is equivalent to

G = (I − A1 −A0G)−1A2.

One thing that we can do is apply Newton’s method to the
solution of this equation. We would expect this to lead to a
quadratically-convergent algorithm
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Newton’s Method

We obtain the sequence

G
(n+1)
N −U (n)A0G

(n+1)
N U (n)A2 = U (n)A2−U (n)A0G

(n)
N U (n)A2 (†)

where
U (n) = (I − A1 −A0G

(n)
N )−1.

and
G

(0)
N = 0.

The difficult part of implementing this is solving the Stein

equation (†) above for G(n+1)
N .
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Newton’s Method

In 1994, it was shown by Latouche that, for any initial matrix

G
(0)
N with 0 ≤ G

(0)
N ≤ G, the sequence G

(n)
N converges

monotonically and quadratically to G.

By transforming (†) into a standard linear system by

concatenating the columns of G(n+1)
N and writing the

coefficient matrix as a direct sum involving U (n)A0 and U (n)A2,
Latouche provided an algorithm for evaluating the sequence

of matrices {G
(n)
N }.

Using this transformation, he showed that each iteration of the
algorithm has a complexity of order O(m6).
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Newton’s Method

Latouche tested Newton’s algorithm against the
linearly-convergent algorithm presented above and found that,
while Newton’s algorithm required up to an order of magnitude
fewer iterations, it could take up to an order of magnitude
longer in terms of computer time to calculate G to within a
given tolerance.

Since then, it would be fair to say that the conventional
wisdom in the matrix-analytic community is that the complexity
of each iteration of Newton’s method makes it uncompetitive
with other algorithms. This attitude was only reinforced by the
later discovery of the quadratically-convergent
logarithmic-reduction algorithm.
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Newton’s Method

However, in 1992, Gardiner, Laub, Amato and Moler had
provided a O(m3) algorithm for solving the Stein equation (†).
This motivated us to revisit the question of how useful
Newton’s method is in this context.

We were also interested in the question of whether we can
give a physical interpretation for Newton’s method, in a similar
vein to the physical interpretations discussed above for the
linear and logarithmic reduction algorithms.
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Numerical experience

• For a QBD with m = 20, Newton’s method took 13
iterations and .17 seconds of CPU time. the
logarithmic-reduction algorithm took 23 iterations but
only .13 seconds of CPU time.

• For an example deliberately constructed to “favour" the
logarithmic reduction algorithm with m = 6, Newton’s
method took 11 iterations and .11 seconds of CPU time.
the logarithmic-reduction algorithm took 11 iterations but
only .07 seconds of CPU time.

• For another example with m = 6, Newton’s method took
5 iterations and .05 seconds of CPU time. the
logarithmic-reduction algorithm took 5 iterations but only
.03 seconds of CPU time.
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Physical Interpretation

As with the methods discussed above, the iterates G
(n)
N in

Newton’s Method contain the probabilities of certain sets of
sample paths that start in level k and end in level k − 1. In the
physical description that we gave above for the linear and
quadratically-convergent algorithms, these sets were defined
in terms of taboo levels.

In order to understand Newton’s method, we need to look at
the sample paths in a different way.
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Physical Interpretation

Denote the set of sample paths taken into account in G
(n)
N by

Ψ(n).

The matrices U (n)A0 and U (n)A2 contain the probabilities of
sets of sample paths that start in level k and end in levels
k + 1 and k − 1 respectively. Denote these sets of sample

paths by Φ
(n)
0 and Φ

(n)
2 shifted to level k.
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Physical Interpretation

We have U (0) = (I −A1)
−1 and

G
(1)
N = U (0)A2 + U (0)A0G

(1)
N U (0)A2

=

∞
∑

ℓ=1

(

(I − A1)
−1A0

)ℓ−1 (
(I −A1)

−1A2

)ℓ

where the second equation follows by repeatedly inserting
the left hand side into the right hand side.
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Physical Interpretation

So Ψ(1) accounts for sample paths that start in level one,
increase to some level ℓ, possibly remaining in any level along
the way but never dropping back, and then decrease to level
k − 1, again possibly remaining in any level but never
increasing.

Thus, the sample paths in Ψ(1) are those that have a “single
peak", no matter how high.
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Sample Paths in Ψ
(1)

level k

level k-1
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Physical Interpretation

The sets Φ
(1)
0 and Φ

(1)
2 contain sample paths taken into

account by the matrices U (1)A0 and U (1)A2. We have

U (1) = (I − A1 −A0G
(1)
N )−1,

so Φ
(1)
0 and Φ

(1)
2 consist of sample paths that have any

number of transitions between states at level k or “single
peak" excursions from level k back to itself, followed
respectively by a single transition to level k + 1 and level k − 1.
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Sample Paths in Φ
(1)
0 and Φ

(1)
2
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Physical Interpretation

G
(2)
N −G

(1)
N

=

∞
∑

ℓ=1

(

U (1)A0

)ℓ−1 (

U (1)A2

)ℓ
−

∞
∑

ℓ=1

(

U (1)A0

)ℓ
G

(1)
N

(

U (1)A2

)ℓ
.

So, sample paths in Ψ(2) but not in Ψ(1) are made up of a
succession of sample paths that either stay at the same level
or have “single peak" excursions upward, each shifted one
level higher, up to some some level ℓ, whereupon a
succession of sample paths that either stay at the same level
or have “single peak" excursions upward, each shifted one
level lower occurs, until the process drops to level k − 1.

The subtraction of the second term on the right hand side of
equation ensures that paths are not counted multiple times.
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Sample Paths in Ψ
(2) but not in Ψ

(1)
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Physical Interpretation

For general n,

G
(n+1)
N −G

(n)
N

=

∞
∑

ℓ=1

(

U (n)A0

)ℓ−1 (

U (n)A2

)ℓ
−

∞
∑

ℓ=1

(

U (n)A0

)ℓ
G

(n)
N

(

U (n)A2

)ℓ
.

So, sample paths in Ψ(n+1) but not in Ψ(n) are made up of a

succession of sample paths in Φ
(n)
0 , each shifted one level

higher, up to some some level ℓ, whereupon a succession of

sample paths in Φ
(n)
2 occurs, each shifted one level lower, until

the process drops to level k − 1.

The subtraction of the second term on the right hand side of
equation ensures that paths are not counted multiple times.
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Sample Paths in Ψ
(n+1) but not in

Ψ
(n)
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Physical Interpretation

So, instead of progressively including more sample paths by
relaxing a taboo level, Newton’s method progressively
includes more and more complicated sample paths.

This happens in a ‘fractal’ way: basic units of paths at one
iteration are the sets of paths that were accounted for in the
previous iteration.

Very complicated paths are taken into account within a few
iterations, which intuitively supports the fact that Newton’s
Method converges quadratically.
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Stochastic Fluid Models

• Kosten (late 1970s).
• Anick, Mitra and Sondhi (1982).
• Rogers (1994).
• Asmussen (1995).
• Ramaswami (1999).
• da Silva Soares and Latouche (2002).
• Bean, O’Reilly and Taylor (2004).

In these models, the rate ci at which the level of a fluid
increases, or decreases, is governed by the state i of an
underlying continuous-time Markov chain. The parameters ci
can be positive, negative or zero.
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Our Fluid Model

Again is a two-dimensional process, {(X(t), ϕ(t)) : t ∈ R+},
where

• X(t) ∈ R+ is the level,
• ϕ(t) ∈ S = S1 ∪ S2 is the phase,

• the phase process {ϕ(t) : t ∈ R+} is an irreducible, finite,
continuous-time Markov chain with generator T , and

• the net rate of input ci to the infinite fluid buffer, when
ϕ(t) is in state i, is equal to 1 for i ∈ S1 and −1 for i ∈ S2.

The assumption of unit increase and decrease rates is without
loss of generality for the performance measures that I shall be
discussing here.
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Analysing Fluid Flow Models

We would like to know
• whether the process is stable,
• when it is stable, the stationary distribution,
• statistics of sojourn times in various sets,
• the probabilities of return to the initial level in each of the

phases, and
• the distribution of the hitting time on the initial level

conditional on the initial phase.
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Analysing Fluid Flow Models

Various methods have been used:

1. Spectral methods.

2. Wiener-Hopf factorisation.

3. Discretising the fluid variable and working with the
corresponding discrete-state environment, which is a
quasi-birth-and-death process.

4. Using the physics of the process directly within the fluid
flow environment.
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Analysing Fluid Flow Models

The return probabilities Ψij that the chain hits level 0 in finite
time, and does so in phase j ∈ S2, given that it starts in phase
i ∈ Si at level 0 are fundamental in the sense that many other
performance measures can be calculated from them. Store
them in a matrix Ψ.

Then, for example, Ramaswami showed that, for x > 0, the
stationary density of a positive recurrent stochastic fluid model
is

[π1(x), π2(x)] = α
[

eKx, eKxΨ
]

where
K = [T11 +ΨT21] .
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Return Times to the Initial Level

Let θ(x) = inf{t > 0 : X(t) = x} be the first passage time to
level x in the process (X(t), ϕ(t)).

For all i ∈ S1 and j ∈ S2, let

Ψij = P [θ(z) < ∞ , φ(θ(z)) = j | X(0) = z, φ(0) = i],

and let Ψ = [Ψij ].

In physical terms, Ψij is the probability that, starting from level
z in phase i ∈ S1, the process (X(t), ϕ(t)) first returns to level
z in finite time and does so in phase j ∈ S2, while avoiding
levels below z.
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Return Times to the Initial Level

The matrix of return probabilities Ψ is the matrix that we want
to solve for. Partitioning T according to S = S1 ∪ S2 so that

T =

[

T11 T12

T21 T22

]

,

it can be shown that Ψ is the minimal nonnegative solution of
the nonsymmetric algebraic Riccati equation,

T11Ψ+ΨT22 +ΨT21Ψ+ T12 = 0.
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Algorithms

By the simple action of writing the above equation in a
different form and then introducing an iteration, several
algorithms for Ψ can be obtained. For example, we can write

T11Ψ+ΨT22 = −T12 −ΨT21Ψ.

and then devise an iteration by setting Ψ0 = 0, and using

(1) T11Ψn+1 +Ψn+1T22 = −T12 −ΨnT21Ψn,

to calculate subsequent values of Ψn.
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Algorithms

In a similar manner we can write

(2) T11Ψn+1 +Ψn+1(T22 + T21Ψn) = −T12,

(3) (T11 +ΨnT21)Ψn+1 +Ψn+1T22 = −T12,

(4) (T11 +ΨnT21)Ψn+1 +Ψn+1(T22 + T21Ψn) = −T12 +ΨnT21Ψn,

all with Ψ0 = 0.



AUSTRALIAN RESEARCH COUNCIL
Centre of Excellence for Mathematics
and Statistics of Complex Systems

Algorithms

All of these are equations of type AX +XB = C. These can
be solved using the Bartels-Stewart algorithm (1972), the
Hessenberg-Schur method (Golub, Nash and van Loan
(1979)) or by using the function ‘lyap’ in the Matlab Control
System Toolbox.

The first and fourth of the above iterations were analysed by
Guo (2001).

Our focus has been on providing a physical interpretation of
these and other algorithms.
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Physical Interpretation

In order to gain insight into the physical interpretations of the
above algorithms for calculating Ψ, we need the following
result (Bwidehatia and Rosenthal (1997)).

Whenever the spectra of the matrices A and B are contained
in the open left half plane, the linear form

AX +XB = −C

is equivalent to the integral form

X =

∫

∞

0

eAyCeBydy.
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Physical Interpretation

So
T11Ψ+ΨT22 = −T12 −ΨT21Ψ

is equivalent to

Ψ =

∫

∞

0

eT11yT12e
T22ydy +

∫

∞

0

eT11yΨT21ΨeT22ydy

and we can interpret y in the first integral as the level of
transition from S1 to S2 in a ‘single peak’ path, and y in the
second integral as the minimum level at which a transition
from S2 to S1 occurs in any more complicated path.



AUSTRALIAN RESEARCH COUNCIL
Centre of Excellence for Mathematics
and Statistics of Complex Systems

A Fluid Sample Path
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Physical Interpretation

As we saw with the block-structured Markov chains, at each
iteration of the algorithms given above, the matrix Ψn records
the total probability mass of certain sample paths that return
to the initial level, but not others.

We can understand the physical interpretation of each
algorithm by examining the set of sample paths Ωn that are
included at iteration n.
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Physical Interpretation

The iteration

T11Ψn+1 +Ψn+1T22 = −T12 −ΨnT21Ψn,

is equivalent to

Ψn+1 =

∫

∞

0

eT11yT12e
T22ydy +

∫

∞

0

eT11yΨnT21Ψne
T22ydy.

We see that Ωn+1 contains
• the set of single peak paths, and
• the set of paths in which excursions above the minimum

level at which a transition from S2 to S1 occurs must be in
Ωn.
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A Path in Ω4
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Physical Interpretation

In the other algorithms, the ‘upwards’ and/or ‘downwards’
processes can be more complex. The most complicated
algorithm is Algorithm 4, which is actually an implementation
of Newton’s Method:

Ψn+1 =

∫

∞

0

e(T11+ΨnT21)y(T12 −ΨnT21Ψn)e
(T22+T21Ψn)ydy

in which both the ‘upward’ and ‘downward’ paths can involve
excursions from a level back to itself.

This iteration is quadratically convergent, unlike the other
algorithms, which are linearly convergent.
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A Path in Newton’s Ω2
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Physical Interpretation

We can also give physical interpretations of Asmussen’s
algorithm and of Ramswami’s transformation to a QBD model.

Once the latter transformation is made, any standard
algorithm for calculating the matrix G in a QBD can be used.
In particular the quadratically-convergent logarithmic
reduction (Latouche and Ramaswami (1993)) and cyclic
reduction (Bini and Meini (1996)) algorithms can be used.

In addition to Newton’s method, these ‘QBD Methods’ are the
only quadratically-convergent algorithms for stochastic fluid
models that we know of.
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Back to Neuts’ Algorithm

I mentioned earlier that it has been difficult to give a physical
interpretation for Neuts’ original procedure

Gn+1 = (−A1)
−1

[

A2 + A0G
2
n

]

with G0 = 0.

Let Ξn be the set of sample paths starting in level k and
finishing in level k − 1 that are taken into account Gn. Then it
was known that no sample path in Ξn reaches level k + n+ 1.
Also, sample paths in Ξn have at most 2n transitions at which
the level increases.

However these two restrictions still don’t fully define Ξn.
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Back to Neuts’ Algorithm

Bean, Kontoleon and Taylor (2008) were able to establish a
correspondence between the sample paths accounted for in
the Neuts algorithm and the tree topologies that are
generated by the nth iteration of the Depth Algorithm.

The Depth algorithm is an algorithm that we proposed for the
calculation of the extinction probabilities in a Markovian Binary
Tree, which is a special case of a continuous-time multitype
branching process.

It is not the best available algorithm for this purpose (see the
work of Sophie Hautphenne for this), but it is interesting to see
the connection.
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