

The mathematics of file dissemination

Philippe Nain (INRIA)

YEQT-VI, Eindhoven, Nov. 1-3, 2012

INSTITUT NATIONAL DE RECHERCHE EN INFORMATIQUE T EN AUTOMATIQUE

Introduction

General problem: time to transfer content (file) between one user (or peer) and another one

- Users (peers) may be stationary or mobile
- Two different paradigms:
 - 1. Client-server model
 - 2. Peer-to-peer model (full cooperation, limited cooperation)

Client-server model with stationary users

- N+1 users including 1 source (publisher)
- All users present at t=0
- T = file transmission time between source and user (deterministic)
- D_{cs}= dissemination time (time for all users to get file)

 $\mathbf{D}_{cs} = \mathbf{N} \mathbf{T}$

INSTITUT NATIONAL DE RECHERCHE EN INFORMATIQUE ET EN AUTOMATIQUE

P2P model with stationary users : full cooperation

- N+1 users (peers) including 1publisher, all present at t=0
- Upon receiving file peers become permanent publishers
- T = file transmission time (deterministic)
- D_{p2p} = dissemination time

$$D_{p2p} = T$$
 if N = 1
= 2T if N = 2,3
= ...
= KT if $2^{K-1} \le N < 2^{K}$

$$\mathbf{D}_{p2p} = \Box \log_2 N \mathsf{T}$$

INSTITUT NATIONAL DE RECHERCHE EN INFORMATIQUE ET EN AUTOMATIQUE ET EN AUTOMATIQUE

Numerical examples (T deterministic)

• N = 1000

$$D_{cs} = 1000 T$$
; $D_{p2p} = 9.965 T$

 $D_{cs} = 10000 \text{ T}$; $D_{p2p} = 13.287 \text{ T}$

T = **exponentially** distributed (mean $1/\tau$) E[**D**_{cs}] = N / τ

 $E[D_{p2p}] = ?$

INSTITUT NATIONAL DE RECHERCHE EN INFORMATIQUE ET EN AUTOMATIQUE

RINRIA

centre de recherche SOPHIA ANTIPOLIS - MÉDITERRANÉE

INSTITUT NATION DE RECHERCH EN INFORMATIQU ET EN AUTOMATIQU P2P model with stationary users : full cooperation, exponential transmission time (cont.)

X(t) = # peers with file at time t excluding initial publisher

 $\{X(t)\}_t$: Markov (birth) process

INSTITUT NATIONAL DE RECHERCHE EN INFORMATIQUE ET EN AUTOMATIQUE ET EN AUTOMATIQUE P2P model with stationary users : full cooperation, exponential transmission time (cont.)

X(t) = i if i peers have file at t excluding initial publisher

N even (K = N/2)

 $\gamma = 0.57721...$ Euler's constant

INSTITUT NATIONAL

P2P model with stationary users : full cooperation, exponential transmission time (cont.)

N odd (K = (N+1)/2)

$$E[D_{p2p}] = \frac{2}{\tau} \sum_{i=1}^{K-1} \frac{1}{i} + \frac{1}{\tau K}$$
$$= \frac{2}{\tau} \left(\ln(\frac{N+1}{2}) - \frac{1}{N+1} + \gamma + O(\frac{1}{N+1}) \right)$$

INSTITUT NATIONAL

EN INFORMATIQUE

DE RECHERCHE

RINRIA

Numerical examples $(T \sim exp(\tau))$

- $\mathsf{E}[\mathsf{T}] = \tau^{\text{-}1}$
- N = 1000
- $E[D_{cs}] = 1000\tau^{-1}$
- $E[D_{p2p}] = 13.586\tau^{-1}$

 $E[D_{cs}]$ linear in N

E[D_{p2p}] ~ logarithmic in N

- N = 10000
- $E[D_{cs}] = 10000\tau^{-1}$
- $E[D_{p2p}] = 18.189\tau^{-1}$

INSTITUT NATIONAL DE RECHERCHE EN INFORMATIQUE ET EN AUTOMATIQUE

Conclusion

Huge benefit in sharing content!

INSTITUT NATIONAL DE RECHERCHE EN INFORMATIQUE ET EN AUTOMATIQUE

Note

Analytic untractability quickly around the corner ...

Examples (limited cooperation):

- after exponential duration peer with file leaves network
- after k uploads a peer leaves

INSTITUT NATIONAL DE RECHERCHE EN INFORMATIQUE ET EN AUTOMATIQUE

- N+1 mobile peers including 1 publisher.
- 1 file in system at t=0
- Transmission occurs each time peer with file meets peer without file (instantaneous transmissions)
- Successive contact times between any pair of peers form **Poisson** process (rate λ) [Groenevelt, P.N., Koole, PEVA 2005]

 $\{\mathbf{X(t)}\}_t$ Markov

rate from state i to state i+1 : $i(N+1-i)\lambda$

INRIA

P2P: mobile and cooperative users

(Epidemic-like dissemination) (cont.)

 D_e = time before full dissemination

$$(1) \xrightarrow{\ \ } (2) \xrightarrow{\ \ } (3) \xrightarrow{\ \ } (N-1) \xrightarrow{\ \ } (N-1) \xrightarrow{\ \ } (N) \xrightarrow{\ \ } (N+1) \xrightarrow{\ \ } (N-1) \xrightarrow{\ } (N-1) \xrightarrow{\ \ } (N-1) \xrightarrow{\ \ } (N-1) \xrightarrow{\ } (N-1) \xrightarrow{$$

$$E[D_e] = \frac{1}{\lambda} \sum_{i=1}^{N} \frac{1}{i(N+1-i)} = \frac{2}{\lambda(N+1)} \sum_{i=1}^{N} \frac{1}{i}$$
$$= \frac{2}{\lambda(N+1)} (\ln(N) + \gamma + O(\frac{1}{N}))$$

Transient behavior of X(t) for N large

 $dE[X(t)]/dt = \lambda E[X(t)(N+1-X(t))] \text{ (Kolmorogov eq.)}$

$E[\mathbf{X(t)}(N+1-\mathbf{X(t)})] \le E[\mathbf{X(t)}] (N+1-E[\mathbf{X(t)}])$ so that $dE[\mathbf{X(t)}]/dt \le \lambda E[\mathbf{X(t)}] (N+1-E[\mathbf{X(t)}])$

Subsequently,
$$E[X(t)] \le z(t) = \frac{N + 1}{1 + Ne^{-\lambda(N+1)t}}$$

with z solution of $dz/dt = \lambda z(N+1-z), z(0)=1$

INSTITUT NATIONAL

RINRIA

P2P: mobile and cooperative users

(Epidemic-like dissemination) (cont.)

Assume $\lambda = \beta/(N+1)$

```
Take y(t) = z(t)/(N+1)
```

 $dz/dt = \lambda z(N+1-z)$ yields $dy/dt = \beta y(1-y)$ so that $y(t) = y(0)/(y(0)+(1-y(0))e^{-\beta t})$ [Kurtz, 70] If $\lim_{N\to\infty} (N+1)X(0) = y(0) > 0$ then $\lim_{N\uparrow\infty} P(\sup_{s\leq t} |\frac{X(s)}{N+1} - y(s)| > \varepsilon) = 0 \quad \forall \varepsilon > 0$

INSTITUT NATIONA DE RECHERCHI EN INFORMATIQUI ET EN AUTOMATIQUI

P2P: mobile and cooperative users

(Epidemic-like dissemination) (cont.)

In summary:

 $E[X(t)] \sim (N+1)/(1+Ne^{-\beta t})$

as number peers (N) large and $\lambda = \beta/(N+1)$

« Proof » : take y(0)=1/(N+1) in [Kurtz]

INSTITUT NATIONAL DE RECHERCHE EN INFORMATIQUE ET EN AUTOMATIQUE ET EN AUTOMATIQUE ET EN AUTOMATIQUE ET EN AUTOMATIQUE

Peer's point of view: Expected time for peer to get file?

Let $E[T_d]$ be this time

INSTITUT NATIONAL DE RECHERCHE EN INFORMATIQUE ET EN AUTOMATIQUE

$$\mathsf{E}[\mathsf{T}_{\mathsf{d}}] = \frac{1}{\lambda N} \sum_{i=1}^{N} \frac{1}{i} = \frac{1}{\lambda N} (\ln(N) + \gamma + O(\frac{1}{N}))$$

Mean-field approach:

 $d\mathsf{P}_{\mathsf{N}}(\mathbf{T}_{\mathsf{d}} > t)/dt = \lambda (1 - \mathsf{P}_{\mathsf{N}}(\mathbf{T}_{\mathsf{d}} > t)) \mathsf{E}_{\mathsf{N}}[\mathbf{X}(t)] \qquad (\text{Kolmogorov})$ $= \beta (1 - \mathsf{P}_{\mathsf{N}}(\mathbf{T}_{\mathsf{d}} > t)) \mathsf{E}_{\mathsf{N}}[\mathbf{X}(t)/(\mathsf{N}+1)]$

N→∞ : $E_N[X(t)/(N+1)] \rightarrow y(t)$ and $P_N(T_d > t) \rightarrow P(t)$ given by $dP/dt = \beta(1-P)y$

with $y(t) = 1/(1+Ne^{-\beta t})$ (mean-field for $\{X(t)/(N+1)\}$)

$$P(t) = 1 - (N+1)/(N+e^{\beta t})$$

RINRIA

Centre de recherche SOPHIA ANTIPOLIS - MÉDITERRANÉE

21

$$P(t) = 1 - (N+1)/(N+e^{\beta t})$$

 $\lambda = \beta/(N+1)$

$$E[T_d] \sim \int_{0}^{\infty} (1-P(t))dt = \frac{N+1}{\beta N} ln(N+1) = \frac{1}{\lambda N} ln(N+1)$$

as N large, matching exact result

Expected total file dissemination

$$\mathsf{E}[\mathsf{D}_{\mathsf{e}}] = \frac{2}{\lambda(N+1)} \sum_{i=1}^{N} \frac{1}{i}$$

• Expected peer file acquisition $E[T_d] = \frac{1}{\lambda N} \sum_{i=1}^{N} \frac{1}{i}$

 $E[D_e]/E[T_d] = 2N/(N+1)$

INSTITUT NATIONAL DE RECHERCHI EN INFORMATIQUE ET EN AUTOMATIQUE

- After exponential time (rate µ) peer with file leaves network
- X(t) = # peers with files at time t

A - Mean-field approach

B - Branching process

with E. Altman, A. Shwartz, Y. Xu (IEEE/ACM TON 2012)

INSTITUT NATIONAL DE RECHERCHE EN INFORMATIQUE ET EN AUTOMATIQUE

A - Mean-field approach

B - Branching process

INSTITUT NATIONAL DE RECHERCHE EN INFORMATIQUE ET EN AUTOMATIQUE

27

Mean-field approach (N peers including 1 initial publisher)

• $\lambda = N^{-1}\beta$ (X(t):=X_N(t), Y(t):=Y_N(t))

$$\begin{split} & [\mathsf{Kurtz}] \text{ If } \lim_{N} N^{-1} X_{N}(0) = x_{0} > 0, \ \lim_{N} N^{-1} Y_{N}(0) = y_{0} > 0, \\ & \quad x(0) + y(0) = 1 \text{ then} \\ & \quad (N^{-1} X_{N}(t), N^{-1} Y_{N}(t)) \rightarrow_{\text{prob.}} (x(t), y(t)) \quad (N \rightarrow \infty) \\ & \quad \text{with} \\ & \quad dx/dt = x(\beta y - \mu), \quad x(0) = x_{0} \\ & \quad dy/dt = -\beta yx, \quad y(0) = y_{0} \end{split}$$

Result holds for $t = \infty$ for that model (does not hold in general)

RINRIA Centre de recherche BOPHIA ANTIP

IPOLIS - MÉDITERRANÉE

Interpretation: x (resp.) fraction peers with (without) file as N large

 $dx/dt = x(\beta y - \mu)$

 $dy/dt = -\beta yx$

Kermack-McKendrick eqns if one adds

 $dz/dt = \mu x$

RINRIA

z = fraction peers which have left (recovered) by time t

Note here x(t)+y(t)+z(t)=1 for all t

 $\theta = \mu/\beta$

$$dx/dt = \beta x(y-\theta)$$
$$dy/dt = -\beta yx$$

 $dx/dt = dx/dy \cdot dy/dt = - dx/dy \cdot \beta yx = \beta x(y-\theta)$ Hence $dx/dy = -1 + \theta/y$ so that $x(y) = -y + \theta \ln(y) + f(\theta)$ with $f(\theta) := x_0 + y_0 - \theta \ln(y_0) = 1 - \theta \ln(y_0)$

> INSTITUT NATIONAL DE RECHERCHI EN INFORMATIQUE ET EN AUTOMATIQUE

$$dx/dt = \beta x(y-\theta)$$
(1)
$$dy/dt = -\beta yx$$

 $x(y) = -y + \theta \ln(y) + f(\theta)$

(recall $f(\theta) = 1 - \theta \ln(y_0)$)

x maximum when $y = \theta$ from (1)

Therefore $x_{max} = \theta (ln(\theta) - 1) + f(\theta)$

INSTITUT NATIONAL

P2P: mobile and partially cooperative users

(Epidemic-like dissemination) (cont.)

$$x(y) = -y + 1 + \theta \ln(y) - \theta \ln(y_0)$$
 (2)

Ratio of peers without file (set x=0 in (2))

$$0 = -y + 1 + \theta \ln(y) - \theta \ln(y_0)$$

Power series expansion at y_0 :

 $0 \sim y (\theta/y_0-1) + 1 - \theta - (\theta/2) (y/y_0 - 1)^2 + o((y-y_0)^2)$

 $\theta((y/y_0-1)^2)$ being bounded \rightarrow Phase transition at $\theta = y_0$

RINRIA

centre de recherche SOPHIA ANTIPOLIS - MÉDITERRANÉE

31

P2P: mobile and partially cooperative users ³²

Ratio of peers that never get file $(=x(\infty))$

 $\log_{10}(y_0/\theta)$

 $\theta = \mu/\beta$

A - Mean-field approach

B - Branching process

INSTITUT NATIONAL DE RECHERCHE EN INFORMATIQUE ET EN AUTOMATIQUE

Branching process approximation

Applies when large fraction of population does not have file at t=0 (Y(0) big)

 \rightarrow replace Y(t) by Y(0) := y₀ for all t

 $\begin{array}{ll} (X_b(t)) \ \rightarrow \ X_b(t) + 1 & \mbox{rate } \lambda X(t) y_0 \\ \\ \ \rightarrow \ X_b(t) - 1 & \mbox{rate } \mu X(t) \end{array}$

 ${X_b(t)}_t = Markov branching process$

Branching process approximation (cont.)

 $q_k = file extinction probability given X_b(0)=k$

Can show that $q_k = min(1, 1/\rho^k)$, $\rho := \lambda y_0/\mu$

 \rightarrow Phase transition at $\rho = 1$

- Extinction certain if $\rho \le 1$ Expected time before extinction $(\rho < 1) = \frac{1}{\mu} \int_{0}^{1} \frac{1 - x^{k}}{\rho x^{2} - (1 + \rho)x + 1} dx$
- = -(1/ $\rho\mu$) ln(1- ρ) if X_b(0)=1
- $X(t) \leq_{st} X_b(t)$ for all t if $X(0) \leq X_b(0)$

Can be used to investigate impact of measures against illegal file sharing

Measures would aim at decreasing contact rate (parameter λ) and cooperation degree (μ)

INSTITUT NATIONA DE RECHERCH EN INFORMATIQUI ET EN AUTOMATIQUI

