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Introduction: The risk reserve process of an insurance company, starting
with initial capital u and premium rate 1:

Rt(u) = u +
∑
i :σi<t

(Ai − Bi ) + (t − σN(t)).
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Assumptions:

I the inter-claim times (Ai )i are i.i.d. (σi is a renewal process)
the claim sizes (Bi )i are also i.i.d.
but within a pair, (Ai ,Bi ) are allowed to depend
hence a generalized Sparre-Andersen model

I main quantity of interest: the time to ruin for initial capital u:

τ(u) = inf {t > 0 : Rt(u) < 0}

τ(u) related to the maximum aggregate loss up to the n-th arrival
epoch:

Ln = max
1≤k≤n

{
0,

k∑
i=1

(Bi − Ai )

}
,

via {τ(u) ≤ σn} = {Ln > u}.
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I Under the stability condition E(Bi − Ai ) < 0, Ln
D→ L as n→∞,

and we can write: L = sup
k≥0

{
k∑

i=1

(Bi − Ai )

}
. The relation with time

to ruin becomes:

τ(u) <∞⇔ L > u.

Thus we can focus on the distribution of L. This is also the steady
state workload at arrival epochs in a GI/G/1 queue with reverted
dependence between the service requirement of a customer and the
time elapsed since the arrival of the previous customer.
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Modeling the dependence structure between A and B:

I fairly general class called bivariate matrix exponential (BME)
Bladt&Nielsen 2010
(A,B) are BME if if its joint Laplace-Stieltjes transform is a rational
function:

Ee−s1A−s2B =
F (s1, s2)

G (s1, s2)
, where F (s1, s2) and G (s1, s2)

are polynomial functions.

I The dependence structure is not obvious from this definition.
Moreover, it may be the case that A and B are independent.
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Some examples of explicit dependence structures:

I Bivariate phase-type (Kulkarni 1989) Consider an absorbing CTMC
X (t) with finite state space S, together with a reward matrix

(r
(1)
x , r

(2)
x )x , r

(j)
x ≥ 0 for x ∈ S\{∆} (∆-absorbing state).

Assume that as long as we stay in state x , we ’earn’ at rate vector

rx = (r
(1)
x , r

(2)
x ). Then the total accumulated ’rewards’ until

absorbtion are

A =

∫ ζ

0

r
(1)
X (t)dt, B =

∫ ζ

0

r
(2)
X (t)dt

with ζ the time to absorbtion.
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I These can be rewritten as:

A =
N∑
i=1

r
(1)
Xi

Hi , B =
N∑
i=1

r
(2)
Xi

Hi ,

where N is the number of jumps until absorbtion of the underlying
DTMC Xn and Hi is the holding time in state Xi .
The dependence structure between Z1 and Z2 is thus given by the
underlying CTMC X (t).

I Cheriyan and Ramabhadran bivariate gamma distribution can be
realized as above. For nonnegative integers m0,m1,m2, consider the
state space S = {1, ...,m0 + m1 + m2,∆}, with the set of transient
states partitioned as S0 ∪ S1 ∪ S2 with S0 = {1, ...,m0},
S1 = {m0 + 1, ...,m1}, S2 = {m1 + 1, ...,m2}. The transition rule is
pi,i+1 = 1 and the jump rates are βk while in state x ∈ Sk . The

reward rates in state x are r
(1)
x = r

(2)
x = 1 for x ∈ S0;

r
(1)
x = 1, r

(2)
x = 0, for x ∈ S1, and r

(1)
x = 0, r

(2)
x = 1 for x ∈ S2.
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I Then the bivariate total accumulated reward has distribution of the
form

(A,B) , (Z0 + Z1,Z0 + Z2)

where Zk are mutually independent ∼Erlang(mk , βk), k ∈ {0, 1, 2}.
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Analysis of the maximum aggregate loss:

I Denote by Yi = Bi − Ai the claim surplus. Since Yi are i.i.d., the
random vector (Y1, ...,Yn) has the same distribution as (Yn, ...,Y1).
Hence we have the identity in distribution

Ln , max

{
0,Yn,Yn + Yn−1, ...,

n∑
i=1

Yi

}
.

I Ln satisfies the recursion: Ln , max {0,Yn + Ln−1}; and in the limit,
L satisfies the identity in distribution

L , max {L + Y , 0}

with Y having the same distribution as B − A.
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I rewriting this identity in terms of Laplace-Stieltjes transforms gives:

P (L + Y ≤ 0)− Ee−s(L+Y )1{L+Y<0} = Ee−sL
[
1− Φ(A,B)(−s, s)

]
with Φ(A,B)(−s, s) the Laplace-Stieltjes transform of Y . This is of

the form f (s)
g(s) , with f and g polynomial functions.

I How to find the transform of L?

I The above is of the form:

Φ−(s) = Ee−sL
g(s)− f (s)

g(s)

Φ−(s) is analytic for Re s < 0. Ee−sL is analytic for Re s > 0.
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I The idea is to separate the above identity by taking the zeros of
g(s) from Re s ≥ 0 on the other side:

g+(s)Φ−(s) = Ee−sL
g(s)− f (s)

g−(s)

Now both sides are analytic in their respective regions, and they
coincide on Re s = 0. This implies they are analytic continuations

of each other. In particular, Ee−sL g(s)−f (s)
g−(s) is everywhere analytic.

Also remark that Ee−sL g(s)−f (s)
g−(s) is O(sm+), with

m+ = deg [g/(g−)]. We use a version of Liouville’s theorem:

Theorem (Liouville)
If P(s) is analytic for all finite values of s, and as |s| → ∞

P(s) = O(sm+),

then P(s) is a polynomial of order ≤ m+.
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I On the other hand, the identity

Ee−sL =
g−(s)

g(s)− f (s)
P(s)

implies that P(s) must have all the zeros of g(s)− f (s) from
Re s ≥ 0.

I An application of Rouché’s theorem shows that g(s)− f (s) has
exactly m+ zeros in Re s ≥ 0, which means P(s) is determined up
to a constant:

c
∏
s+k

(s − s+k ),

s+k are the zeros of g(s)− f (s) from Re s ≥ 0.
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I Setting s = 0 determines the constant and

Ee−sL =

∏
s̃−j

(1− s
s̃−j

)∏
s−k

(1− s
s−k

)
.

From this follows the distribution of L by inversion.
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