Dependencies in risk models and their dual queueing models

Serban Badila, Onno Boxma, Jacques Resing

Eindhoven University of Technology

2.11.2012

Serban Badila, Onno Boxma, Jacques Resing Dependencies in risk models and their dual queueing models

Outline:

Introduction Model description Analysis of the maximum aggregate loss

э

Introduction: The risk reserve process of an insurance company, starting with initial capital u and premium rate 1:

$$R_t(u) = u + \sum_{i:\sigma_i < t} (A_i - B_i) + (t - \sigma_{N(t)}).$$

Assumptions:

the inter-claim times (A_i)_i are i.i.d. (σ_i is a renewal process) the claim sizes (B_i)_i are also i.i.d.
 but within a pair, (A_i, B_i) are allowed to depend hence a generalized Sparre-Andersen model

Assumptions:

- the inter-claim times (A_i)_i are i.i.d. (σ_i is a renewal process) the claim sizes (B_i)_i are also i.i.d.
 but within a pair, (A_i, B_i) are allowed to depend hence a generalized Sparre-Andersen model
- ▶ main quantity of interest: the time to ruin for initial capital *u*:

$$\tau(u) = \inf \{t > 0 : R_t(u) < 0\}$$

 $\tau(u)$ related to the maximum aggregate loss up to the *n*-th arrival epoch:

$$L_{n} = \max_{1 \le k \le n} \left\{ 0, \sum_{i=1}^{k} (B_{i} - A_{i}) \right\},\$$

$$L_{n} = \{L_{n} > \mu\}$$

via $\{\tau(u) \leq \sigma_n\} = \{L_n > u\}.$

• Under the stability condition $\mathbb{E}(B_i - A_i) < 0$, $L_n \xrightarrow{\mathcal{D}} L$ as $n \to \infty$, and we can write: $L = \sup_{k \ge 0} \left\{ \sum_{i=1}^k (B_i - A_i) \right\}$. The relation with time to ruin becomes:

$$\tau(u) < \infty \Leftrightarrow L > u.$$

Thus we can focus on the distribution of L. This is also the steady state workload at arrival epochs in a GI/G/1 queue with *reverted dependence* between the service requirement of a customer and the time elapsed since the arrival of the previous customer.

Modeling the dependence structure between A and B:

 fairly general class called bivariate matrix exponential (BME) Bladt&Nielsen 2010

(A,B) are BME if its joint Laplace-Stieltjes transform is a rational function:

$$\mathbb{E}e^{-s_1A-s_2B}=rac{F(s_1,s_2)}{G(s_1,s_2)}, ext{ where } F(s_1,s_2) ext{ and } G(s_1,s_2)$$

are polynomial functions.

Modeling the dependence structure between A and B:

 fairly general class called bivariate matrix exponential (BME) Bladt&Nielsen 2010

(A,B) are BME if if its joint Laplace-Stieltjes transform is a rational function:

$$\mathbb{E}e^{-s_1A-s_2B}=rac{F(s_1,s_2)}{G(s_1,s_2)}, ext{ where } F(s_1,s_2) ext{ and } G(s_1,s_2)$$

are polynomial functions.

► The dependence structure is not obvious from this definition. Moreover, it may be the case that *A* and *B* are independent.

Some examples of explicit dependence structures:

► Bivariate phase-type (Kulkarni 1989) Consider an absorbing CTMC X(t) with finite state space S, together with a reward matrix $(r_x^{(1)}, r_x^{(2)})_x$, $r_x^{(j)} \ge 0$ for $x \in S \setminus \{\Delta\}$ (Δ -absorbing state). Assume that as long as we stay in state x, we 'earn' at rate vector $\mathbf{r}_x = (r_x^{(1)}, r_x^{(2)})$. Then the total accumulated 'rewards' until absorbtion are

$$A = \int_0^{\zeta} r_{X(t)}^{(1)} dt, \quad B = \int_0^{\zeta} r_{X(t)}^{(2)} dt$$

with ζ the time to absorbtion.

These can be rewritten as:

$$A = \sum_{i=1}^{N} r_{X_i}^{(1)} H_i, \quad B = \sum_{i=1}^{N} r_{X_i}^{(2)} H_i,$$

where *N* is the number of jumps until absorbtion of the underlying DTMC X_n and H_i is the holding time in state X_i . The dependence structure between Z_1 and Z_2 is thus given by the underlying CTMC X(t). These can be rewritten as:

$$A = \sum_{i=1}^{N} r_{X_i}^{(1)} H_i, \quad B = \sum_{i=1}^{N} r_{X_i}^{(2)} H_i,$$

where N is the number of jumps until absorbtion of the underlying DTMC X_n and H_i is the holding time in state X_i . The dependence structure between Z_1 and Z_2 is thus given by the underlying CTMC X(t).

• Cheriyan and Ramabhadran bivariate gamma distribution can be realized as above. For nonnegative integers m_0, m_1, m_2 , consider the state space $S = \{1, ..., m_0 + m_1 + m_2, \Delta\}$, with the set of transient states partitioned as $S_0 \cup S_1 \cup S_2$ with $S_0 = \{1, ..., m_0\}$, $S_1 = \{m_0 + 1, ..., m_1\}$, $S_2 = \{m_1 + 1, ..., m_2\}$. The transition rule is $p_{i,i+1} = 1$ and the jump rates are β_k while in state $x \in S_k$. The reward rates in state x are $r_x^{(1)} = r_x^{(2)} = 1$ for $x \in S_0$; $r_x^{(1)} = 1, r_x^{(2)} = 0$, for $x \in S_1$, and $r_x^{(1)} = 0, r_x^{(2)} = 1$ for $x \in S_2$.

 Then the bivariate total accumulated reward has distribution of the form

$$(A,B) \triangleq (Z_0 + Z_1, Z_0 + Z_2)$$

where Z_k are mutually independent $\sim \text{Erlang}(m_k, \beta_k)$, $k \in \{0, 1, 2\}$.

э

Analysis of the maximum aggregate loss:

Denote by Y_i = B_i - A_i the claim surplus. Since Y_i are i.i.d., the random vector (Y₁, ..., Y_n) has the same distribution as (Y_n, ..., Y₁). Hence we have the identity in distribution

$$L_n \triangleq \max\left\{0, Y_n, Y_n + Y_{n-1}, ..., \sum_{i=1}^n Y_i\right\}.$$

Analysis of the maximum aggregate loss:

▶ Denote by Y_i = B_i - A_i the claim surplus. Since Y_i are i.i.d., the random vector (Y₁, ..., Y_n) has the same distribution as (Y_n, ..., Y₁). Hence we have the identity in distribution

$$L_n \triangleq \max\left\{0, Y_n, Y_n + Y_{n-1}, ..., \sum_{i=1}^n Y_i\right\}.$$

L_n satisfies the recursion: L_n ≜ max {0, Y_n + L_{n-1}}; and in the limit, L satisfies the identity in distribution

$$L \triangleq \max\left\{L + Y, 0\right\}$$

with Y having the same distribution as B - A.

rewriting this identity in terms of Laplace-Stieltjes transforms gives:

$$\mathbb{P}\left(L+Y\leq 0\right)-\mathbb{E}e^{-s\left(L+Y\right)}\mathbf{1}_{\left\{L+Y<0\right\}}=\mathbb{E}e^{-sL}\left[1-\Phi_{\left(A,B\right)}\left(-s,s\right)\right]$$

with $\Phi_{(A,B)}(-s,s)$ the Laplace-Stieltjes transform of Y. This is of the form $\frac{f(s)}{g(s)}$, with f and g polynomial functions.

rewriting this identity in terms of Laplace-Stieltjes transforms gives:

$$\mathbb{P}\left(L+Y\leq 0\right)-\mathbb{E}e^{-s\left(L+Y\right)}\mathbf{1}_{\left\{L+Y<0\right\}}=\mathbb{E}e^{-sL}\left[1-\Phi_{\left(A,B\right)}\left(-s,s\right)\right]$$

with $\Phi_{(A,B)}(-s,s)$ the Laplace-Stieltjes transform of Y. This is of the form $\frac{f(s)}{g(s)}$, with f and g polynomial functions.

▶ How to find the transform of *L*?

rewriting this identity in terms of Laplace-Stieltjes transforms gives:

$$\mathbb{P}\left(L+Y\leq 0\right)-\mathbb{E}e^{-s\left(L+Y\right)}\mathbf{1}_{\left\{L+Y<0\right\}}=\mathbb{E}e^{-sL}\left[1-\Phi_{\left(A,B\right)}\left(-s,s\right)\right]$$

with $\Phi_{(A,B)}(-s,s)$ the Laplace-Stieltjes transform of Y. This is of the form $\frac{f(s)}{g(s)}$, with f and g polynomial functions.

- ▶ How to find the transform of *L*?
- ▶ The above is of the form:

$$\Phi_{-}(s) = \mathbb{E}e^{-sL}\frac{g(s) - f(s)}{g(s)}$$

 $\Phi_{-}(s)$ is analytic for $\mathcal{R}e \ s < 0$. $\mathbb{E}e^{-sL}$ is analytic for $\mathcal{R}e \ s > 0$.

The idea is to separate the above identity by taking the zeros of g(s) from *Re s* ≥ 0 on the other side:

$$g_+(s)\Phi_-(s) = \mathbb{E}e^{-sL}\frac{g(s)-f(s)}{g_-(s)}$$

Now both sides are analytic in their respective regions, and they coincide on $\mathcal{R}e\ s = 0$. This implies they are analytic continuations of each other. In particular, $\mathbb{E}e^{-sL}\frac{g(s)-f(s)}{g_{-}(s)}$ is *everywhere* analytic. Also remark that $\mathbb{E}e^{-sL}\frac{g(s)-f(s)}{g_{-}(s)}$ is $O(s^{m_{+}})$, with $m_{+} = deg[g/(g_{-})]$. We use a version of Liouville's theorem: Theorem (Liouville)

If P(s) is analytic for all finite values of s, and as $|s|
ightarrow \infty$

$$P(s)=O(s^{m_+}),$$

then P(s) is a polynomial of order $\leq m_+$.

On the other hand, the identity

$$\mathbb{E}e^{-sL} = \frac{g_{-}(s)}{g(s) - f(s)}P(s)$$

implies that P(s) must have all the zeros of g(s) - f(s) from $\mathcal{R}e \ s \ge 0$.

On the other hand, the identity

$$\mathbb{E}e^{-sL} = \frac{g_{-}(s)}{g(s) - f(s)}P(s)$$

implies that P(s) must have all the zeros of g(s) - f(s) from $\mathcal{R}e \ s \ge 0$.

An application of Rouché's theorem shows that g(s) − f(s) has exactly m₊ zeros in Re s ≥ 0, which means P(s) is determined up to a constant:

$$c\prod_{s_k^+}(s-s_k^+),$$

 s_k^+ are the zeros of g(s) - f(s) from $\mathcal{R}e \ s \ge 0$.

• Setting s = 0 determines the constant and

$${\it Ee}^{-sL}=rac{\prod_{ ilde{s}_j^-}(1-rac{s}{ ilde{s}_j^-})}{\prod_{s_k^-}(1-rac{s}{ ilde{s}_k^-})}.$$

From this follows the distribution of L by inversion.

э