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Outline

1. The Markovian binary tree (MBT)

2. Algorithms to compute the extinction probability

3. Catastrophes
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Markovian binary trees (MBTs)

Markovian binary trees are mathematical objects at the
intersection of branching processes and matrix analytic methods.

I The lifetime of individuals is controlled by a transient
Markovian arrival process ;

I We use techniques inspired from the matrix analytic methods
to compute the extinction probability of the process ;

I We give a probabilistic interpretation to all of our algorithms.
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The transient Markovian arrival process (α, D0, D1,d)
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The individual’s lifetime in an Markovian binary tree
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I n transient phases, 1 absorbing phase 0 ;

I ϕ0 : the initial phase ;

I D0 : the matrix of phase transition rates between two events ;

I B : the B irth rate matrix ; D1 = B(1⊗ I ) ;

I d : the death rate vector.
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The MBT representation
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I An MBT models the evolution of a family or population over
time.

I We assume that the individuals behave independently of each
other.
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Extinction probability of an MBT

Let q = P[the MBT becomes extinct |ϕ0].

We define

I θ = (−D0)−1 d : the death probability of a branch,

I Ψ = (−D0)−1 B : the birth probability of a branch. r
→ q is the minimal nonnegative solution of the matrix extinction
equation

s = θ + Ψ (s⊗ s).
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Linear algorithms to compute the extinction probability

s = θ + Ψ (s⊗ s)

≡

s = [I −Ψ (I ⊗ s)]−1 θ

≡

s = [I −Ψ (s⊗ I )]−1 θ

1. The Depth and the Order algorithms
(Bean, Kontoleon and Taylor, 2008)

2. The Thicknesses algorithm
(Hautphenne, Latouche and Remiche, 2011).
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The Depth algorithm

s0 = θ

sk = θ + Ψ (sk−1 ⊗ sk−1), k ≥ 1

For k ≥ 0,
I Mk = the set of MBTs considered at stage k

I sk = P[Mk |ϕ0] = the kth approximation of q.

M0 =

Mk = for k ≥ 1.∪
q

Mk−1 Mk−1
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Probabilistic interpretation of the Depth algorithm

s0 = θ

sk = θ + Ψ (sk−1 ⊗ sk−1), k ≥ 1

Depth of an MBT = number of branching points along the longest
branch

For k ≥ 0,

I Mk = the set of extinct MBTs with a depth ≤ k
(constraint on the shape of the tree)

I Mk ⊆Mk+1 ⊆ · · · ⊆ M = the set of all extinct MBTs.

I sk = P[Mk |ϕ0]
k→∞−→ q.
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The Order algorithm

s0 = θ

sk = [I −Ψ (sk−1 ⊗ I )]−1 θ, k ≥ 1

For k ≥ 0,
I Mk = the set of MBTs considered at stage k

I sk = P[Mk |ϕ0] = the kth approximation of q.

M0 =

Mk = . . . for k ≥ 1.
q

Mk−1

q
Mk−1

q
Mk−1

11/24

Sophie Hautphenne University of Melbourne Algorithmic methods for branching processes



The MBT Extinction probability Catastrophes

Probabilistic interpretation of the Order algorithm

s0 = θ

sk = [I −Ψ (sk−1 ⊗ I )]−1 θ, k ≥ 1

Order of an MBT = total number of children generations

For k ≥ 0,

I Mk = the set of extinct MBTs with an order ≤ k
(constraint on the shape of the tree)

I Mk ⊆Mk+1 ⊆ · · · ⊆ M = the set of all extinct MBTs.

I sk = P[Mk |ϕ0]
k→∞−→ q.
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The Thicknesses algorithm

s0 = θ

s2k−1 = [I −Ψ (I ⊗ s2k−2)]−1 θ, k ≥ 1

s2k = [I −Ψ (s2k−1 ⊗ I )]−1 θ, k ≥ 1

M0 =

M2k−1 =
. . .

q
M2k−2

q
M2k−2

q
M2k−2

M2k =
. . . for k ≥ 1.

q
M2k−1

q
M2k−1

q
M2k−1
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Left and right thicknesses of a tree

We define the left thickness LT (T ) and the right thickness RT (T )
of a tree T .

Example where LT (T ) = 4 and RT (T ) = 3 :
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Probabilistic interpretation of the Thicknesses algorithm

s0 = θ

s2k−1 = [I −Ψ (I ⊗ s2k−2)]−1 θ, k ≥ 1

s2k = [I −Ψ (s2k−1 ⊗ I )]−1 θ, k ≥ 1

For k ≥ 0,

I M2k−1 the set of extinct MBTs with LT ≤ 2k − 1

I M2k the set of extinct MBTs with RT ≤ 2k

I Mk ⊆Mk+1 ⊆ · · · ⊆ M = the set of all extinct MBTs.

I sk = P[Mk |ϕ0]
k→∞−→ q.
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Comparison of the linear algorithms

I The Depth algorithm is slower than the Order algorithm and
the Thicknesses algorithm ;

I The performance of the Thicknesses algorithm compared to
the Order algorithm depends on the example considered.
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Quadratically convergent algorithm : Newton

F(s) = s− θ −Ψ (s⊗ s) = 0

⇒ Newton’s iteration method :

xk = xk−1 − (F ′xk−1
)−1F(xk−1), k ≥ 0,

which leads to the Newton algorithm :

x0 = θ,

xk = [I −Ψ (xk−1 ⊕ xk−1)]−1 [θ −Ψ (xk−1 ⊗ xk−1)], k ≥ 1

= xk−1 + ∆k

where

∆k = [I −Ψ (xk−1 ⊕ xk−1)]−1 Ψ (∆k−1 ⊗∆k−1)
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Probabilistic interpretation of the Newton algorithm

x0 = θ,

xk = xk−1 + ∆k

where

∆k = [I −Ψ (xk−1 ⊕ xk−1)]−1 Ψ (∆k−1 ⊗∆k−1)

M0 = ∆0 =

For k ≥ 1 :

Mk = Mk−1 ∪∆k ,

∆k =
r

∆k−1 ∆k−1
∪ r
Mk−1 ∆k

∪ r
∆k Mk−1
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Link between MBTs and QBDs

Markovian binary trees can be represented as level-dependent
quasi-birth-and-death processes (X (t),ϕ(t)) with

I X (t) = the total population size at time t = the level,

I ϕ(t) = (Z1(t),Z2(t), . . . ,Zn(t)) = the phase.

Q =


0 0 0 0 0 · · ·

Q10 Q11 Q12 0 0 · · ·
0 Q21 Q22 Q23 0 · · ·
0 0 Q32 Q33 Q34 · · ·

...
. . .


Extinction probability q ≡ Probability to go from level 1 to level 0,
given by the matrix G (1).
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MBT with catastrophes

                    Time 

       1st catastrophe 

      2nd catastrophe 
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MBT with catastrophes

Assume that

I the catastrophes occur following a Poisson process with
parameter β (or more generally following a MAP),

I they arrive independently of the evolution of the MBT,

I an individual in phase i is killed with probability εi .

q̂ = the extinction probability of the MBT with catastrophes, given
the initial phase.

Loss of independence ⇒ q̂ 6= θ + Ψ (q̂⊗ q̂).
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Structured Markov chain approach

Two-dimensional G/M/1-type Markov process (X (t),ϕ(t)) with

I X (t) = the total population size at time t = the level,

I ϕ(t) = (Z1(t),Z2(t), . . . ,Zn(t)) = the phase.

Q =


0 0 0 0 0 · · ·

Q10 Q11 Q12 0 0 · · ·
Q20 Q21 Q22 Q23 0 · · ·
Q30 Q31 Q32 Q33 Q34 · · ·

...
. . .


Extinction probability q̂ ≡ Probability to go from level 1 to level 0.
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Structured Markov chain approach

γi = first passage time to level i .

q̂ = G(1) = P[γ0 <∞ ,ϕ(γ0) |X (0) = 1,ϕ(0)].

G(1) = 1− limM→∞(L1 L2 · · · LM) 1 with

Li = P[γi+1 < γ0 ,ϕ(γi+1) |X (0) = i ,ϕ(0)],

L1 = (−Q11)−1 Q12,

Li =

I − (−Qii )
−1

i−1∑
j=1

Qi (i−j)

∏
i−j≤k≤i−1

Lk

−1

(−Qii )
−1 Qi (i+1),

i ≥ 2.
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