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The MBT

Markovian binary trees (MBTs)

Markovian binary trees are mathematical objects at the
intersection of branching processes and matrix analytic methods.

» The lifetime of individuals is controlled by a transient
Markovian arrival process;

» We use techniques inspired from the matrix analytic methods
to compute the extinction probability of the process;

» We give a probabilistic interpretation to all of our algorithms.
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The MBT

The transient Markovian arrival process (o, Dy, Dy, d)
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The MBT

The individual's lifetime in an Markovian binary tree

[ — i— k i—0
%0 {
(Do)jj _ d;
J
Bi jk

n transient phases, 1 absorbing phase 0;

o : the initial phase;

B : the Birth rate matrix; D; = B(1®/);

>
>
» Dy : the matrix of phase transition rates between two events;
>
» d : the death rate vector.
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The MBT

The MBT representation
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» An MBT models the evolution of a family or population over
time.

» We assume that the individuals behave independently of each
other.
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Extinction probability

Extinction probability of an MBT
Let g = P[the MBT becomes extinct | ¢p].

We define

» @ = (—Dp)~1d : the death probability of a branch, |

» W = (—Dp)~! B : the birth probability of a branch. HT

— q is the minimal nonnegative solution of the matrix extinction
equation

‘s:0+\ll(s®s).‘
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Extinction probability

Linear algorithms to compute the extinction probability

s=0+V(s®s)

s=[-Vv(®s)] o

s=[-V(sa] 6

1. The Depth and the Order algorithms
(Bean, Kontoleon and Taylor, 2008)

2. The Thicknesses algorithm
(Hautphenne, Latouche and Remiche, 2011).
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Extinction probability

The Depth algorithm

So = o
sk = 04V (sk_1®sk_1), k>1

For k > 0,
» M = the set of MBTs considered at stage k

> s, = P[My | ¢o] = the kth approximation of q.

Mo= |

My = J U for k > 1.

My M1
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Extinction probability

Probabilistic interpretation of the Depth algorithm

So = 0
sk = 0+ V(sk_1 ®sk_1), k>1

Depth of an MBT = number of branching points along the longest
branch

For k > 0,

» M = the set of extinct MBTs with a depth < k
(constraint on the shape of the tree)

> My C Mgy C--- € M = the set of all extinct MBTs.

k—o00
> s, =P[My|po] — a.
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Extinction probability

The Order algorithm

So = o
sk = [I=V(sii@N]re, k>1

For k > 0,
» M = the set of MBTs considered at stage k

> s, = P[My | po] = the kth approximation of q.

Mo= |

My = for k > 1.
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Extinction probability

Probabilistic interpretation of the Order algorithm

So = 0
sk = [[—V(siei@)]7te, k>1

Order of an MBT = total number of children generations

For k > 0,

» M, = the set of extinct MBTs with an order < k
(constraint on the shape of the tree)

> My C Mgy C--- € M = the set of all extinct MBTs.

k—o0
> s, = P[My|po] — q.
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Extinction probability

The Thicknesses algorithm

So = 0
skl = [I=V (I ®@s2)] 70, k>1

Sok = [I—V(so1®@N]71e, k>1
My = |
Moy_1 = 4‘7—‘7—‘—‘

Moy

Mok» Mok_2
Mop =
2k ’—H .. for k > 1.
Moy
Mok Moy
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Extinction probability

Left and right thicknesses of a tree

We define the left thickness LT(7") and the right thickness RT(7')
of a tree 7.

Example where LT(7) =4 and RT(7T) =3
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Extinction probability

Probabilistic interpretation of the Thicknesses algorithm

So = 0
sok1 = [ =V (I @sx2)]7"0, k>1
sok = [I=V(so1 @176, k>1

For k > 0,
» Mo the set of extinct MBTs with LT <2k —1

> Mo the set of extinct MBTs with RT < 2k

> My C Mgy C--- € M = the set of all extinct MBTs.

k—o0
> s = P[Mg| o] — q.
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Extinction probability

Comparison of the linear algorithms

» The Depth algorithm is slower than the Order algorithm and
the Thicknesses algorithm;

» The performance of the Thicknesses algorithm compared to
the Order algorithm depends on the example considered.
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Extinction probability

Quadratically convergent algorithm : Newton

F(s)=s—0—-V(s®s)=0

= Newton'’s iteration method :

Xk = xk-1 — (Fr,_ ) " F(xk-1), k=0,

which leads to the Newton algorithm :

xo = 0,
ke = 1=V (xk 1 @xe1)] 1O -V (xk1@x1)], k>1
= xk—1+ Ak
where

A==V (1 @x 1) V(A 1 @Ak 1)
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Extinction probability

Probabilistic interpretation of the Newton algorithm

xg = 0,
Xk = Xk-1+ Dy
where
Ap=1[1—V(x1 @ x1)] "W (Ap1® Apy)
Mo=0o= |
For k >1:

My = My_1UA,

Ay = r—l—\ U r—l—\ U r—l—\
A1 Agq M1 Dy Ay M1
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Extinction probability

Link between MBTs and QBDs

Markovian binary trees can be represented as level-dependent
quasi-birth-and-death processes (X(t), ¢(t)) with

» X(t) = the total population size at time t = the level,

> p(t) = (Z4i(t), Z2(t), ..., Zy(t)) = the phase.

0 0 0 0 0
Qo @u Gz 0 0
Q=] 0 Qu Qx (3 0
0 0 (32 Q3 Qu

Extinction probability q = Probability to go from level 1 to level 0,
given by the matrix G(1),
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Catastrophes

MBT with catastrophes

Time

1st catastrophe |

2nd catastrophe |
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Catastrophes

MBT with catastrophes

Assume that

» the catastrophes occur following a Poisson process with
parameter 3 (or more generally following a MAP),

» they arrive independently of the evolution of the MBT,
» an individual in phase i is killed with probability ;.

g = the extinction probability of the MBT with catastrophes, given
the initial phase.

Loss of independence = § # 6 + V (§ ® q).
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Catastrophes

Structured Markov chain approach

Two-dimensional G/M /1-type Markov process (X(t), ¢(t)) with

» X(t) = the total population size at time t = the level,
b () = (Z1(£), Za(t), .., Zo(1)) = the phase.

0 0 0 0 0
Qo Qu Qi 0 0
Q=| Qo Q1 Q2 @3 0
Q0 @31 Q32 Rz Q3

Extinction probability @ = Probability to go from level 1 to level 0.
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Catastrophes

Structured Markov chain approach
~; = first passage time to level J.
4 =G = P[yo < 00, ¢(70) | X(0) = 1,(0)].
GM) =1 —limp—oo(L1 Lo --- Lyy) 1 with

Li = Plyit1 <90,9(vit1) | X(0) = i, (0)],

L = (—Qu1) ' Qu,

-1

L = Qu - ZQI(I —J) H L ( Qll)i i(i+1)»

i j<k<i—1
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Catastrophes
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