Perturbation Analysis for Multiserver Retrial Queues

Tuan Phung-Duc Tokyo Institute of Technology

YEQT VI: Analytic Methods in Queueing Systems, November 1-3, 2012

Motivation: Collaborative call centers

- Blocked calls → Forwarded to another call center
 - Satisfied customers \rightarrow departure
 - Non-satisfied customers \rightarrow reattempt to the original call center

Model

Phung-Duc et al. (JIMO 2010, Annals of OR 2011)

Level-dependent quasi-birth-and-death process (LDQBD)

LDQBD of the M/M/c/K retrial queue

- C(t): # of customers in the system at time t (phase)
- *N*(*t*): # of customers in the orbit at time *t* (level)
- X(t) = (C(t), N(t)) forms a **LDQBD** on the state space $S = \{0, 1, ..., K\} \times \{0, 1, 2, ...\}.$

 $\pi_{k,n} = \lim_{t \to \infty} \Pr(C(t) = k, N(t) = n), \quad (k,n) \in S$

$$\mathbf{Q} = \begin{pmatrix} \mathbf{Q}_{1}^{(0)} & \mathbf{Q}_{0}^{(0)} & \mathbf{O} & \mathbf{O} & \cdots \\ \mathbf{Q}_{2}^{(1)} & \mathbf{Q}_{1}^{(1)} & \mathbf{Q}_{0}^{(1)} & \mathbf{O} & \cdots \\ \mathbf{O} & \mathbf{Q}_{2}^{(2)} & \mathbf{Q}_{1}^{(2)} & \mathbf{Q}_{0}^{(2)} & \cdots \\ \mathbf{O} & \mathbf{O} & \mathbf{Q}_{2}^{(3)} & \mathbf{Q}_{1}^{(3)} & \cdots \\ \vdots & \vdots & \vdots & \vdots & \ddots \end{pmatrix}, \qquad \begin{aligned} \mathbf{\pi} = (\mathbf{\pi}_{0,n}, \mathbf{\pi}_{1,n}, \dots, \mathbf{\pi}_{n,n}), \\ \mathbf{\pi}_{n} = (\mathbf{\pi}_{0,n}, \mathbf{\pi}_{1,n}, \dots, \mathbf{\pi}_{K,n}), \\ \mathbf{e} = (1,1,\dots,1,\dots)^{T}, \\ \mathbf{0} = (0,0,\dots,0,\dots)^{T}. \end{aligned}$$

Block matrices

Increases by 1

$$Q_{0}^{(n)} = \begin{pmatrix} 0 & 0 & \cdots & 0 & 0 \\ 0 & 0 & \cdots & 0 & 0 \\ \vdots & \vdots & \ddots & \vdots & \vdots \\ 0 & 0 & \cdots & 0 & 0 \\ 0 & 0 & \cdots & 0 & \lambda p \end{pmatrix} \qquad Q_{2}^{(n)} = \begin{pmatrix} n\mu\bar{r} & n\mu r & 0 & \cdots & 0 \\ 0 & n\mu\bar{r} & n\mu r & \ddots & \vdots \\ \vdots & \ddots & \ddots & 0 \\ \vdots & n\mu\bar{r} & n\mu r \\ 0 & \cdots & 0 & n\mu(\bar{r} + r\bar{q}) \end{pmatrix}$$

$$\mathbf{Q}_{1}^{(n)} = \begin{pmatrix} b_{0}^{(n)} & \lambda & 0 & \cdots & \cdots & 0 \\ \nu_{1} & b_{1}^{(n)} & \lambda & \ddots & \ddots & \vdots \\ 0 & \nu_{2} & b_{2}^{(n)} & \ddots & \ddots & \vdots \\ \vdots & \ddots & \ddots & \ddots & \ddots & \ddots & 0 \\ \vdots & \ddots & \ddots & \ddots & \ddots & 0 \\ \vdots & \ddots & \ddots & b_{K-1}^{(n)} & \lambda \\ 0 & \cdots & \cdots & 0 & \nu_{K} & b_{K}^{(n)} \end{pmatrix} \qquad b_{i}^{(n)} = -(\lambda + n\mu + \nu_{i}), \\ i = 0, 1, 2, \dots, K - 1, \\ b_{K}^{(n)} = -(p\lambda + n\mu(\bar{r} + r\bar{q}) + \nu_{K}). \end{cases}$$

Existent result on LDQBD

Ramaswami and Taylor (1996)

$$\pi_{n} = \pi_{n-1} \mathbf{R}^{(n)} \ (n = 1, 2, ...).$$

$$\{\mathbf{R}^{(n)}; n = 1, 2, ...\} \text{ is the minimal nonnegative solution of}$$

$$\mathbf{Q}_{0}^{(n-1)} + \mathbf{R}^{(n)} \mathbf{Q}_{1}^{(n)} + \mathbf{R}^{(n)} \mathbf{R}^{(n+1)} \mathbf{Q}_{2}^{(n+1)} = \mathbf{O} \ (n = 1, 2, ...).$$

Bright and Taylor (95): expression of $R^{(n)}$ in terms of infinite sum

Matrix continued fraction (Phung-Duc et al. 2010) $\mathbf{R}^{(n)} = \mathbf{Q}_{0}^{(n-1)} (-\mathbf{Q}_{1}^{(n)} - \mathbf{Q}_{0}^{(n)} (-\mathbf{Q}_{1}^{(n+1)} - \mathbf{R}^{(n+2)} \mathbf{Q}_{2}^{(n+2)})^{-1} \mathbf{Q}_{2}^{(n+1)})^{-1} = \cdots$ $\mathbf{R}_{k}^{(n)} = R_{n} \circ R_{n+1} \circ \circ \circ R_{n+k-1} (\mathbf{O}). \text{ We have } \lim_{k \to \infty} \mathbf{R}_{k}^{(n)} = \mathbf{R}^{(n)}.$ $\rightarrow \text{ Numerical algorithms for } R^{(n)}$

Today's talk \rightarrow Taylor series expansion for $R^{(n)}$

Special sparse structure

$$\mathbf{R}^{(n)} = \mathbf{Q}_{0}^{(n-1)} \left(-\mathbf{Q}_{1}^{(n)} - \mathbf{R}^{(n+1)}\mathbf{Q}_{2}^{(n+1)}\right)^{-1}$$

$$\mathbf{Q}_{0}^{(n-1)} = \begin{pmatrix} 0 & 0 & 0 & \cdots & 0 \\ 0 & 0 & 0 & \cdots & 0 \\ 0 & 0 & 0 & \cdots & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & 0 & \cdots & \lambda p \end{pmatrix} \qquad \mathbf{R}^{(n)} = \begin{pmatrix} 0 & 0 & 0 & \cdots & 0 \\ 0 & 0 & 0 & \cdots & 0 \\ \vdots & \vdots & \vdots & \cdots & \vdots \\ 0 & 0 & 0 & \ddots & 0 \\ \hline \mathbf{r}_{0}^{(n)} & \mathbf{r}_{1}^{(n)} & \mathbf{r}_{2}^{(n)} & \cdots & \mathbf{r}_{K}^{(n)} \end{pmatrix}$$

Instead of **R**^(*n*), we investigate $\mathbf{r}^{(n)} = (r_0^{(n)}, r_1^{(n)}, ..., r_K^{(n)}).$

Liu and Zhao (QUESTA 2010): *p*=*q*=*r*=1

Theorem 3.1 (First-order formula) For k = 0, 1, 2, ..., c,

$$r_{n,c-k} = \rho\left(\frac{\mu}{n\theta}\right)^k \frac{c!}{(c-k)!} + o\left(\frac{1}{n^k}\right).$$

Corollary 3.2 (Higher-order formulas)

$$r_{n,c-2} = \rho \left(\frac{\mu}{n\theta}\right)^2 \frac{c!}{(c-2)!} - \rho \left(\frac{\mu}{n\theta}\right)^3 \frac{c!}{(c-2)!} (2\rho + 2c - 3) + O\left(\frac{1}{n^4}\right),$$

$$r_{n,c-1} = \rho \left(\frac{\mu}{n\theta}\right) \frac{c!}{(c-1)!} - \rho \left(\frac{\mu}{n\theta}\right)^2 \frac{c!}{(c-2)!} + \rho \left(\frac{\mu}{n\theta}\right)^3 \frac{c!}{(c-2)!} (2\rho + c - 1)$$

$$+ O\left(\frac{1}{n^4}\right), \quad \text{``kth-order for } r_i^{(n)} => (k+1) \text{th-order for } r_i^{(n)}. \text{ No single expression}$$
and
$$\text{for a general } k. \text{ The proof will soon become too cumbersome!!''}$$

$$r_{n,c} = \rho + \rho^2 \frac{\mu}{n\theta} + \rho^2 (c-1) \frac{\mu}{n^2 \theta^2} (\theta + \mu \rho - \mu) + O\left(\frac{1}{n^3}\right).$$
 Asymptotic result for $\pi_{c,n}$

- Our contribution
 - Explicit Taylor series expansion for $r_i^{(n)}$ (i = 0, 1, ..., K)

Our results

• Retrial customers never give up: q = r = 1

$$r_{K-k}^{(n)} = \sum_{i=0}^{m} \theta_i^{(k)} (-1)^i \frac{1}{n^{k+i}} + O(\frac{1}{n^{k+m+1}}) \qquad m = 0, 1, \dots$$

Different order!!

 $\lim_{\mathbf{x}\to 0} |O(\mathbf{x})/\mathbf{x}| = C \ge 0$

Equation for rate matrices

$$\begin{aligned} \mathbf{Q}_{0}^{(n-1)} + \mathbf{R}^{(n)}\mathbf{Q}_{1}^{(n)} + \mathbf{R}^{(n)}\mathbf{R}^{(n+1)}\mathbf{Q}_{2}^{(n+1)} = \mathbf{O} \ (n = 1, 2, \ldots). \end{aligned}$$

$$\begin{aligned} \mathbf{b}_{0}^{(n)}r_{0}^{(n)} + \nu_{1}r_{1}^{(n)} + \tilde{r}_{0}^{(n+1)}r_{K}^{(n)} = 0, & i = 0, \\ \lambda r_{i-1}^{(n)} + b_{i}^{(n)}r_{i}^{(n)} + \nu_{i+1}r_{i+1}^{(n)} + \tilde{r}_{i}^{(n+1)}r_{K}^{(n)} = 0, & i = 1, 2, \ldots, K-1, \\ \lambda r_{K-1}^{(n)} + \left(b_{K}^{(n)} + \tilde{r}_{K}^{(n+1)}\right)r_{K}^{(n)} = -p\lambda, & i = K, \end{aligned}$$

$$\begin{aligned} \tilde{r}_{0}^{(n)} = n\mu\bar{r}r_{0}^{(n)}, & i = 0, \\ \tilde{r}_{i}^{(n)} = n\mu rr_{i-1}^{(n)} + n\mu\bar{r}r_{i}^{(n)}, & i = 1, 2, \ldots, K-1, \\ \tilde{r}_{K}^{(n)} = n\mu rr_{K-1}^{(n)} + n\mu(\bar{r} + r\bar{q})r_{K}^{(n)}, & i = K. \end{aligned}$$

Censored Markov chain

$$\boldsymbol{Q}^{\leq n-1} = \begin{pmatrix} \boldsymbol{Q}_{1}^{(0)} & \boldsymbol{Q}_{0}^{(0)} & \boldsymbol{O} & \cdots & \boldsymbol{O} \\ \boldsymbol{Q}_{2}^{(1)} & \boldsymbol{Q}_{1}^{(1)} & \boldsymbol{Q}_{0}^{(1)} & \ddots & \boldsymbol{O} \\ \boldsymbol{O} & \boldsymbol{Q}_{2}^{(2)} & \boldsymbol{Q}_{1}^{(2)} & \ddots & \vdots \\ \vdots & \boldsymbol{O} & \ddots & \ddots & \boldsymbol{O} \\ \vdots & \ddots & \ddots & \boldsymbol{Q}_{2}^{(n-2)} & \boldsymbol{Q}_{0}^{(n-2)} \\ \boldsymbol{O} & \cdots & \boldsymbol{O} & \boldsymbol{Q}_{2}^{(n-1)} & \boldsymbol{\widehat{Q}}^{(n-1)} \end{pmatrix}$$

 $Q^{\leq n-1}$: Infinitesimal generator of the censored Markov chain on levels {0,1, ..., n-1} $\widehat{Q}^{(n-1)}$

$$\hat{\boldsymbol{Q}}^{(n-1)} = \boldsymbol{Q}_1^{(n-1)} + \boldsymbol{R}^{(n)} \boldsymbol{Q}_2^{(n)}$$

 $(\boldsymbol{Q}_{2}^{(n-1)} + \widehat{\boldsymbol{Q}}^{(n-1)})\boldsymbol{e} = \boldsymbol{0} \quad \text{Look at the last row!}$ Nontrivial equation: $r_{0}^{(n)} + r_{1}^{(n)} + \dots + r_{K-1}^{(n)} + (\bar{r} + r\bar{q})r_{K}^{(n)} = \frac{\lambda p}{n\mu}$ $\boldsymbol{Q}_{0}^{(n-1)} + \boldsymbol{R}^{(n)}\boldsymbol{Q}_{1}^{(n)} + \boldsymbol{R}^{(n)}\boldsymbol{R}^{(n+1)}\boldsymbol{Q}_{2}^{(n+1)} = \boldsymbol{0} \quad (n = 1, 2, \dots).$

This talk \rightarrow Taylor series expansion for $r_{K-k}^{(n)}$ from this two equations.

q < 1 or r < 1

Retrial customers may give up

Our results: One term expansion

Lemma 1 We have $\lim_{n\to\infty} n^{k+1} r_i^{(n)} = 0$ for i = 0, 1, ..., K - k - 1 and

$$r_{K-k}^{(n)} = \gamma_1^{(k)} \frac{1}{n^{k+1}} + o(\frac{1}{n^{k+1}}), \qquad k = 0, 1, \dots, K,$$

where

$$\gamma_1^{(0)} = \frac{\lambda p}{\mu(\bar{r} + r\bar{q})}, \qquad \gamma_1^{(k)} = \frac{\nu_{K-k+1}}{\mu} \gamma_1^{(k-1)}, \qquad k = 1, 2, \dots, K.$$

Lemma 2 We have

$$r_{K-k}^{(n)} = \gamma_1^{(k)} \frac{1}{n^{k+1}} + O(\frac{1}{n^{k+2}}),$$

where O(x) denotes $\lim_{x\to 0} |O(x)/x| = C \ge 0$.

Mathematical induction

Step 1: check for k=0

$$\lim_{n \to \infty} nr_i^{(n)} = 0, i = 0, 1, \dots, K - 1, and \ r_{K-0}^{(n)} = \frac{\lambda p}{\bar{r} + r\bar{q}} \frac{1}{n} + o\left(\frac{1}{n}\right).$$

Step 2: assumption for k-1 We assume that Lemma 1 is true for k := k - 1, i.e. $\lim_{n \to \infty} n^k r_i^{(n)} = 0 \ (i \le K - k), \qquad r_{K-(k-1)}^{(n)} = \gamma_1^{(k-1)} \frac{1}{n^k} + o\left(\frac{1}{n^k}\right).$

Step 3: prove for k

We prove that Lemma 1 is true for *k*, *i*.*e*. $\lim_{n \to \infty} n^{k+1} r_i^{(n)} = 0, \quad r_{K-k}^{(n)} = \gamma_1^{(k)} \frac{1}{n^{k+1}} + o\left(\frac{1}{n^{k+1}}\right),$ $i = 0, 1, \dots, K - k - 1.$

$$\begin{array}{c} \frac{1}{\bar{r} + r\bar{q}} \sum_{i=0}^{K-1} r_i^{(n)} + r_K^{(n)} = \frac{\lambda p}{(\bar{r} + r\bar{q})\mu n} & \longrightarrow & \lim_{n \to \infty} r_k^{(n)} = 0, \quad k = 0, 1, \dots, K \\ n\mu r_k^{(n)} = 0, \quad k = 0, 1, \dots, K - 1 \\ \hline -\lambda r_0^{(n)} - n\mu r_0^{(n)} + \nu_1 r_1^{(n)} + (n+1)\mu r_K^{(n)} \bar{r} r_0^{(n+1)} = & 0 \\ \hline \rightarrow 0 & \longrightarrow & 0 & \text{bounded} & \overline{r} 0 \\ \hline \rightarrow 0 & & 0 & \text{bounded} & \overline{r} 0 \\ \hline \lim_{n \to \infty} nr_0^{(n)} = 0 \\ \hline \frac{\lambda r_0^{(n)}}{\sigma 0} - (\lambda + n\mu + \nu_1)r_1^{(n)} + \nu_2 r_2^{(n)} + (n+1)\mu [rr_0^{(n+1)} + \bar{r} r_1^{(n+1)}]r_K^{(n)} = & 0 \\ \hline \lim_{n \to \infty} nr_1^{(n)} = 0 & \xrightarrow{\text{similarly}} & \prod_{n \to \infty} nr_{K-1}^{(n)} = 0 \\ \hline \frac{1}{\bar{r} + r\bar{q}} \sum_{i=0}^{K-1} \lim_{n \to \infty} nr_i^{(n)} + \lim_{n \to \infty} nr_K^{(n)} = \frac{\lambda p}{(\bar{r} + r\bar{q})\mu} & \longrightarrow & r_{K-1}^{(n)} = \frac{\lambda p}{(\bar{r} + r\bar{q})\mu n} + o(\frac{1}{n}) \end{array}$$

Step 2: Lemma 1 is true for k-1 (assumption)

Step 2: assumption for k-1 We assume that Lemma 1 is true for k := k - 1, i.e. $\lim_{n \to \infty} n^k r_i^{(n)} = 0 \ (i \le K - k), \qquad r_{K-(k-1)}^{(n)} = \gamma_1^{(k-1)} \frac{1}{n^k} + o\left(\frac{1}{n^k}\right).$

• Key equation \rightarrow one term expansion for $r_{K-k}^{(n)}$

One term expansion (cont.)

Two term expansion

• We have two term expansion as follows

Lemma 3

$$r_{K-k}^{(n)} = \gamma_1^{(k)} \frac{1}{n^{k+1}} - \gamma_2^{(k)} \frac{1}{n^{k+2}} + O(\frac{1}{n^{k+3}}),$$

where

$$\gamma_{2}^{(0)} = \frac{\nu_{K}\lambda p}{\mu^{2}(\bar{r}+r\bar{q})^{2}},$$

$$\gamma_{2}^{(k)} = \frac{\nu_{K-k+1}}{\mu}\gamma_{2}^{(k-1)} + \left(\frac{\lambda+\nu_{K-k}}{\mu} - \frac{\lambda p\bar{r}}{\mu(\bar{r}+r\bar{q})}\right)\gamma_{1}^{(k)}, \qquad k = 1, 2, \dots, K.$$

Mathematical induction

Step 1: check for
$$k=0$$

 $r_{K}^{(n)} = \gamma_{1}^{(0)} \frac{1}{n} - \gamma_{2}^{(0)} \frac{1}{n^{2}} + O\left(\frac{1}{n^{3}}\right)$. Lemma 3 is true for $k = 0$.

Step 2: assumption for *k*-1 We assume that Lemma 3 is true for k := k - 1, i.e. $r_{K-(k-1)}^{(n)} = \gamma_1^{(k-1)} \frac{1}{n^k} - \gamma_2^{(k-1)} \frac{1}{n^{(k+1)}} + O\left(\frac{1}{n^{k+2}}\right).$

Step 3: proof for k

We prove that Lemma 3 is true for k, i.e.

$$r_{K-k}^{(n)} = \gamma_1^{(k)} \frac{1}{n^{k+1}} - \gamma_2^{(k)} \frac{1}{n^{(k+2)}} + O\left(\frac{1}{n^{k+3}}\right).$$

Step 1 (check for *k*=0)

Step 2: Lemma 3 is true for k-1 (assumption)

Step 2: assumption for k-1 ($k \ge 1$) We assume that Lemma 3 is true for k := k - 1, i.e. $r_{K-(k-1)}^{(n)} = \gamma_1^{(k-1)} \frac{1}{n^k} - \gamma_2^{(k-1)} \frac{1}{n^{(k+1)}} + o\left(\frac{1}{n^{k+2}}\right).$

• Key equation \rightarrow two term expansion for $r_{K-k}^{(n)}$

$$\begin{split} r_{K-k-1}^{(n)} &= \gamma_1^{(k+1)} \frac{1}{n^{k+2}} + O(\frac{1}{n^{k+3}}), & \longleftarrow \text{ Lemma 2 (one term expansion)} \\ r_{K-k}^{(n)} &= \gamma_1^{(k)} \frac{1}{n^{k+1}} + O(\frac{1}{n^{k+2}}), & \longleftarrow \text{ Lemma 2 (one term expansion)} \\ r_{K-k+1}^{(n)} &= \gamma_1^{(k-1)} \frac{1}{n^k} - \gamma_2^{(k-1)} \frac{1}{n^{k+1}} + O(\frac{1}{n^{k+2}}). & \longleftarrow \text{ Two term expansion} \\ \frac{\tilde{r}_{K-k}^{(n+1)} r_K^{(n)}}{n\mu} &= \bar{r} \gamma_1^{(0)} \gamma_1^{(k)} \frac{1}{n^{k+2}} + O(\frac{1}{n^{k+3}}). & \longleftarrow \text{ Lemma 2 (one term)} \end{split}$$

- Substituting these formulae to Key equation.
- Two term expansion for $r_{K-k}^{(n)}$

Two term expansion

• We obtain two term expansion for $r_{K-k}^{(n)}$

Lemma 3

$$r_{K-k}^{(n)} = \gamma_1^{(k)} \frac{1}{n^{k+1}} - \gamma_2^{(k)} \frac{1}{n^{k+2}} + O(\frac{1}{n^{k+3}}),$$

where

$$\gamma_{2}^{(0)} = \frac{\nu_{K}\lambda p}{\mu^{2}(\bar{r}+r\bar{q})^{2}},$$

$$\gamma_{2}^{(k)} = \frac{\nu_{K-k+1}}{\mu}\gamma_{2}^{(k-1)} + \left(\frac{\lambda+\nu_{K-k}}{\mu} - \frac{\lambda p\bar{r}}{\mu(\bar{r}+r\bar{q})}\right)\gamma_{1}^{(k)}, \qquad k = 1, 2, \dots, K.$$

Main result

• *m* term expansion

Theorem 1 For $m \geq 3$, we have

$$r_{K-k}^{(n)} = \sum_{i=1}^{m} \gamma_i^{(k)} (-1)^{i+1} \frac{1}{n^{k+i}} + O(\frac{1}{n^{k+m+1}}),$$

where $\gamma_m^{(k)}$ is recursively defined as follows

$$\gamma_m^{(0)} = \frac{1}{\bar{r} + r\bar{q}} \sum_{k=1}^K \gamma_{m-k}^{(k)} (-1)^{k+1},$$

$$\gamma_m^{(k)} = \frac{\nu_{K-k+1}}{\mu} \gamma_m^{(k-1)} + \frac{\lambda}{\mu} \gamma_{m-2}^{(k+1)} + \frac{\lambda + \nu_{K-k}}{\mu} \gamma_{m-1}^{(k)}$$

$$+ \sum_{j=0}^{m-2} \varphi_j^{(k)} \gamma_{m-j-1}^{(0)} (-1)^{m-j}, \qquad k = 1, 2, \dots, K.$$

Further definition

Furthermore, $\varphi_j^{(k)}$ is defined by

$$\varphi_j^{(k)} = \begin{cases} \bar{r}\beta_0^{(k)}, & j = 0\\ r\alpha_j^{(k)} + \bar{r}\beta_j^{(k)}, & j \ge 1, \end{cases}$$

where

$$\alpha_{j}^{(k)} = \sum_{i=1}^{j} \gamma_{i}^{(k+1)} (-1)^{j+1} \frac{(k+j)_{j-i}}{(j-i)!}, \qquad j \in \mathbb{N},$$

$$\beta_{j}^{(k)} = \sum_{i=1}^{j+1} \gamma_{i}^{(k)} (-1)^{j} \frac{(k+i-1)_{j+1-i}}{(j+1-i)!}, \qquad j \in \mathbb{Z}_{+}.$$

Derivation

• The derivation for $m (\geq 3)$ term expansion of $r_{K-k}^{(n)}$ (k = 0, 1, ..., K) is similar to that for the case m = 1, 2

• The key tool is the following expansion

$$\left(\frac{n}{n+1}\right)^a = \left(1 + \frac{1}{n}\right)^{-a} = \sum_{j=0}^{\infty} \frac{(a)_j}{j!} (-1)^j \frac{1}{n^j}, \qquad a > 0.$$

Asymptotic formulae for the stationary distribution

Theorem 2 We have

$$C_1^{(0)} \frac{1}{n!} (\gamma_1^{(0)})^n n^{-\frac{\nu_K}{\mu(\bar{r}+r\bar{q})}} \le \pi_{n,K} \le C_2^{(0)} \frac{1}{n!} (\gamma_1^{(0)})^n n^{-\frac{\nu_K}{\mu(\bar{r}+r\bar{q})}},$$

where $C_1^{(0)}$ and $C_2^{(0)}$ are positive numbers independent of n.

Corollary 1 There exist $C_1^{(k)} > 0$ and $C_2^{(k)} > 0$ independent of n such that

$$C_1^{(k)} \frac{1}{n!} (\gamma_1^{(0)})^n n^{-\frac{\nu_K}{\mu(\bar{r}+r\bar{q})}-k} \le \pi_{n,K-k} \le C_2^{(k)} \frac{1}{n!} (\gamma_1^{(0)})^n n^{-\frac{\nu_K}{\mu(\bar{r}+r\bar{q})}-k}, \qquad n \to \infty.$$

for $k = 1, 2, \dots, K.$

Using the three term expansion for $r_K^{(n)}$

Numerical results

 $\mu = 1, K = c = 5, r = 0.5, p = 0.7, q = 0.7$

Table 1 Relative error of $\mathbf{r}^{(N)}$ for the case $\bar{r} + r\bar{q} > 0$ (N = 100).

Traffic intensity (ρ)	First order	Second order	Third order
0.1	0.078979804	0.006347302	0.000512522
0.2	0.078922701	0.006528123	0.000548023
0.3	0.078865830	0.006708717	0.000584347
0.4	0.078809192	0.006889085	0.000621491
0.5	0.078752783	0.007069227	0.000659455
0.6	0.078696602	0.007249146	0.000698238
0.7	0.078640650	0.007428842	0.000737837
0.8	0.078584923	0.007608316	0.000778252
0.9	0.078529420	0.007787571	0.000819482

Relative error: $||r^{(N)} - \hat{r}^{(N)}|| / ||r^{(N)}||$ • Exact $r^{(N)}$ (Phung-Duc et al. 2010)

Numerical results

 $\mu = 1, K = c = 5, r = 0.5, p = 0.7, q = 0.7$

Table 2 Relative error of $\mathbf{r}^{(N)}$ for the case $\bar{r} + r\bar{q} > 0$ (N = 1000).

Traffic intensity (ρ)	First order	Second order	Third order
0.1	0.007711805	0.000061185	0.000000491
0.2	0.007711190	0.000062962	0.00000525
0.3	0.007710574	0.000064739	0.00000560
0.4	0.007709959	0.000066516	0.00000596
0.5	0.007709344	0.000068292	0.00000633
0.6	0.007708729	0.000070068	0.00000671
0.7	0.007708115	0.000071844	0.00000709
0.8	0.007707500	0.000073620	0.00000748
0.9	0.007706887	0.000075395	0.00000788

• Relative error is quite small!!

Part II: q = r = 1

Retrial customers never give up

One term expansion

Lemma 5 We have $\lim_{n\to\infty} n^k r_i^{(n)}$ (i = 0, 1, ..., K - k - 1) and

$$r_{K-k}^{(n)} = \theta_0^{(k)} \frac{1}{n^k} + o(\frac{1}{n^k}), \qquad k = 1, 2, \dots, K.$$

where

$$\theta_0^{(1)} = \frac{\lambda p}{\mu}, \qquad \theta_0^{(k)} = \frac{\nu_{K-k+1}}{\mu} \theta_0^{(k-1)}, \qquad k = 2, 3, \dots, K.$$

Lemma 6 We have the following result

$$r_{K-k}^{(n)} = \theta_0^{(k)} \frac{1}{n^k} + O(\frac{1}{n^{k+1}}), \qquad k \in \mathbb{Z}_+.$$

Theorem 4 We have

$$r_{K-k}^{(n)} = \sum_{i=0}^{m} \theta_i^{(k)} (-1)^i \frac{1}{n^{k+i}} + O(\frac{1}{n^{k+m+1}}), \qquad m \in \mathbb{N},$$

where $\theta_i^{(k)}$ is recursively defined as follows.

$$\theta_m^{(1)} = \sum_{i=2}^{\min(K,m+1)} \theta_{m+1-i}^{(i)} (-1)^i,$$

$$\theta_m^{(k)} = \frac{\nu_{K-k+1}}{\mu} \theta_m^{(k-1)} + \frac{\lambda}{\mu} \theta_{m-2}^{(k+1)} + \frac{\lambda + \nu_{K-k}}{\mu} \theta_{m-1}^{(k)}$$

$$+ \sum_{j=0}^{m-1} \Phi_j^{(k)} \theta_{m-j-1}^{(0)} (-1)^{j+1}, \qquad k = 2, 3, \dots, K,$$

where

$$\Phi_j^{(k)} = \sum_{i=0}^j \theta_i^{(k+1)} (-1)^j \frac{(k+i)_{j-i}}{(j-i)!}.$$

Further definitions

Furthermore, we have

$$\theta_m^{(0)} = -\frac{\lambda}{\nu_K} \theta_{m-1}^{(1)} + \frac{\mu}{\nu_K} \sum_{j=1}^m \widetilde{\Phi}_j^{(0)} \theta_{m-j}^{(0)} (-1)^j,$$

where

$$\widetilde{\Phi}_{j}^{(0)} = \sum_{i=1}^{j} \theta_{i}^{(1)} \frac{(i)_{j-i}}{(j-i)!} (-1)^{j}, \qquad j = 1, 2, \dots, m.$$

Conclusion

- Conclusion
 - Multiserver retrial queues with two type of nonpersistent customers
 - Level-dependent QBD formulation
 - Taylor series expansion for the rate matrices
 - Asymptotic analysis
 - Numerical examples
- Future work
 - More dense rate matrices
 - Work in progress!!