Pull versus Push Mechanism in Large Distributed Networks: Closed Form Results

Wouter Minnebo, Benny Van Houdt

\*Dept. Mathematics and Computer Science University of Antwerp - iMinds Antwerp, Belgium



Wouter Minnebo, Benny Van Houdt Pull vs Push strategies

# Outline

- Problem description
- Pull / Push / Hybrid strategies
- Finite system model
  - Continuous time Markov chain
- Infinite system model
  - Ordinary differential equations
  - Closed form results
- Finite system simulations
- Conclusion

# Problem Description

## Set of M / M /1 queues

- N queues (single server with infinite waiting room)
- Each has its own arrival stream of jobs: Poisson  $(\lambda)$
- Processing time is exponential  $(\mu = 1)$

#### Distribute work to reduce response time

- Some servers may be empty while others have jobs waiting  $\rightarrow \textit{inefficient}$
- Distribute waiting jobs (load sharing)
  - Pull strategies (work stealing):
    - Lightly-loaded servers attempt to attract work
  - Push strategies:

Heavily-loaded servers attempt to forward work

• Hybrid strategies:

Combine Pull and Push strategy

werpen

# Load sharing strategies

#### Communication via probe messages

- Random queues are probed according to an Interrupted Poisson process (r)
- If the target accepts, a task is transfered to it
- Transfer and probe time is considered zero, i.e., instantaneous

### Strategies

- Pull: Idle servers generate probes (r), busy servers accept
- **Push**: Servers with pending jobs generate probes (*r*), idle servers accept
- **Hybrid**: Idle and servers with pending jobs generate probes  $(r = r_1 + r_2)$ , servers accept accordingly

#### Performance

 What is the required probe rate of a strategy to achieve a specified mean delay?



/ersiteit

werpen

#### Relation to existing work

- Other works frequently use a maximum of Lp probes (in batch or one-by-one) at task arrival / completion instead of rate-based probing
- Parameter r allows to match any predefined R
- It is fair to compare strategies if they have a similar (preferably equal) overall probe rate R

#### Remarks

- Rate-based probing performs better, given the same overall probe rate *R*, if the *Lp* probes are sent in batch
- Both methods are equivalent if overall probe rate R is matched, given that the Lp probes are sent one-by-one until success or the maximum is reached



# Finite system model - Continuous time Markov chain

#### System state

- N queues, independent arrivals and completions
- Define  $X^{(N)}(t) = (X_1^N(t), X_2^N(t), \ldots)_{t \ge 0}$
- $X_i^{(N)}(t) \in \{0, ..., N\}$ : Number of nodes with at least *i* jobs in queue at time *t*
- Note that for any state  $x = (x_1, x_2, \ldots)$ ,  $x_i \ge x_{i+1}$  for all  $i \ge 1$

### State transitions

- q<sup>(N)</sup>(x, y) is the transition rate between state x = (x<sub>1</sub>, x<sub>2</sub>,...) and y = (y<sub>1</sub>, y<sub>2</sub>,...)
- Events incurring a state change:
  - Arrival
  - Completion
  - Succesful job transfer

werpen

# Finite system model - Continuous time Markov chain

### State transitions

• Arrival : 
$$y = x + e_i$$
  
 $q^{(N)}(x, y) = \lambda(x_{i-1} - x_i)$ 

• Completion : 
$$y = x - e_i$$
  
 $q^{(N)}(x, y) = (x_i - x_{i+1})$ 

• Succesful task transfer : 
$$y = x + e_1 - e_i$$
  
 $q^{(N)}(x, y) = \frac{r(N-x_1)(x_i - x_{i+1})}{N}$ 

#### Load sharing strategies

- These transitions describe both pull, push and hybrid strategies, although semantics differ
- Probe rate  $\times$  target is idle  $\times$  initiator has exactly i jobs  $\rightarrow$  Push
- Probe rate  $\times$  initiator is idle  $\times$  target has exactly i jobs  $\rightarrow$  Pull

# From Finite to Infinite

#### Transition rates

• Define  $\beta_{\ell}(x/N) = q^{(N)}(x, x + \ell)/N$ , such that

$$\beta_{e_i}(x/N) = \lambda(x_{i-1}/N - x_i/N),$$
 for  $i \ge 1$ 

$$\beta_{-e_i}(x/N) = (x_i/N - x_{i+1}/N), \qquad \qquad \text{for } i \ge 1$$

$$eta_{e_1-e_i}(x/N) = r(1-x_1/N)(x_i/N-x_{i+1}/N) \quad ext{for } i \geq 2$$

Define

$$F(x) = \sum_{i\geq 1} (e_i \beta_{e_i}(x) - e_i \beta_{-e_i}(x)) + \sum_{i\geq 2} (e_1 - e_i) \beta_{e_1 - e_i}(x)$$

- Then the ODEs  $\frac{d}{dt}x(t) = F(x(t))$  describe the evolution of the infinite system model
- Density dependent Markov chain [Kurtz] of infinite dimensionality

< A > < 3

# Infinite system model - Ordinary differential equations

#### Description

# • Let $x_i(t)$ be the fraction of nodes with at least *i* jobs at time *t*

• The set  $\frac{d}{dt}x(t) = F(x(t))$  can be written as



## Infinite system model - Closed form results

## Unique fixed point

• Describes cumulative queue length distribution at  $t=\infty$ 

• 
$$\pi = (\pi_1, \pi_2, \ldots)$$
 with  $\sum_{i \ge 1} \pi_i < \infty$ , explicitly:

$$\pi_i = \lambda \left(\frac{\lambda}{1 + (1 - \lambda)r}\right)^{i-1}$$

### Performance

- The fixed point is a global attractor
- Proof by the Krasovskii-Lasalle principle
- The mean response time is then given by:

$$D = 1 + rac{\lambda}{(1-\lambda)(1+r)}$$

## Infinite system model - Closed form results

#### Load sharing strategies

$$D = 1 + rac{\lambda}{(1-\lambda)(1+r)}$$

- Valid for Push / Pull / Hybrid
- Difference lies in the generated overall probe rate R:

$$R = (1 - \lambda)r_1 + \frac{r_2\lambda^2}{1 + (1 - \lambda)r}$$

- Using  $r = r_1 + r_2$  for the Hybrid strategy
- Setting  $(r_1, r_2) = (r, 0)$  and (0, r) results in  $R_{pull}$  and  $R_{push}$  respectively

## Infinite system model - Closed form results

## Mean response time

- Hybrid strategy is always inferior
- Using the relationship *R*, rewrite:

$$\begin{split} D_{push} &= \frac{\lambda}{(1-\lambda)(\lambda+R)}, & \text{for } R < \lambda^2/(1-\lambda) \\ D_{push} &= 1, & \text{for } R \ge \lambda^2/(1-\lambda) \\ D_{pull} &= \frac{1+R}{1-\lambda+R} \end{split}$$

• Resulting in 
$$D_{push} < D_{pull}$$
 if  $\lambda < \frac{\sqrt{(1+R)^2 + 4(1+R)} - (1+R)}{2}$   
• If  $R \ge 0$ ,  $D_{push} < D_{pull}$  if  $\lambda < \phi - 1$  with  $\phi = (1 + \sqrt{5})/2$ 

## Finite system simulations

### Finite vs. Infinite

- Errors are proportional to both load  $(\lambda)$  and probe rate (r)
- Using a push strategy r decreases with  $\lambda$ ,  $\rightarrow$  nearly load insensitive error
- Using a pull strategy r increases with  $\lambda$ ,
  - $\rightarrow$  larger error under high load
- Infinite model is accurate for large N :



## Finite system simulations

#### Finite vs. Infinite

• Simulation results using N = 100 (crosses) vs. infinite model:



• Infinite model accurately predicts  $\lambda$  where both strategies perform equally well, even for systems of moderate size

# Conclusion

## Push / Pull / Hybrid strategies

• Push outperforms pull (for  $N = \infty$ ) if and only if:

$$\lambda < rac{\sqrt{(1+R)^2 + 4(1+R)} - (1+R)}{2}$$

 Hybrid strategy is always inferior to pure push or pull strategy (proof in paper)

## Finite vs. Infinite

- Infinite model predicts finite model accurately
- Technical issues to formally prove the convergence of the steady state measures of the finite system model to the infinite system model were identified (see paper for details)