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General aim

Study/understand the space-time embedding of ancestral lineages in
spatial models for populations with local density regulation (in particular,
with non-constant local population sizes).

A step towards combining ecological and population genetics aspects in a
stochastic spatial population model

Caveat: Most results so far are more of conceptual than practical interest.
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Introduction

Stepping stone model (in discrete time)

Colonies of fixed size N are arranged in a geographical space, say Zd

... ...

(d = 1 in this picture)

For each child: Assign a random parent in same colony with probability
1− ν, in a neighbouring colony with probability ν

... ...

More generally, at for each individual in colony x , with probability
p(x , y) = p(y − x) assign a random parent in previous generation from
colony y

“Trivial” demographic structure, but paradigm model for evolution of type
distribution in space
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Introduction

Stepping stone model: Ancestral lines

... ...

... ...

... ...

... ...

... ...

... ...

... ...today

past
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Introduction

Stepping stone model: Spatial embedding of ancestral lines

Sample one individual from colony x and one from colony y .

The spatial positions of the ancestral lines are random walks with
(delayed) coalescence:

While not yet merged, each takes an independent step according to the
random walk transition kernel p,

every time they are in the same colony, the two lines merge with
probability 1/N.

Write Tmerge for the number of steps until the two ancestral lines/walkers
merge.
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Introduction

Ancestral lines are coalescing random walks

An Application:

Assume each child mutates with probability u (to a completely new type),
let

ψ(x , y) := probability in equilibrium that two individuals
randomly drawn from colonies x and y have same type

Then (assuming p is symmetric)

ψ(x , y) = Ex ,y

[
(1− u)2Tmerge

]
=

Gu(x , y)

N + Gu(0, 0)

(where pk is the k-step transition kernel) with

Gu(x , y) =
∞∑
k=1

(1− u)2kp2k(x , y).
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Introduction

The stepping stone model (Kimura, 1953)

A very popular model for spatial population genetics :

Fixed local population size N in each patch (arranged on Zd), patches
connected by (random walk-type) migration

Pros: + Stable population, no local extinction, nor unbounded growth
+ Ancestral lineages are (delayed) coalescing random walks,

this makes detailed analysis feasible, in particular via duality:
long-time behaviour of (neutral) type distribution

Cons: − An ‘ad hoc’ simplification, effects of local size fluctations no
longer explicitly modelled

− N is an ‘effective’ parameter, relation to ‘real’ population
dynamics is unclear
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Introduction

Remark: A problem with branching random walk

(Critical) branching random walks, where particles move and produce
offspring independently, explicitly model fluctuations in local population
size, but do not allow stable populations in d ≤ 2:
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(Felsenstein’s “pain in the torus” 1975; Kallenberg 1977)
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A spatial logistic model

Branching random walk with local density-dependent
feedback

Possible and natural extension of the stepping stone model
(and of branching random walks)

Offspring distribution supercritical when there are few neighbours,
subcritical when there are many neighbours

e.g. Bolker & Pacala (1997), Murrell & Law (2003), Etheridge (2004),

Fournier & Méléard (2004), Hutzenthaler & Wakolbinger (2007)

Blath, Etheridge & Meredith (2007), B. & Depperschmidt (2007),

Pardoux & Wakolbinger (2011), Le, Pardoux & Wakolbinger (2013), ...

Challenges:

Mathematical analysis harder (population sizes are now a space-time
random field; feedback mechanism makes different families
dependent)

Dynamics of ancestral lineages?
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A spatial logistic model

A spatial logistic model

Particles ‘live’ in Zd in discrete generations,
ηn(x) = # particles at x ∈ Zd in generation n.

Given ηn,

each particle at x has Poisson
((

m −
∑

z λz−xηn(z)
)+)

offspring,
m > 1, λz ≥ 0, λ0 > 0, symmetric, finite range.

(Interpretation as local competition:
Ind. at z reduces average reproductive success of focal ind. at x by λz−x)

Children take an independent random walk step to y with probability py−x ,
pxy = py−x symmetric, aperiodic finite range random walk kernel on Zd .

Given ηn,

ηn+1(y) ∼ Poi
(∑

x

py−xηn(x)
(
m −

∑
z λz−xηn(z)

)+)
, independent
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A spatial logistic model

Remarks

ηn+1(y) ∼ Poi
(∑

x
py−xηn(x)

(
m −

∑
z λz−xηn(z)

)+)
, independent

For λ ≡ 0, (ηn) is a branching random walk.

(ηn) is a spatial population model with local density-dependent
feedback:
Offspring distribution supercritical when there are few neighbours,
subcritical when there are many neighbours

System is in general not attractive.

Conditioning1 on ηn(·) ≡ N for some N ∈ N (“effective local
population size”) yields a discrete version of the stepping stone model

1and considering types and/or ancestral relationships
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A spatial logistic model

Remarks, 2

Poisson offspring distribution is a somewhat artificial (though
technically very convenient) choice, one could take any family
ν(a) ∈M1(Z+) parametrised by

a =
∑
k

kνk(a) satisfying
∑
k

(k − a)2νk(a) ≤ Const.× a

Logistic term x(1− x) could be replaced by another suitable function
h(x), e.g. h(x) = x exp(a− bx).

We have little “explicit” information on the system, e.g. no closed
formulas for means, variances/covariances, etc.

Related continuous-mass models (Etheridge 2004, Blath et al 2007)
can be obtained as scaling limit
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A spatial logistic model

Remark: Rescaling

(py−x)x ,y∈Zd a translation invariant stochastic kernel on Zd , a > 0,
M > 0, (λy−x)x ,y∈Zd a translation invariant positive kernel.

N-th system has parameters m(N) = 1 + M/N,

p
(N)
xy = a

N pxy + (1− a/N)δxy , λ
(N)
xy = λxy/N2, starts from

η
(N)
0 (x) = [Nµ(x)] (µ is a finite measure).

Then

X
(N)
t (x) :=

1

N
η
(N)
[Nt](x), t ≥ 0, x ∈ Zd .

converges in distribution on D[0,∞)(Mf (Zd)) to X , solution of

dXt(x) = a

∫ t

0

∑
y

px−y
(
Xt(y)− Xt(x)

)
dt

+ Xt(x)
(
M −

∑
z

λx−zXt(z)
)
dt +

√
Xt(x)dWt(x)
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A spatial logistic model

Survival and complete convergence

Theorem (B. & Depperschmidt, 2007)

Assume m ∈ (1, 3), 0 < λ0 � 1, λz � λ0 for z 6= 0.

(ηn) survives for all time globally and locally with positive probability for
any non-trivial initial condition η0. Given survival, ηn converges in
distribution to its unique non-trivial equilibrium.

Proof uses

corresponding deterministic system

ζn+1(y) =
∑

x
py−xζn(x)

(
m −

∑
z λz−xζn(z)

)+
has unique (and globally attracting) non-triv. fixed point

strong coupling properties of η

coarse-graining and comparison with directed percolation

Restriction m < 3 is “inherited” from logistic iteration wn+1 = mwn(1− wn).
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A spatial logistic model A coupling

Coupling: An essential proof ingredient
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m = 1.5, p = (1/3, 1/3, 1/3), λ = (0.01, 0.02, 0.01)

Starting from any two initial conditions η0, η′0, copies (ηn), (η′n) can be
coupled such that if both survive, ηn(x) = η′n(x) in a space-time cone.
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A spatial logistic model A coupling

A stronger form of coupling: “Flow version”

Given ηn = (ηn(x))x∈Zd ∈ ZZd

+ , obtain ηn+1 (again with values in ZZd

+ ) via

ηn+1(y) = N
(y)
n

(∑
x

py−xηn(x)
(
m −

∑
z λz−xηn(z)

)+)
y ∈ Zd

with N
(y)
n , y ∈ Zd , n ∈ Z+ independent standard Poisson processes

This defines ηn simultaneously for all initial conditions η0 ∈ ZZd

+ ,
write Φn(η0) for conf. at time n starting from η0

There exist L′ > L (� 1), a > 0 and

G ⊂ ZBL′ (0)
+ “good local configurations” such

that with very high probability

∀ η0, η′0 :

η0|BL′ (0)
= η′0|BL′ (0)

∈ G

⇒ Φn(η0)(x) = Φn(η0)(x ′) ∀(x , n) ∈ cone(a, L)

and G has very high prob. under ηstat

Zd

Z+

−L L L′−L′

a
1
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Spatial embedding of an ancestral line

Dynamics of an ancestral line

Given stationary (ηstatn (x), n ∈ Z, x ∈ Zd), cond. on ηstat0 (0) > 0 (and
“enrich” suitably to allow bookkeeping of genealogical relationships),
sample an individual from space-time origin (0, 0) (uniformly)

Let Xn = position of her ancestor n generations ago:

Given ηstat and Xn = x , Xn+1 = y w. prob.

px−yη
stat
−n−1(y)

(
m −

∑
z λz−yη

stat
−n−1(z)

)+∑
y ′ px−y ′η

stat
−n−1(y ′)

(
m −

∑
z λz−y ′η

stat
−n−1(z)

)+

Question:
(Xn) is a random walk in a – relatively complicated – random
environment. Is it similar to an ordinary random walk when viewed over
large enough space-time scales?
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Spatial embedding of an ancestral line

Dynamics of an ancestral line

P
(
Xn+1 = y

∣∣Xn = x , ηstat
)

=
px−yη

stat
−n−1(y)

(
m −

∑
z λz−yη

stat
−n−1(z)

)+∑
y ′ px−y ′η

stat
−n−1(y ′)

(
m −

∑
z λz−y ′η

stat
−n−1(z)

)+
Remarks

Analysis of random walks in random environments (also in dynamic
random environments) is today a major industry.
Yet as far as we know, none of the general techniques developed so
far in this context is applicable.

In particular: The natural “forwards” time direction for the walk is
“backwards” time for the environment.

Observation: (Xn) is close to ordinary rw in regions where relative
variation of η−n−1(x) is small.
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Spatial embedding of an ancestral line

Large scale dynamics of an ancestral line

Xn = position of ancestor n generations ago of an individual sampled
today at origin in equilibrium

Theorem: LLN and (averaged) CLT

If m ∈ (1, 3), 0 < λ0 � 1, λz � λ0 for z 6= 0,

P
(1

n
Xn → 0

∣∣∣ η0(0) 6= 0
)

= 1 and E
[
f
(

1√
n

Xn

) ∣∣∣ η0(0) 6= 0
]
−→
n→∞

E
[
f (Z )

]
for f ∈ Cb(Rd), where Z is a (non-degenerate) d-dimensional normal rv.

The proof uses a regeneration construction
(and coarse-graining and coupling, in particular with directed percolation).
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Spatial embedding of an ancestral line

Idea for constructing regeneration times

Find time points along the path such that:

a cone (with fixed suitable base diameter

and slope)

centred at the current space-time
position of the walk covers the path
and everything it has explored so far
(since the last regeneration)

configuration ηstat at the base of the
cone is “good”

“strong” coupling for ηstat occurs inside
the cone

t0

t1

t2

t3

Then, the conditional law of future path increments is completely
determined by the configuration ηstat at the base of the cone
(= a finite window around the current position)
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Proof ideas and tools Intermezzo: Oriented percolation

ω(x , n), x ∈ Zd , n ∈ Z, i.i.d. Bernoulli(p)
Interpretation: ω(x , n) = 1 : (x , n) is open, otherwise closed

space Zd

tim
e

● ● ● ● ● ● ● ● ● ● ●

● ● ● ● ● ● ● ● ● ● ●

● ● ● ● ● ● ● ● ● ● ●

● ● ● ● ● ● ● ● ● ● ●

● ● ● ● ● ● ● ● ● ● ●

● ● ● ● ● ● ● ● ● ● ●

● ● ● ● ● ● ● ● ● ● ●

● ● ● ● ● ● ● ● ● ● ●

Open paths:

n < m, x , y ∈ Zd : (x , n)→ω (y ,m) if there exist x = x0, x1, . . . , xm−n = y
such that ‖xi − xi−1‖ ≤ 1 and ω(xi , n + i) = 1 for i = 0, . . . ,m − n,

C(x ,n) := {(y ,m) : y ∈ Zd ,m ≥ n, (x , n)→ω (y ,m)} is the (directed)
cluster of (x , n)

Write ξ(x , n) := 1(#C(x ,n) =∞), i.e. ξ(x , n) = 1 ⇐⇒ (x , n)→ω ∞

Remark (ξ(x ,−n))n∈Z is the discrete time contact process in its upper
invariant measure
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such that ‖xi − xi−1‖ ≤ 1 and ω(xi , n + i) = 1 for i = 0, . . . ,m − n

,

C(x ,n) := {(y ,m) : y ∈ Zd ,m ≥ n, (x , n)→ω (y ,m)} is the (directed)
cluster of (x , n)

Write ξ(x , n) := 1(#C(x ,n) =∞), i.e. ξ(x , n) = 1 ⇐⇒ (x , n)→ω ∞

Remark (ξ(x ,−n))n∈Z is the discrete time contact process in its upper
invariant measure
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Proof ideas and tools Intermezzo: Oriented percolation

Critical value

−40 −20 0 20 40

There exists pc ∈ (0, 1) such that

P(|C(0,0)| =∞) > 0 iff p > pc .

Theorem (Durrett 1984, “Folklore”)
If p > pc , P(C(0,0) reaches height n | #C(0,0) <∞) ≤ Ce−cn for some
c ,C ∈ (0,∞).
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Proof ideas and tools An auxiliary model

Auxiliary model: Definitions

Kω
n (x , y) probability kernels on Zd , finite range (say 1),

Kω
n (·, ·) compatible with Zd -symmetries in distribution

Kω
n (x , ·) depends only on

(
ω(x + z , n), ξ(x + z , n) : ‖z‖ ≤ R

)
for

some R ∈ N
(Recall that ξ’s are a [very non-local] function of ω’s.)

{ξ(x , n) = 1} ⊂
{
‖Kω

n (x , ·)− Kunif(x , ·)‖TV < εK
}

for some suitably
small εK > 0, where Kunif(·, ·) is the symmetric range 1 random walk
kernel

(We will assume p sufficiently close to 1)

Consider (Xn) walk in random environment given by Kω
n (·, ·), i.e.

P
(
Xn+1 = y

∣∣Xn = x , ω
)

= Kω
n (x , y)

Interpretation: {ξ(x , n) = 1} =̂ “ηstat has small fluctuations in a
neighbourhood of (x , n)”
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Proof ideas and tools An auxiliary model

Regeneration times, LLN and CLT

Assume εK � 1, p sufficiently close to 1

There exist random times 0 = T0 < T1 < T2 < · · · such that with
τn := Tn − Tn−1, Yn := XTn − XTn−1 ,

(Yn, τn)n∈N is an i.i.d. sequence,

E
[
τb1
]
<∞, E

[
‖Y1‖b

]
<∞ for some b > 2, E

[
Y1

]
= 0, Y1 is not

concentrated on a subspace

Corollary

(Xn) satisfies the law of large numbers and a central limit theorem with
non-trivial variance (when averaging over both ω and the walk).
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Proof ideas and tools An auxiliary model

Localising “negative” information

Let `(x , n) = length (in steps) of longest directed open path starting in
(x , n), with conventions `(x , n) = −1 if ω(x , n) = 0 and `(x , n) =∞ if
ξ(x , n) = 1

Put Dn = n + max
{
`(y , n) + 2 : ‖y − Xn‖ ≤ R, `(y , n) <∞

}
(Interpretation: At time Dn any “negative” future information deducible from

ξ(y , n) = 0 that the path has explored at time n is decided and does not affect

the future law any more.)

Put σ0 := 0, σi := min
{

m > σi−1 : max
σi−1≤n≤m

Dn ≤ m
}

,

note: σi are stopping times w.r.t. (Fn) where
Fn = σ

(
ω(·, k), k ≤ n, ξ in R-tube around X -path until step n

)
Lemma P

(
σi+1 − σi > k

∣∣Fσi ) ≤ Ce−ck

Pf idea:
{σi+1 − σi > k} enforces existence of finite clusters of combined heights ≥ k,

“positive” information about ξ = 1 contained in Fσi is harmless by the FKG

inequality for ξ
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Proof ideas and tools An auxiliary model

Dry clusters are small (when p suff. large)

Lemma

For any V = {(xi , ti ) : 1 ≤ i ≤ k} ⊂ Zd × Z with t1 < t2 < · · · < tk ,

Pp (ξ(x , t) = 0 for all (x , t) ∈ V ) ≤ ε(p)k

with ε(p)→ 0 when p ↗ 1.

Idea:
ηstat ≡ 0 on V enforces existence of finite clusters of combined heights ≥ k
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Proof ideas and tools An auxiliary model

Controlling “negative” information from “outside”

Ũ ⊂ Zd finite, symmetric
(η̃n) with values in {−1, 0, 1}, dynamics:

η̃n+1(x) =ω(x ,−n − 1)1{∃ y∈U+x : η̃n(y)=1}

(
1 + 1{∃ y ′∈Ũ+x : η̃n(y)=−1}

)
− 1{∃ y ′∈Ũ+x : η̃n(y)=−1},

note:

ξ(x ,−n) = η̃n(x) ∨ 0

a site x that would become 0 in (ξ(·,−n))n∈Z becomes −1 in η̃ if
there was a −1 in the Ũ-neighbourhood

can interpret this as a (rather particular) two-type contact process
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Proof ideas and tools An auxiliary model

“Everything is caught by the cluster started at (0, 0)”
(no information comes from outside at late times when p suff. large)

−40 −20 0 20 40

0
20

40
60

−40 −20 0 20 40

0
20

40
60

p = 0.77 p = 0.68
(Here, U = {−1, 0, 1}, Ũ = {−2,−1, 0, 1, 2})

Lemma (Durrett 1992)

For p suff. close to 1 there exists s = s(p) s.th. on {η{0} survives},

η̃n(x) = η
{0}
n (x) for all n ≥ N0, ‖x‖ ≤ ns/2

(and N0 has exponential tails).
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Proof ideas and tools An auxiliary model

An a priori bound on the speed

and cone time points

There is s > 0 (which can be chosen small when εK � 1, 1− p � 1)

such that P
(
‖Xn − Xj‖ > s(n − j)

)
≤ Ce−c(n−j) for 0 ≤ j ≤ n

(using the fact that the path cannot visit too many sites with ξ = 0 by finite

cluster size bounds and standard large deviations on sum of increments from sites

with ξ = 1)

This yields for L sufficiently large and s < a that any given n is with high
probability an (a, L)-cone time point for the (R-tube around the) path, i.e.

‖Xn − Xj‖ ≤ L− R + a(n − j), j = 0, 1, . . . , n

(The R-tube around the path up to time n is covered by a “cone” with base

diameter L, slope a and base point (Xn, n).)
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Proof ideas and tools An auxiliary model

Combining: Constructing regeneration times

To construct T1: t` ↗∞ a deterministic sequence ⊂ N with

Θ(0,−t`)
(
cone(a′, L′, t`)

)
⊂ Θ(x ,−t`+1)

(
cone(a, L, t`+1)

)
for ` ∈ N, ‖x‖ ≤ 2st`+1.
(This essentially enforces t` ≈ c` for a c > 1.)

If not previously successful, check at `-th
step if

ξ ≡ 1 in L′-window around (Xt` , t`)

`-th cone covers previously considered
cones and path,
and successful coupling occurs inside

If yes, T1 = t`, otherwise check at t`+1, etc.;
no. of attempts bounded by geometric RV

t0

t1

t2

t3

Translate to ηstat via percolation domination:
(ξ(x , n) = 1↔ ηstat−n (x) “good”)
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Outlook

Outlook

Technique is robust (applies to many spatial population models in
“high density” regime) but current result “conceptual” rather than
practical

We are hopeful that a “joint regeneration” construction can be
implemented to analyse samples of size 2 (or even more) on large
space-time scales.

Meta-theorem: “Everything”2 that is true for the neutral multi-type
voter model is also true for the neutral multi-type spatial logistic
model.

Suitably controlled joint regeneration also allows to derive an a.s.
version of the CLT, conditioned on a fixed realisation of ηstat.

2with a suitable interpretation of “everything”.
Examples: Clustering of neutral types in d = 1, 2; multiype equilibria exist in
d ≥ 3, P

(
two ind. sampled at distance x have same type

)
∼ C x2−d .
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Outlook

Outlook

In fact, such a “joint regeneration” construction has been carried out
for a simplified version of ηstat, the discrete time contact process.
Then, (Xn) is a directed random walk on the “backbone” of an
oriented percolation cluster.

The diffusion rate σ2 = σ2(p) = E
[
Y 2
1,1

]
/E[T1] ∈ (0,∞) is not very

explicit (though in principle accessible by simulations),

effective coalescence probability for two lineages still a “black box”
(at least to me).
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(Some) details can be found in

M. B., A. Depperschmidt, Ann. Appl. Probab. 17 (2007), 1777–1807

M. B., J. Černý, A. Depperschmidt, N. Gantert, Directed random walk on
an oriented percolation cluster, Electron. J. Probab. 18 (2013), Article 80

Thank you for your attention!
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