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Seed-banks in population genetics

Many species produce seeds or other dormant forms (e.g. spores) which
introduce strong age-structure / seed-banks in population genetic models.

Seed-banks can act as buffer against evolutionary forces such as
random genetic drift and selection; ‘bet-hedging’ against
environmental changes (see e.g. [Živković & Tellier 2011] for an
overview).

Their presence typically leads to significantly increased genetic
variability resp. effective population size.

Classical mechanisms such as fixation and extinction of traits become
more complex : Genetic types can disappear from the active
population while returning later due to the germination of seeds or
activation of dormant forms.
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Seed-banks in bacterial population genetics

Seed-bank effects have also been suggested to play an important role in
bacterial evolution ([Lennon & Jones 2011], [González et al
2014]):

For example, some bacteria can produce endospores or cysts that
remain viable for (in principle arbitrarily) many generations.

Further, bacteria may also store resp. retrieve genetic material from
their ‘environment’ (e.g. via horizontal gene transfer, say with the
help of phages), thus creating a highly extended gene pool
maintaining enormous genetic variability.
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Modeling and investingating seed-banks

Despite a series of empirical studies and several theoretical works
(including e.g. [Kaj, Krone & Lascoux 2001], [Tellier, Laurent,
Lainer, Pavlidis, Stephan 2011], [Živković & Tellier 2011]),
the mathematical modeling of seed-banks in population genetics is still
incomplete.

Probabilistic models (such as the Kingman coalescent) have proved to be
efficient and robust tools in quantitative population genetics.

Aim: Include seed-bank effects in classical Wright-Fisher population
models and classify their scaling limits.
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the mathematical modeling of seed-banks in population genetics is still
incomplete.

Probabilistic models (such as the Kingman coalescent) have proved to be
efficient and robust tools in quantitative population genetics.

Aim: Include seed-bank effects in classical Wright-Fisher population
models and classify their scaling limits.

Jochen Blath (TU Berlin) The seed-bank coalescent August 2014 4 / 47



Known results, I

[Kaj, Krone & Lascoux 2001] include weak seed-banks effects
in a classical Wright-Fisher model: In a population of size N, each
individual independently picks its parent uniformly from a randomly
chosen previous generation, say B (with law µ), back in time.

They show that if µ is supported on {1, 2, . . . ,m} (independent of N),
then the ancestral process converges, after the usual scaling, to a time
changed Kingman coalescent, with rates multiplied by β2 := 1/E[B]2.

An increase of E [B] thus decelerates the coalescent, leading to an
increase in the effective population size. However, as observed by
[ZT 2011], since the overall coalescent tree structure is retained, this
leaves the relative allele frequencies within a sample unchanged. We
speak of a weak seed-bank effect.

[ZT 2011] combine the above framework with fluctuating population
size.
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Known results, II

More generally, [BGCKS 2013] show that a sufficient condition for
convergence to the Kingman coalescent (with similar scaling and
rates) is that E [B] <∞ (again, with B resp. µ independent of N).

Further, they show that a long-range seed-bank effect can completely
alter genealogical behaviour: E.g., if the seed-bank age distribution µ
is heavy-tailed, say,

µ(k) = L(k)k−α,

for k ∈ N, where L is a slowly varying function, then if α < 1 the
expected time to the most recent common ancestor is infinite, and if
α < 1/2 two randomly sampled individuals do not have a common
ancestor at all w.p.p.
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How to model strong seed-bank effects

It can be argued that such extreme behaviour seems artificial (although
bacterial endospores may stay viable for essentially unlimited numbers of
generations).

Instead, as often in mathematical population genetics, one can turn to the
case µ = µ(N) and scale the seed-bank effect with population size.

In [GC et al 2014] and [BEGCK 2014], a seed-bank model with

µ = µ(N) = (1− ε)δ1 + εδNβ , β > 0, ε ∈ (0, 1).

is studied, and it is shown that for β < 1/4 the ancestral process
converges, after non-classical time-scaling by N1+2β, to the Kingman
coalescent.

Problem: Such models are highly non-Markovian. Problems with explicit
forward dynamics / limits.
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A new natural scaling limit?

To sum up, while there are some results for the weak seed-bank case, it
seems that the right scaling set-up in ‘stronger’ regimes is still missing.

In this talk (work in progress) we investigate a Markovian seed-bank model
forward in time and show that it has an interesting new ancestral scaling
limit, the seed-bank coalescent.
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The Wright-Fisher model with geometric seed-bank
component - notation

Consider a haploid population of fixed size N reproducing in fixed discrete
generations k = 0, 1, .... Assume that each individual carries a genetic type
from some type-space E , say E = {a,A}.

Further, assume that the population also sustains a seed-bank of constant
size M = M(N) in each generation, which consists of the dormant
individuals. For simplicity, we refer to the N ‘active’ individuals as plants
and to the M dormant individuals as seeds.

Given N,M ∈ N, let ε ∈ [0, 1] such that εN ≤ M and set δ := εN/M (i.e.,
δM = εN), and assume for convenience that all involved products and
fractions are integers.

Let [N] := {1, . . . ,N} and [N]0 := [N] ∪ {0}.
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The Wright-Fisher model with geometric seed-bank
component - dynamics

The N plants from generation 0 produce (1− ε)N plants in generation 1 by
multinomial sampling with equal weights (ordinary WF dynamics).

Additionally, δM = εN uniformly sampled seeds from the seed-bank of size
M in generation 0 ‘germinate’, that is, they turn into exactly one plant in
generation 1 each, and thus leave the seed-bank.

The plants from generation 0 are thus replaced by these (1− ε)N + δM = N
new active individuals, forming the plants in generation 1.

For the seed-bank, the N plants from generation 0 produce δM = εN seeds
by multinomial sampling, replacing those seeds that germinated.

The remaining (1− δ)M seeds from generation 0 remain inactive and stay in
the seed-bank.

Throughout reproduction, offspring and seeds copy/maintain the genetic
type of the parent.

Thus, in generation 1, we have again N plants and M seeds. This probabilistic

mechanism is then to be repeated independently in generations k = 2, 3, ...
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Picture: WF with seed-bank dynamics

Figure: Here, the genetic type of the third plant in generation 0 (highlighted in
grey) is lost after one generation, but returns in generation four via the seed-bank,
which acts as a buffer against genetic drift and maintains genetic variability.
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Formal definition, notation

Definition 1.1 (Wright-Fisher model with geometric seed-bank
component)

Fix pop.-size N ∈ N, seed-bank size M = M(N), genetic type space E and
parameters δ, ε as before. Given initial type configurations ξ0 ∈ EN and
η0 ∈ EM , let

ξk :=
(
ξk(i)

)
i∈[N]

, k ∈ N,

be the random genetic type configuration in EN of the plants in
generation k (obtained from the above mechanism), and

ηk :=
(
ηk(j)

)
j∈[M]

, k ∈ N,

be the genetic type configuration of the seeds in EM . We call the
discrete-time Markov chain (ξk , ηk)k∈N0 with values in EN × EM the type
configuration process of the Wright-Fisher model with geometric
seed-bank component.
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Remarks, scaling regime

Note that the offspring distribution of active individuals (both for the
number of plants and for the number of seeds) is exchangeable within
their respective sub-population.

Further, one immediately sees that the time that a seed stays in the
seed-bank is iid geometric with success parameter δ.

We will later let ε, δ (and M) scale with N, and in particular assume that
ε = ε(N) = c/N and N = K ·M(N) for some c ,K ∈ (0,∞). In this case,
the seed-bank age distribution is geometric with parameter cK/N.

Jochen Blath (TU Berlin) The seed-bank coalescent August 2014 13 / 47



Remarks, scaling regime

Note that the offspring distribution of active individuals (both for the
number of plants and for the number of seeds) is exchangeable within
their respective sub-population.

Further, one immediately sees that the time that a seed stays in the
seed-bank is iid geometric with success parameter δ.

We will later let ε, δ (and M) scale with N, and in particular assume that
ε = ε(N) = c/N and N = K ·M(N) for some c ,K ∈ (0,∞). In this case,
the seed-bank age distribution is geometric with parameter cK/N.

Jochen Blath (TU Berlin) The seed-bank coalescent August 2014 13 / 47



Frequency chains of the geometric seed-bank model
We now specialise to the bi-allelic case E = {a,A}.

Definition 1.2

Frequency chains Let

XN
k :=

1

N

∑
i∈[N]

1{ξk (i)=a} and Y M
k :=

1

M

∑
j∈[M]

1{ηk (j)=a}, k ∈ N0.

(1)

Both are discrete-time Markov chains taking values in

IN =
{

0,
1

N
,

2

N
, . . . , 1

}
resp. IM =

{
0,

1

M
,

2

M
, . . . , 1

}
.

Let Px ,y be the law of (XN ,Y M) with initial frequencies (x , y):

Px ,y ( · ) := P
(
·
∣∣XN

0 = x , Y M
0 = y

)
for (x , y) ∈ IN × IM

(with analogous notation for the expectation, variance etc).
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Transition probabilities of the geometric seed-bank model

The corresponding time-homogeneous transition probabilities can now be
characterized as follows:

Proposition 1.3

Let c = εN = δM. For (x , y) resp. (x̄ , ȳ) ∈ IN × IM , we have

px ,y : = Px ,y

(
XN
1 = x̄ , Y M

1 = ȳ
)

=
c∑

i=0

Px ,y (Z = i)Px ,y (U = x̄N − i)Px ,y

(
V = (ȳ − y)M + i

)
where Z ,U,V are r.v. independent under Px ,y , with distributions

Lx ,y (Z ) = HypM,c,yM , Lx ,y (U) = BinN−c,x , Lx ,y (V ) = Binc,x .

Here, HypM,c,yM denotes the hypergeometric distribution with parameters
M, c , yM and Binc,x is the binomial distribution with parameters c and x.
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Illustration

Figure: Here, Z = 1, U = 2 and V = 1
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Interpretation of transition probabilities

Remark 1.4

The random variables introduced in Proposition 1.3 have a simple
interpretation:

Z is the number of plants in generation 1 that are offspring of a seed of
type a in generation 0. This corresponds to the number of seeds of
type a that germinate (noting that, in contrast to plants, the
‘offspring’ of a germinating seed is always precisely one plant and the
seed vanishes).

U is the number of plants in generation 1 that are offspring of plants of
type a in generation 0.

V is the number of seeds in generation 1 that are produced by plants of
type a in generation 0.

The result now follows by construction since (in law),

XN
1 =

U + Z

N
, and Y M

1 = y +
V − Z

M
.
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The limiting generator of the allele frequency processes
For c ,K ∈ (0,∞) assume

ε = ε(N) =
c

N
, M = M(N) =

N

K
, and δ = δ(N) =

c

M(N)
=

cK

N
.

Proposition 1.5

For the above parameter choices, and test functions f ∈ C (3)([0, 1]2), and
for (x , y) ∈ IN × IM consider the discrete generator AN of (XN

k ,Y
M
k )k∈N:

AN f (x , y) := NEx ,y

[
f
(
XN
1 ,Y

M
1

)
− f (x , y)

]
.

Then,

lim
N→∞

AN f (x , y)

= c(y − x)
∂f

∂x
(x , y) + cK (x − y)

∂f

∂y
(x , y) +

1

2
x(1− x)

∂f 2

∂x2
(x , y).
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The scaling-limit of the allele frequency process

The result follows from the usual Taylor approximation for AN f (lengthy
details omitted). We arrive at the following

Corollary 1.6 (Wright-Fisher diffusion with seed-bank component)

Under the conditions of Proposition 1.5,

(XN
bNtc,Y

N
bNtc)t≥0 ⇒ (Xt ,Yt)t≥0

on D[0,∞)([0, 1]2), where (Xt ,Yt)t≥0 is a 2-dimensional diffusion solving

dXt = c(Yt − Xt)dt +
√

Xt(1− Xt)dBt ,

dYt = cK (Xt − Yt)dt, (2)

with X0 = x ,Y0 = y.
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Seed-bank size

Note that if the seed-bank is large (K close to 0), then Y changes only
slowly, in line with intuition.

If N/M(N)→ 0, this would lead to a constant contribution from an
‘infinite’ seed-bank, wheres in the regime M(N)/N → 0, the influence of
the seed-bank should vanish asymptotically.

Before we can further investigate the system (2), we derive an important
tool.
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The dual of the seed-bank frequency process

The classical Wright-Fisher diffusion is known to be dual to the block
counting process of the Kingman-coalescent.

Such dual processes are often extremely useful in the analysis of the
underlying system, and it is easy to see that our Wright-Fisher diffusion
with geometric seed-bank component also has a nice dual.
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The dual of the seed-bank frequency process

Definition 1.7

We define the block counting process of the seed-bank coalescent
(Nt ,Mt)t≥0 to be the continuous time Markov chain started in
(N0,M0) ∈ N2 with transitions

(n,m) 7→ (n − 1,m + 1) at rate cn

(n,m) 7→ (n + 1,m − 1) at rate cKm

(n,m) 7→ (n − 1,m) at rate

(
n

2

)

Denote by Pn,m the distribution of (Nt ,Mt)t≥0 if started in
(N0,M0) = (n,m), and denote the corresponding expected value by En,m.

Jochen Blath (TU Berlin) The seed-bank coalescent August 2014 22 / 47



Moment duality

It is easy to see that eventually , Nt + Mt = 1 (as t →∞), since the sum
M + N is a pure death process.

We now show that (Nt ,Mt)t≥0 is the moment dual of (Xt ,Yt)t≥0.

Theorem 1.8

For every (x , y) ∈ [0, 1]2 and every n,m ∈ N,

Ex ,y

[
X n
t Y m

t

]
= En,m

[
xNt yMt

]
.
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Proof of Theorem 1.8
Let f (x , y) := xnym =: f (n,m). Apply the generator A of (Xt ,Yt) to f :

Af (x , y)

= c(y − x)
df

dx
f (x , y) +

1

2
x(1− x)

d2f

dx2
f (x , y) + cK (x − y)

df

dy
f (x , y)

= c(y − x)nxn−1ym +
1

2
x(1− x)n(n − 1)xn−2ym + cK (x − y)xnmym−1

= cn(xn−1ym+1 − xnym) +

(
n

2

)
(xn−1ym − xnym)

+ cKm(xn+1ym−1 − xnym).

Note that the rhs is the precisely the generator of (Nt ,Mt)t≥0, denoted by
A, applied to f . So we conclude that

Af (x , y) = Af (n,m)

and the duality follows from standard arguments.
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The long-time behavior (in law)

The long-term behaviour of our system (2) is not obvious. While a
classical Wright Fisher diffusion {Zt}, given by

dZt =
√

Zt(1− Zt)dBt , Z0 = z ∈ [0, 1],

will get absorbed at the boundaries a.s. after finite time (in fact with finite
expectation), hitting 1 with probability z , this is more involved for our
frequency process in the presence of a strong seed-bank.

Obviously, (0, 0) and (1, 1) are absorbing states for (2).
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The long-time behavior (in law)

Nevertheless, one can still compute its ‘fixation probability’ as t →∞, in a
suitable sense (in law). We prepare this with a moment computation.

Proposition 1.9

All mixed moments of (Xt ,Yt)t≥0 solving (2) converge to the same finite
limit depending only on x , y ,K . More precisely, for each fixed n,m ∈ N,
we have

lim
t→∞

Ex ,y [X n
t Y m

t ] =
y + xK

1 + K
. (3)
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Proof of Proposition 1.9
Let (Nt ,Mt)t≥0 as in Definition 1.7, started in (n,m). Let T be the first
time at which there is only one particle left in the system (Nt ,Mt)t≥0,
that is,

T := inf
{

t > 0 : Nt + Mt = 1
}
.

Note that for any finite initial configuration (n,m), the positive stopping
time T is almost surely finite and has finite expectation.

Now, by our Duality-Theorem 1.8,

Ex ,y

[
X n
t Y m

t

]
=En,m

[
xNt yMt

]
=En,m

[
xNt yMt

∣∣∣T ≤ t
]
Pn,m{T ≤ t}

+ En,m
[
xNt yMt

∣∣∣T > t
]
Pn,m{T > t}

=
(

xPn,m
{

Nt = 1}+ yPn,m{Mt = 1
})

Pn,m{T ≤ t}

+ En,m
[
xNt yMt

∣∣∣T > t
]
Pn,m{T > t}.
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Proof of Proposition 1.9, continued

Note that the last term on the rhs vanishes as t →∞, since the
expectation is bounded by 1.

Further, the stationary distribution of a single particle, jumping between
the two states ‘plant’ and ‘seed’ at rate c resp. cK , is given by
(K/(1 + K ), 1/(1 + K )), hence we arrive at

lim
t→∞

Ex ,y

[
X n
t Y m

t

]
=

xK

1 + K
+

y

1 + K
,

independent of the initial choice of n,m, as required.
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The long-time behavior (in law), II

Corollary 1.10 (Fixation in law)

Given c ,K and (X0,Y0) = (x , y) ∈ [0, 1]2, we have that

lim
t→∞

L
(
Xt ,Yt

)
=

y + xK

1 + K
δ(1,1) +

1 + (1− x)K − y

1 + K
δ(0,0).

Note that this is in line with the classical results for the Wright-Fisher
diffusion:

As K →∞ (that is, the seed-bank becomes small compared to the plant
population), the fixation probability of a alleles approaches x .

Further, if K becomes small (so that the seed-bank population dominates
the plant population), the fixation probability is governed by the initial
fraction y of a-alleles in the seed-bank.
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Proof of the long-time result

Sketch: It is easy to see that the only two-dimensional random variable,
for which all moments are constant equal to xK+y

1+K , has law

y + xK

1 + K
δ(1,1) +

1 + (1− x)K − y

1 + K
δ(0,0).

Indeed, uniqueness follows from the moment problem, which is uniquely
solvable on [0, 1]2. Convergence in law follows from convergence of all
moments.
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Almost sure behaviour?

Note that the above result does not fully explain the pathwise/almost-sure
picture.

Indeed, (vaguely speaking) we expect that absorption will not happen in
finite time, since the dual block counting process of the seed-bank
coalescent, started from an infinite initial state, does not come down from
infinity , which means that the total (infinite) population does not have a
most-recent common ancestor (in progress).

Thus, initial genetic variability in an infinite population should never be
completely lost.
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The genealogy of a sample

In view of the form of the block counting process, it is now easy to guess
the stochastic process describing the limiting gene genealogy of a sample
taken from the Wright-Fisher model with geometric seed-bank component.
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The genealogy of a sample and partitions with flags

For k ≥ 1, let Pk be the set of partitions of [k]. For π ∈ Pk let |π| be the
number of blocks of the partition π. We define the space of marked
partitions to be

P{p,s}k =
{
π = (πa11 , . . . , π

a|π|
|π| ) : (πi ) ∈ Pk , (ai ) ∈ {s, p}|π|

}
.

This enables us to attach to each partition block a flag which can be
either ‘plant’ or ‘seed’ (p or s), so that we can trace whether an ancestral
line is currently in the active or dormant part of the population.

For example, for k = 5, an element π of P{p,s}k is the marked partition

π =
{
{1, 3}p{2}s{4, 5}p

}
.
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The genealogy of a sample and partitions with flags, II

For two marked partitions π, π′ ∈ P{p,s}k we write π � π′ if π′ can be
obtained by merging exactly 2 blocks of π carrying the p-flag, and the
resulting block in π′ again carries a p-flag. For example{

{1, 3}p{2}s{4, 5}p
}
�
{
{1, 3, 4, 5}p{2}s

}
.

We use the notation π 1 π′ if π′ can be obtained by changing the flag of
precisely one block of π, for example{

{1, 3}p{2}s{4, 5}p} 1 {{1, 3}s{2}s{4, 5}p
}
.

Jochen Blath (TU Berlin) The seed-bank coalescent August 2014 34 / 47



The seed-bank coalescent

Definition 1.11

For k ≥ 1 and c ,K ∈ (0,∞) we define the k-seed-bank coalescent

(Π
(k)
t )t≥0 with seed-bank intensity c and seed-bank size 1/K to be the

continuous time pure-jump Markov process with values in P{p,s}k , with
transitions:

π → π′ at rate 1 if π � π′,
π → π′ at rate c if π 1 π′ and one p is replaced by one s,

π → π′ at rate cK if π 1 π′ and one s is replaced by one p.

If c = K = 1, we speak of the standard k−seed-bank coalescent.
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The seed-bank coalescent, II

Note that the transitions rates of the seed-bank coalescent are consistent
when restricting from k + 1 to k . Hence, we may extend it to infinte
marked partitions.

Definition 1.12

We may define the standard seed-bank coalescent, (Πt)t≥0 = (Π
(∞)
t )t≥0,

with values in P{p,s}∞ , as the unique Markov process distributed obtained
as projective Kolmogoroff limit as k →∞ of the laws of the standard
k-seed-bank coalescent (and similarly for the projective limit of the
seed-bank coalescent with seed-bank intensity c and seed-bank size 1/K ).
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The seed-bank coalescent - Illustration

Figure: A possible realisation of the standard 10-seed-bank coalescent. Dotted
lines indicate ‘inactive lineages’ (carrying an s-flag, which are prohibited from
merging). At the time marked with the dashed horizontal line the process is in
state {{1, 2}s{3}p{4, 5, 6, 7, 8}p{9, 10}s}.
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The seed-bank coalescent as scaling limit

The seed-bank coalescent appears as the limiting genealogy of a sample
taken from the Wright-Fisher model with geometric seed-bank component
in the same way as the Kingman coalescent in the classical Wright-Fisher
model.

Indeed, consider the genealogy of a sample of n (� N) individuals,

sampled from present generation 0. Denote by Π
(N,n)
i ∈ P{p,s}n the

configuration of the genealogy at generation −i , where two individuals

belong to the same block of the partition Π
(N,n)
i if and only if their

ancestral lines have met before generation −i , and the flag s or p indicates
whether the ancestor of generation −i is a plant or a seed.
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The seed-bank coalescent as scaling limit

Possible events:

One (or several) plant individuals become seeds in the previous
generation

One (or several) seeds become plants in the previous generations

Two (or more) individuals have the same ancestor in the previous
generation (which by construction is necessarily a plant), meaning
that their ancestral lines merge

Any possible combination of these three events.

Jochen Blath (TU Berlin) The seed-bank coalescent August 2014 39 / 47



The seed-bank coalescent as scaling limit

It turns out that only three possible transitions play a role in the limit as
N →∞, and the others have a probability that is of smaller order.

Proposition 1.13

Under the assumption of Proposition 1.5, assume that n� N and

Π
(N,n)
0 = {{1}p, ..., {n}p}. Then for π, π′ ∈ P{p,s},

P
(
Π

(N,n)
i+1 = π′

∣∣Π
(N,n)
i = π

)
=


1
N + O(N−2) if π � π′,
c
N + O(N−2) if π 1 π′ and a p is rpld by an s,
cK
N + O(N−2) if π 1 π′ and an s is rpld by a p,

O(N−2) otherwise.
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The seed-bank coalescent as scaling limit

Standard arguments now give the following:

Corollary 1.14

For any n� N, under the assumptions of Proposition 1.5, for (Π
(N,n)
bNtc )

converges weakly as N →∞ to the seed-bank coalescent (Π
(n)
t ) started

with n plants.
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Properties of the seed-bank coalescent (in progress)

It is not surprising that the seed-bank coalescent behaves very different
from a classical Kingman coalescent.

We illustrate this with two examples.
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Coming down from infinity

The notion of coming down from infinity was introduced by [Pitman
1999] and [Schweinsberg 2000]. They say that an exchangeable
coalescent process comes down from infinity if the corresponding block
counting process (of an infinite sample) has finitely many blocks
immediately after time 0 (i.e. for all t > 0 a.s.).

Further, the coalescent is said to stay infinite if the number of blocks is
infinite for all t ≥ 0 a.s.

[Schweinsberg] also gives a necessary and sufficient criterion for
so-called Lambda-coalescents to come down from infinity. In particular,
the Kingman coalescent does come down from infinity.

However, note that the seed-bank coalescent does not belong to the class
of Lambda-coalescents, so that Schweinsberg’s result does not
immediately apply.
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Coming down from infinity

Theorem 1.15 (in progress)

The seed bank coalescent does not come down from infinity. In fact, its
block-counting process (Nt ,Mt)t≥0 stays infinite, that is, for each infinite
starting configuration (N0,M0) with N0 =∞,

P
{

Nt + Mt =∞, for all t > 0
}

= 1.

Of course, this has to do with lineages immediately jumping into the
seed-bank. Proof omitted.
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Time to the most recent common ancestor

In view of the previous subsection it is now quite obvious that the seed
bank causes a relevant delay in the time to the most recent common
ancestor.

Definition 1.16

Let k ∈ N ∪ {∞}. We define the time to the most recent common
ancestor of a sample of n plants to be

TMRCA[n] = inf{t > 0 : |Π(k)
t | = 1 given that Π0 = {{1}p...{n}p}},

or equivalently

TMRCA[n] = inf{t > 0 : (Nt ,Mt) = (1, 0) given that (N0,M0) = (n, 0)}
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Time to the most recent common ancestor

Theorem 1.17 (in progress)

For all c ,K ∈ (0,∞), the seed bank coalescent satisfies

lim inf
n→∞

E[TMRCA[n]]

log log n
> 0. (4)

This should be compared with a similar result for the Bolthausen-Sznitman
coalescent in [Goldschmidt & Martin 2005]
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Finally...

... thank you for your attention!
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