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Population with asexual reproduction
A genome with L loci ( = location of genes)

There are two viable types (alleles) for each gene: the wild type (0)
and the mutated type (1)

During reproduction, when a mutation occurs, only one gene is
affected.

0 −→ 1: forward mutation 1 −→ 0: backward mutation
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Low mutation rate, population not too large

When a mutation occurs,

it might grow, and then
it might disappear,
it might replace the previous type (fixation),

but a new mutation has no time to appear
before the population is homogeneous again
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Evolutionary paths and Hypercube
Big simplification:

0 0 0 0 00000000 0 0 0 00000000 0 1 0 000000001 1

Evolutionary path = walk on the hypercube

00 0

1 11

(0 −→ 1: forward mutation 1 −→ 0: backward mutation)

Gillespie 1983, Kauffman Levin 1987

Éric Brunet (UPMC, LPS-ENS) Open paths on the hypercube Eurandom 2014 4 / 31



Evolutionary paths and Hypercube
Big simplification:

0 0 0 0 00000000 0 0 0 00000000 0 1 0 000000001 1

Evolutionary path = walk on the hypercube

00 0

1 11

(0 −→ 1: forward mutation 1 −→ 0: backward mutation)

Gillespie 1983, Kauffman Levin 1987

Éric Brunet (UPMC, LPS-ENS) Open paths on the hypercube Eurandom 2014 4 / 31



Fitness and selection

Evolutionary path = walk on the hypercube

To each of the 2L genomes one associates a fitness value
Assume strong selection

A transition (= a mutation fixates) may occur only if the fitness value
increases

11 1

00 0

10.43

0.550.07

0.330.76

0.17 0.38

Open or accessible evolutionary path =
walk on the hypercube such that fitness values increase along the walk
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Choosing the fitness values
Flat landscape: fitness value proportional to
number of mutations. All forward paths are
accessible.
Rough landscape: no clear relationship
between fitness value and number of
mutations. Lots of local extrema, valleys
and dead ends.

11 1

00 0

10.43

0.550.07

0.330.76

0.17 0.38

Roughest landscape of all
the House of Cards model

Fitness values are independent random numbers

Kingman 1978

The question: can the population reach the fittest possible state?
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Summary of the model
For an asexual population
which is not too large, has
low mutation rate and where
selection is high, if one
assumes that fitness values
are distributed according to
the House of Cards model, is
there an accessible or open
evolutionary path which leads
to the fittest possible
genome?

Consider a L-hypercube.
Each site is assigned an independent
random value, its fitness.

Choose location of the fittest site; give
it a fitness value 1
The other sites get independent uniform
fitness values between 0 and 1

A path is said to be open if the fitness
values increase along it.
One starts from site (0, 0, 0, . . . , 0).

Is there an open path to the fittest site ? And how many are there ?

Remarks:

The answer does not depend on the (continuous) distribution

The fittest site is uniformly chosen among the 2L sites
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Results

When one allows only forward mutations
When one allows both forward and backward mutations
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Only forward mutations

No backward mutation, only 0→ 1 and never 1→ 0, path length is L.
Starting from (0, 0, 0, . . . , 0), assume fittest site is (1, 1, 1, . . . , 1)

Total number of paths is L!
Probability a given path is open is 1/L!

E(nb of open paths) = 1

But... Conditionally on the event that starting position has given fitness x
Probability a given path is open is (1− x)L−1/(L− 1)!

Ex (nb of open paths) = L(1− x)L−1


∝ L If x / 1

L

∝ 1 If x ≈ ln L
L

� 1 If x � ln L
L

P(nb of open paths 6= 0) ≤ ln L + Cste
L

Nowak Krug 2013, Hegarty Martinsson 2012
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Only forward mutations
Assume fittest site is (1, 1, 1, . . . , 1).

Theorem (Hegarty-Martinsson 2012)
As L→∞,

P(nb of open paths 6= 0) ∼ ln L
L ,

with a sharp transition for existence of paths around starting fitness ln L
L

If a(L)→∞ (but, typically, a(L)� ln L),

P
ln L−a(L)

L (nb of open paths 6= 0)→ 1
(
If starting position has a fitness below
(ln L)/L, there are some open paths.

)
P

ln L+a(L)
L (nb of open paths 6= 0)→ 0

(
If starting position has a fitness above

(ln L)/L, there are no open paths.

)
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Only forward mutations — summary
Assume fittest site is (1, 1, 1, . . . , 1).

E(nb of open paths) = 1 (a lie: typical nb of open paths 6= 1)
Ex (nb of open paths) = L(1− x)L−1 (truth: correct order of magnitude)

P(nb of open paths 6= 0) ∼ ln L
L (value of x for which Ex (. . .) ≈ 1)

Theorem (Berestycki-Brunet-Shi 2013)
If x = X

L , as L→∞,

nb of open paths
L

in law−−−→ e−X × E × E ′

where E and E ′ are two independent exponential numbers.
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Results

When one allows only forward mutations
When one allows both forward and backward mutations

For large L, when the location of the fittest site is random
There are no open paths is starting fitness is larger than 0.27818 . . ..
There are open paths otherwise. (Only a conjecture!)

When fittest site is (1, 1, 1, . . . , 1),
critical value is 0.11863 . . .

L = 30

L = 25

L = 20

L = 15

L = 10

L = 30L = 25L = 20L = 15L = 10

0.30.250.20.150.10.050

1

0.8

0.6

0.4

0.2

0
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Paths with forward and backward mutations
We allow paths to do 0→ 1 or 1→ 0. Assume fittest site is (1, 1, 1, . . . , 1).

nb of self-avoiding paths︷ ︸︸ ︷

0 backstep length L

aL,0 = L!

1 backstep length L + 2

aL,1 = L!× L(L−1)(L−2)
6

2 backsteps length L + 4

aL,2 = L!× (L−1)(L−2)(5L4+3L3+34L2−264L+180)
360

p backsteps length L + 2p

aL,p ∼ L!× L3p

6pp! (p fixed, L large)

aL = aL,0 + aL,1 + aL,2 + · · · = total nb of self-avoiding paths.

00 0 00 0 00 0

1 111 111 1111

0 0

0 1

a1 = 1, a2 = 2, a3 = 18, a4 = 6 432, a5 = 18 651 552 840

Asymptotically, ec×2L ≤ aL ≤ ec′×(ln L)2L How many are open ?
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Paths with forward and backward mutations
Fittest site is (1, 1, 1, . . . , 1)

E(nb of open paths) =
∑

p
aL,p

1
(L + 2p)!

But. . .

Conditionally on the event that starting position has given fitness x

Ex (nb of open paths) =
∑

p
aL,p

(1− x)L+2p−1

(L + 2p − 1)!

Theorem (Berestycki-Brunet-Shi 2013)[
Ex (nb of open paths)

]1/L
−−−→
L→∞

sinh(1− x).

Corollary: if x > 1− sinh−1(1)︸ ︷︷ ︸
0.11863...

, Px (nb of open paths 6= 0)→ 0.

Unproved speculation: Ex (nb of open paths) ∼ φ(x)L
[
sinh(1− x)

]L.
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Generalization and conjecture
Fittest site is (1, 1, 1, . . . , 1):

[
Ex (nb of open paths)

] 1
L → sinh(1− x)

No open path if x > 1− sinh−1(1)︸ ︷︷ ︸
0.11863...

Fittest site at distance αL from (0, 0, 0, . . . , 0):[
Ex (nb of open paths)

] 1
L → sinh(1− x)α cosh(1− x)1−α

Fittest site is randomly chosen:
[
Ex (nb of open paths)

] 1
L →

√
sinh(2− 2x)

2

No open path if x > 1− 1
2 sinh−1(2)︸ ︷︷ ︸
0.27818...

Conjecture
Expectations are telling the truth. Px (nb of open paths 6= 0)→ 1 if
x < x∗ with x∗ given above. Furthermore, P(nb of open paths 6= 0)→ x∗
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Outline of proof
Forward and backward mutations, fittest is (1, 1, 1, . . . , 1).

[
Ex (nb of open paths)

] 1
L =

[∑
p

aL,p
(1− x)L+2p−1

(L + 2p − 1)!

] 1
L

→ sinh(1− x)

Code paths as sequence of numbers

00 0 00 0 00 0

1 11 1 11 1 11

1,2,3 1,2,1,3,1 1,2,1,3,2,1,2
A path in aL,p has a sequence of length L + 2p
A path reaches (1, 1, 1, . . . , 1) if each number between 1 and L
appears oddly many times in the sequence
A path is self-avoiding if in any non-empty substring, at least one
number appears oddly many times
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Outline of proof
Strategy: mL,p ≤ aL,p ≤ ML,p

ML,p counts all the paths of length L + 2p to (1, 1, 1, . . . , 1), even
self-intersecting ones
mL,p counts all the paths such that L does not appear on two
consecutive positions and such that if all the L are removed, what
remains is in mL−1,p′

Example
m3,0: 123 132 213 231 312 321
a3,0: 123 132 213 231 312 321
M3,0: 123 132 213 231 312 321
m3,1: 31323 32313
a3,1: 12131 13121 21232 23212 31323 32313
M3,1: 12131 13121 21232 23212 31323 32313 11123 12113 . . .
m3,2:
a3,2: 1213212 1312313 2123121 2321323 3132131 3231232
M3,2: 1213212 1312313 2123121 2321323 3132131 3231232 1211333 . . .
(M3,1 = 60, M3,2 = 4920. . . )
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a3,2: 1213212 1312313 2123121 2321323 3132131 3231232
M3,2: 1213212 1312313 2123121 2321323 3132131 3231232 1211333 . . .
(M3,1 = 60, M3,2 = 4920. . . )
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Outline of proof
Strategy: mL,p ≤ aL,p ≤ ML,p
The paths in mL,p (resp. ML,p) have the property that if all occurrence of
L is removed, what remains is in mL−1,p′ (resp. ML−1,p′).

ML+1,p =
p∑

q=0

(
L + 1 + 2p
2q + 1

)
ML,p−q, mL+1,p =

p∑
q=0

[
L + 1 + 2p
2q + 1

]
mL,p−q

(ML+1,p: length L + 1 + 2p. Number L + 1 appears 2q + 1 times (odd). Fill in the
remaining with a path in ML,p−q of length L + 2p − 2q.)[

N
P

]
:=
(nb of ways of choosing P items out of N

without taking two consecutive items

)
=
(

N − P + 1
P

)

GL(X ) :=
∑

p
ML,p

XL+2p

(L + 2p)! =
[
sinhX

]L
Ex (nb of open paths) =

∑
p

aL,p
(1− x)L+2p−1

(L + 2p − 1)! ≤ G ′L(1− x)
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When only forward steps are allowed

Forward steps only are allowed
Fittest site is (1, 1, 1, . . . , 1)
Starting site (0, 0, 0, . . . , 0) has fitness x = X/L
L→∞
1
L

(
nb of open paths if starting fitness is x = X

L

)
→ e−X × E × E ′

with E and E ′ two independent exponential variables

One already knows that
E

X
L (nb of open paths) = L(1− x)L−1 ∼ Le−X

There are indeed typically ∝ L open paths
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Hypercube vs Tree

Hypercube is hard; try a tree!
1st step: L choices; 2nd step: L− 1 choices; 3rd step: L− 2 choices; . . .

0

0.59 0.90 0.01 0.83

0.040.180.950.660.480.220.07 0.270.710.100.070.10

0.11 0.26 0.29 0.23 0.84 0.67 0.39 0.22 0.01 0.57 0.32 0.12 0.30 0.49 0.05 0.90 0.82 0.83 0.10 0.72 0.770.83 0.08 0.49

111111111111111111111111

E
X
L
[
nb of open paths

]
= L(1− x)L−1 ∼ Le−X same for tree or hypercube!

E
X
L
[
(nb of open paths)2] ∼

2L2e−2X (tree)

4L2e−2X (hypercube)
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On the tree
0

0.59 0.90 0.01 0.83

0.040.180.950.660.480.220.07 0.270.710.100.070.10

0.11 0.26 0.29 0.23 0.84 0.67 0.39 0.22 0.01 0.57 0.32 0.12 0.30 0.49 0.05 0.90 0.82 0.83 0.10 0.72 0.770.83 0.08 0.49

111111111111111111111111

(Nb of open paths) =
∑
|σ|=1

(nb of open paths going through σ)

Sum of uncorrelated terms (because it is a tree), generating function

G(λ, x , L) := Ex(e−λ(nb of open paths))

G(λ, x , L) =
[

x +
∫ 1

x
dy G(λ, y , L− 1)

]L
, G(λ, x , 1) = e−λ

lim
L→∞

G
(µ

L ,
X
L , L

)
=?
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On the tree, second try
0

0.59 0.90 0.01 0.83
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0.11 0.26 0.29 0.23 0.84 0.67 0.39 0.22 0.01 0.57 0.32 0.12 0.30 0.49 0.05 0.90 0.82 0.83 0.10 0.72 0.770.83 0.08 0.49

111111111111111111111111

Idea: the first steps determine everything

Θ = (nb of open paths), Θk = E(Θ|Fk), Fk = (info up to level k)

Θk =
∑
|σ|=k

1{σ open} (L− k)(1− xσ)L−k−1︸ ︷︷ ︸
expected nb of open

paths through σ

Θ1 = 3(1− 0.59)2 + 3(1− 0.90)2 + 3(1− 0.01)2 + 3(1− 0.83)2 = 3.5613
Θ2 = 2(1− 0.22)1 + 2(1− 0.48)1 + 2(1− 0.66)1 + 2(1− 0.95)1 = 3.38
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Θk =
∑
|σ|=k

1{σ open} (L− k)(1− xσ)L−k−1︸ ︷︷ ︸
expected nb of open

paths through σ

Θ1 = 3(1− 0.59)2 + 3(1− 0.90)2 + 3(1− 0.01)2 + 3(1− 0.83)2 = 3.5613
Θ2 = 2(1− 0.22)1 + 2(1− 0.48)1 + 2(1− 0.66)1 + 2(1− 0.95)1 = 3.38
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On the tree, second try

Θ = (nb of open paths), Θk = E(Θ|Fk), Fk = (info up to level k)

Intuitively, Θk ≈ Θ if

E
[

Var(Θ|Fk)

]

is small

lim
L→∞

P
X
L
[Θ

L < z
]

= lim
k→∞

lim
L→∞

P
X
L
[Θk

L < z
]
if lim

k→∞
lim

L→∞
E

X
L

[
Var

[Θ
L

∣∣∣Fk
]]

= 0

But (sum over pairs of paths):

lim
L→∞

E
X
L

[
Var

[Θ
L

∣∣∣Fk
]]

= e−2X

2k

In the L→∞, k →∞ limit, Θ/L and Θk/L have the same distribution
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On the tree, second try

Θ = (nb of open paths), Θk = E(Θ|Fk), Fk = (info up to level k)
We want to write a generating function.

For Θ, we used
Θ =

∑
|σ|=1

(nb of open paths through σ)

Now, for Θk , we use
Θk =

∑
|σ|=1

1{xσ>x}(“Θk−1” of the L− 1 tree rooted on σ)

New generating function:

Gk(λ, x , L) := Ex(e−λΘk
)

=
[
x +

∫ 1
x dy Gk−1(λ, y , L− 1)

]L
=
[
1−

∫ 1
x dy

(
1− Gk−1(λ, y , L− 1)

)]L
G0(λ, x , L) = e−λL(1−x)L−1
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On the tree, second try
Gk(λ, x , L) := Ex(e−λΘk

)
=
[
1−

∫ 1

x
dy
(
1− Gk−1(λ, y , L− 1)

)]L
G0(λ, x , L) = e−λL(1−x)L−1

Gk
(µ

L ,
X
L , L

)
= E

X
L
(
e−µ

Θk
L
)

=
[
1− 1

L

∫ L

X
dY

(
1− Gk−1

(µ
L ,

Y
L , L− 1

))]L
G0
(µ

L ,
X
L , L

)
= e−µ

(
1−X

L

)L−1

One can then prove that Fk(µ,X ) = lim
L→∞

Gk
(µ

L ,
X
L , L

)
exists and

Fk(µ,X ) = exp
[
−
∫ ∞

X
dY

(
1−Fk−1(µ,Y )

)]
, F0(µ,X ) = exp

(
−µe−X )

Fk is the generating function of lim
L→∞

Θk
L when starting fron X

L .

Take k →∞:

lim
L→∞

E
X
L
(
e−µ

Θ
L
)

= lim
k→∞

lim
L→∞

E
X
L
(
e−µ

Θk
L
)

=

lim
k→∞

Fk(µ,X ) = 1
1 + µe−X

On the tree, starting from x = X
L ,

Θ
L

in law−−−→
L→∞

e−X × E
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Back to the hypercube
Same trick:

Θk = E(Θ|Fk), Fk = (info in the k first and k last levels)

Again

lim
L→∞

P
X
L
[Θ

L < z
]

= lim
k→∞

lim
L→∞

P
X
L
[Θk

L < z
]
if lim

k→∞
lim

L→∞
E

X
L

[
Var

[Θ
L

∣∣∣Fk
]]

= 0

The expectation of the conditional variance can be computed and it works.

Θk =
∑
|σ|=k

∑
|τ |=L−k

nσmτ1{τ reachable from σ}1{xσ<xτ}(L−2k)(xτ−xσ)L−2k−1

nσ =nb of open paths from (0, ..., 0) to σ; mτ =nb from τ to (1, ..., 1)

Θ̃k :=
∑
|σ|=k

∑
|τ |=L−k

nσmτ L(xτ − xσxτ )L−2k−1

Θ̃k > Θk , but not that much: lim
L→∞

E
X
L
[Θk

L
]

= lim
L→∞

E
X
L
[ Θ̃k

L
]

Θ̃k/L and Θk/L have the same distribution for large L.
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Back to the hypercube

Θ̃k :=
∑
|σ|=k

∑
|τ |=L−k

nσmτL(xτ − xσxτ )L−2k−1

Θ̃k
L =

∑
|σ|=k

nσ(1− xσ)L−2k−1

 ∑
|τ |=L−k

mτ (xτ )L−2k−1


First factor: beginning of the hypercube. Second factor: end of the
hypercube. Terms are independent and symmetrical if X = 0.
Last step: prove that

φk :=
∑
|σ|=k

nσ(1− xσ)L−2k−1 in law−−−−−−−−−−→
L→∞ then k→∞

e−XE

Intuition: with k fixed and L→∞, loops become negligible, and the
beginning of the hypercube looks like the beginning of the tree. So φk and
Θtree

k /L have the same large L distribution.
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Thank you

ArXiV 1304.0246 ArXiV 1401.6894

Éric Brunet (UPMC, LPS-ENS) Open paths on the hypercube Eurandom 2014 31 / 31


	The model we consider
	Results
	Outline of proofs

