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Adaptive dynamics

Adaptive dynamics

Darwinian evolution: Three main ingredients

• Heredity: transmissions of individual characteristics from a
generation to the next one.

• Mutation: cause of the variability in individual characteristics.

• Selection: consequence of the interactions between individuals
and their environment, including the rest of the population
(ecology).

Adaptive dynamics (since the 90s): Hofbauer and Sigmund (1990),
Metz, Geritz et al. (1992,1996), Dieckmann and Law (1996). . .

• Focus on the interplay between ecology and evolution

• Ecological interactions modeled in detail

• Heredity is simplified as much as possible: asexual (clonal)
reproduction
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Adaptive dynamics

Adaptive dynamics

 Density-dependent individual-based models where no fitness is
given. The fitness landscape has to be constructed from the
parameters of the model.

 New phenomenon of evolutionary branching (Metz et al., 1996)

• Transition from a population concentrated around a single
phenotype to a population concentrated around several distinct
phenotypes, still under ecological interaction

• Mechanism of diversification

• Can lead to speciation without geographical separation
(Dieckmann and Doebeli, 1999)

 Three biological assumptions (Metz et al., 1996):

• large populations

• rare mutations

• small mutation steps
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Adaptive dynamics

Evolutionary banching



Biological context The model A stochastic approach A PDE approach Third approach Conclusion

The model

Individual-based model

Birth-death-competition-mutation process (Metz et al. 1996,
Bolker-Pacala 97, Kisdi 99, Dieckmann-Law 00, Doebeli-Dieckmann
01, Fournier-Méléard 04, C.-Ferrière-Méléard 06. . . ).

• Each individual characterized by a continuous phenotypic trait
x ∈ X ⊂ R (individual size, age at maturity, rate of food
intake. . . ).

• K scales the size of the population

• µ scales the probability of mutation

• σ scales the size of mutation steps

• At time t , the population is composed of NK (t) individuals with
weights 1

K and traits x1, . . . , xNK (t) ∈ X :

νKt =
1

K

NK (t)∑
i=1

δxi .
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The model

Transition rates for an individual with trait x

• Reproduction at rate b(x ):
• With probability 1− µ, clonal reproduction (offspring with trait

x).
• With probability µ, mutation, and the mutant trait is x + σH ,

where H ∼ m(h)dh, symmetric w.r.t. 0 (e.g. Gaussian
distribution).

• Death without competition at rate d(x ).

• Death from competition with any other individual of trait y at
rate 1

K c(x , y).

 an individual with trait x dies at density dependent rate

d(x ) +
1

K

NK (t)∑
i=1

c(x , xi)− c(x , x )

= d(x ) +

∫
X

c(x , y)

(
νKt (dy)− 1

K
δx (dy)

)
.
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The model

On the limit K → +∞
Assume b(x ) ≡ b, d(x ) ≡ d and c(x , y) ≡ c (neutral case).
Then the total number of individuals N K

t is a Markov birth and death
process with

• birth rate bn

• death rate dn + cn n−1
K when N K

t = n.

It is well known that N K
t /K converges when K → +∞ to the solution

of the logistic equation

ṅ = n(b − d − cn).

Remark: also true if νK0 → n0δx and µ = 0, with b = b(x ), d = d(x )
and c = c(x , y) (monomorphic case). We will use the notation

n̄(x ) =
b(x )− d(x )

c(x , x )

the equilibrium of the logistic equation (monomorphic equilibrium).
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Example

Example

Roughgarden (1976,1979), Dieckmann-Doebeli (1999)

• X = [−2, 2] d(x ) ≡ 0 uK = 1 p(x ) = p.

• m(h)dh = N (0, 1) (conditioned on x + h ∈ X ).

• b(x ) = exp
(
− x2

2σ2
b

)
, maximum at 0.

• Symmetric competition for resources:

α(x , y) = α(x − y) = exp

(
− (x − y)2

2σ2
α

)
.
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Example

Simulations

µ = 0.1, K = 1000, σ = 0.01,
σb = 0.9, σα = 1.0.

µ = 0.1, K = 1000, σ = 0.01,
σb = 0.9, σα = 0.7.
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Rare mutations

Simulations: rare mutations

µ = 0.0001, K = 1000,
σ = 0.08, σb = 0.9, σα = 1.0.

µ = 0.0001, K = 1000,
σ = 0.08, σb = 0.9, σα = 0.7.
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Lotka-Volterra systems

Limit of rare mutations: Metz et al. 1996

• The selection process has sufficient time between two mutations
to eliminate disadvantaged traits.

• Large population assumption: (nearly) deterministic population
dynamics between mutations, so that one can predict the
outcome of competition between the traits.

 Succession of phases of (random) mutant invasion, and phases of
(fast, deterministic) competition between traits.

Adaptive walk in a fitness landscape that depends on the current
state of the population: fitness of a mutant trait y in a population x
at equilibrium

f (y , x ) = b(y)− d(y)− c(y , x )n̄(x )

(C., 2006, C. and Méléard 2011, Baar, Bovier, C.  next talk !)
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Lotka-Volterra systems

Coevolution with the fitness landscape
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Lotka-Volterra systems

Coevolution with the fitness landscape
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Canonical equation of adaptive dynamics (first form)

Canonical Equation of Adaptive Dynamics (first form)

Adaptive walk with small mutations:
When µ→ 0, K → +∞ and σ → 0 conveniently (Baar, Bovier, C.),
on the time scale t

Kµσ2 , the individual-based model converges to

(n̄(x (t))δx(t), t ≥ 0), where x is solution of the ODE

dx

dt
=

∫
h2m(h)dh n̄(x )∂1f (x ; x ).

• “hill-climbing” process in the fitness landscape (Dieckmann and
Law, 1996).

• evolutionary branching can also be described with this approach
(C., Méléard, 2011)

• A criticism (Waxman, Gavrilets, 2005): this approach with rare
mutations leads to evolution on a too long time-scale (mutations
are too rare).
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Hamilton-Jacobi equation with constraints

Large population limit

Fournier and Méléard, 2004: assuming that νK0 converges in law to
the measure u0(x )dx for the weak topology when K → +∞, then
(νKt , t ≥ 0) converges in law to (u(t , x )dx , t ≥ 0), where u(t , x ) is
solution to the PDE

∂tu(t , x ) = u(t , x )

(
(1− µ)b(x )− d(x )−

∫
X

c(x , y)u(t , y) dy

)
+

∫
X

b(y)µu(t , y)m(
x − y

σ
)

dy

σ
.

Assuming µ = 1 and σ = ε, this PDE can be written as

∂tu(t , x ) =

1

ε

u(t , x )

(
r(x )−

∫
R`

c(x , y)u(t , y) dy

)
+

1

ε

∫
R`

m(h)(u(t , x + εh)− u(t , x )) dh,

scaling time as t/ε (large time, small mutations)



Biological context The model A stochastic approach A PDE approach Third approach Conclusion

Hamilton-Jacobi equation with constraints

Large population limit

Fournier and Méléard, 2004: assuming that νK0 converges in law to
the measure u0(x )dx for the weak topology when K → +∞, then
(νKt , t ≥ 0) converges in law to (u(t , x )dx , t ≥ 0), where u(t , x ) is
solution to the PDE

∂tu(t , x ) = u(t , x )

(
(1− µ)b(x )− d(x )−

∫
X

c(x , y)u(t , y) dy

)
+

∫
X

b(y)µu(t , y)m(
x − y

σ
)

dy

σ
.

Assuming µ = 1 and σ = ε, this PDE can be written as

∂tu(t , x ) =
1

ε
u(t , x )

(
r(x )−

∫
R`

c(x , y)u(t , y) dy

)
+

1

ε

∫
R`

m(h)(u(t , x + εh)− u(t , x )) dh,

scaling time as t/ε (large time, small mutations)
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Hamilton-Jacobi equation with constraints

Simulation

Competition for two resources

(Diekmann, Jabin, Mischler, Perthame, 2005)
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Hamilton-Jacobi equation with constraints

Limit Hamilton-Jacobi equation (1)

Diekmann et al., 2005: defining (WKB ansatz)

uε(t , x ) = exp

(
ϕε(t , x )

ε

)
,

the PDE becomes

∂tϕε(t , x ) = r(x )−
∫
R`

c(x , y)uε(t , y) dy

+

∫
R`

m(h)

[
exp

(
ϕε(t , x + εh)− ϕε(t , x )

ε

)
− 1

]
dh.

This suggests the convergence of ϕε to the solution of

∂tϕ(t , x ) = r(x )−
∫
R`

c(x , y)µt(dy) + βH (∇xϕ(t , x )),

where

H (p) =

∫
R`

m(h)(ep·h − 1) dh

and µt is (in some sense) the limit of uε(t , ·).

How to characterize µt ?
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Hamilton-Jacobi equation with constraints

Limit Hamilton-Jacobi equation (2)

• The total population mass remains bounded
 maxx ϕ(t , x ) = 0 for all t ≥ 0.

• The limit population density at time t is 0 except at the points x
where ϕ(t , x ) = 0  µt has support in {ϕ(t , ·) = 0}.

• The measure µt has to be metastable, i.e.
• r(x)−

∫
c(x , y)µt(dy) ≤ 0 for all x such that ϕ(t , x) = 0,

• r(x)−
∫
c(x , y)µt(dy) = 0 for all x in the support of µt .

• Under the assumption that the kernel c(x , y) is positive, these
two conditions are satisfied for a unique measure µt , and

µt = µ({ϕ(t , ·) = 0}),

for some well-defined function µ
 closed Hamilton-Jacobi equation (C., Jabin, 2011).
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Hamilton-Jacobi equation with constraints

Some elements of the proof of the theorem

• The existence and uniqueness of a measure µt as above is proved
using Lyapunov functions for the PDE without mutations.

• One cannot have existence of a solution to HJ in the strong
sense. The support of µt need not be continuous.
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• We use classical a priori estimates for HJ equations, and prove
that they hold for ϕε uniformly in ε. In particular, we prove that
∂xϕ

ε is bounded in L∞([0,T ],BVloc(R)) and ∂xxϕε ≥ −C .

• This implies easily the strong convergence of a subsequence of ϕε.

• The difficult part is the convergence of
∫

c(x , y)uε(t , y)dy to the
correct limit. This is done by proving uniform
Lebesgue-right-continuity estimates.
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Hamilton-Jacobi equation with constraints

Simulation of the PDE for population densities

(Implicit finite differences)
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Hamilton-Jacobi equation with constraints

Simulation of the HJ equation with constraints
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The canonical equation of adaptive dynamics: second form

The canonical equation of adaptive dynamics: second form

• As long as there is only a single point x̄ (t) in {ϕ(t , ·) = 0},
µt = n̄(x̄ (t))δx̄(t).

• Since ∂xϕ(t , x̄ (t)) = 0, we have

∂txϕ(t , x̄ (t)) + ∂xxϕ(t , x̄ (t))
dx̄ (t)

dt
= 0.

• Since ∂tϕ(t , x ) = f (x , x̄ (t)) + H (∂xϕ(t , x )),

∂txϕ(t , x̄ (t)) = ∂x f (x , x̄ (t))+H ′(∂xϕ(t , x̄ (t)))∂xxϕ(t , x̄ (t)) = ∂x f (x , x̄ (t)).

Therefore
dx̄ (t)

dt
= −(∂xxϕ(t , x̄ (t)))−1∂x f (x , x̄ (t)).

 same fitness gradient as for the first form, but different speed.
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The canonical equation of adaptive dynamics: second form

Mathematical and biological comments

• Open problem: well-posedness of the Hamilton-Jacobi equation
with contraint. Only known in special cases (a single resource or
no mutation).

• Smoothness of the solution is only known in special cases
 justification of the canonical equation and of the branching
criterion (same criterion as for the first approach) only in special
cases.

Biological criticism:

• the dynamics of the population is strongly influenced by very low
population densities (so low that there should actually be nobody
there)

• evolutionary branching is too fast (also due to very low
population densities

•  PDE analysts try to modify the model with thresholds or
stronger interactions to actually obtain zero densities (see recent
works of Jabin, Perthame, Mirrahimi, Lorz).
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Main result

Third approach: small mutations and not too large
population

This suggests another stochastic approach (already proposed by
Meszena, Gyllenberg, Jacobs, Metz, PRL 2005), intermediate between
the first two:

• consider the individual-based models with frequent mutations
(µ = 1).

• assume that K is large and σ is small enough for the diameter of
the support of the population to be small (concentration limit, as
the first too approaches).

• look at the long term evolution of the population.
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Main result

Canonical equation of adaptive dynamics: third form

Assume for simplicity that d(x ) ≡ 0 (no extinction).

Theorem

Assume that b(·) and c(·, ·) are C 1, positive functions and m(·) has
compact support. Assume that νK0 has support {x0} for all K .
Assume that µ = 1, σ → 0 and K → +∞ so that

σ = o(K−5/2−a)

for some a > 0. Then

(νKt/(σ2K ), t ≥ 0)⇒ (n̄(x (t))δx(t), t ≥ 0)

in law for the Skorohod topology on the space of finite positive
measures on X equipped with the weak topology, where x (0) = x0 and

ẋ (t) = 2Var(m)n̄(x (t))∂1f (x (t), x (t)).
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Main result

A few comments

• Same form with fitness gradient.

• Very similar to the first form:
• in the case of symmetric mutations, only a multiplicative contant;
• in the case of asymmteric mutations, no longer the same.

• If d 6≡ 0, then extinction and possible, and σ must not be too
small.

• Intermediate time-scale between the first two approaches, but not
so fast.
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Proof: ergodic theorem

Idea of the proof

For simplicity, we will assume that c(x , y) ≡ c > 0 and that mutation
steps are ±σ with probability 1/2.

Step 1: expected speed of evolution Let ν be a positive measure on X .

• to simplify the computation, we assume that b(x ) = b0 + b1x
(OK when the support of ν is small)

• let LK be the infinitesimal generator of νK , and φ(ν) = 〈ν,id〉
〈ν,1〉 the

“mean trait value function”; then

LKφ(ν) =

∫ ( 〈ν, id〉+ x
K

〈ν, 1〉+ 1
K

− 〈ν, id〉
〈ν, 1〉

)
(b0 + b1x )Kν(dx )

+

∫ ( 〈ν, id〉 − x
K

〈ν, 1〉 − 1
K

− 〈ν, id〉
〈ν, 1〉

)
c

(
〈ν, 1〉 − 1

K

)
Kν(dx )

= b1

(
〈ν, id2〉
〈ν, 1〉

− 〈ν, id〉
〈ν, 1〉(〈ν, 1〉+ 1

K )

)
= b1Var(ν) + O(1/K ).
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Proof: ergodic theorem

Expected speed of evolution

• Hence, when the support of ν is small, the expected speed of
evolution is proportional to the empirical variance of the trait
distribution in ν and the gradient of b1 (= fitness gradient when
c(·, ·) ≡ c)

• To prove that this is true without expectation, one needs to use a
version of the ergodic theorem
 needs (approximate, local) stationarity of increments of φ(νKt ).

• What is (approximately) stationary? the centered trait
distribution, i.e.

ν̂Kt :=
1

K

NK
t∑

i=1

δxi−φ(νK
t ).

• This is close to be Markov (locally).

•  need to prove that the support of νKt has small diameter, and
that ν̂Kt is (nearly) stationary.
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Proof: the neutral case

Step 2: the neutral case

Assume that b(x ) ≡ b.

• Then N K
t is a birth and death Markov process with birth rate bn

and death rate c
K n(n − 1) when N K

t = n.

• (ν̂Kt , t ≥ 0) is also Markov.

• The invariant distribution of N K
t is a Poisson distribution

conditioned to be positive: µK
n = θn

(eθ−1)n!
, where θ = Kb/c.

• Because of the deterministic limit, large deviations tell us that
the exit time of [n̄ − ε, n̄ + ε] is larger that exp(CεK ) with high
probability.

• Standard coupling arguments: there exists γ > 0 s.t., for all
K ≥ 1 and for all N K

0 ,

‖L(N K
t )− µK‖TV ≤ 2 exp(−γt/

√
K ).

 stationary after a time of order
√

K .
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Proof: the neutral case

Step 2: the neutral case

A stationary birth and death process is reversible, so after a time
K 1/2+a , the path of (N K

t , 0 ≤ t ≤ T ) can be constructed backward in
time as (Ñ K

T−t , 0 ≤ t ≤ T ) where Ñ K is a Markov birth and death

process with the same transitions and started from distribution µK .

It is also possible to construct the genealogical relations between
individuals backward in time:

• in case of a birth backward in time, a new edge is added to the
genealogical tree

• in case of a death backwards in time, pick at random a pair of
branches and make them coalesce.
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Proof: the neutral case

Step 2 continued

Hence, the ancestral tree of the people present at some (large) time T
can be constructed backwards in time in a Markovian way. In
particular, if R̃K

t is the number of ancestors at time T − t of the
individuals living at time T , the process (Ñ K

t , R̃K
t )0≤t≤T is Markov

with transitions

• from (n, k) to (n + 1, k) with rate bn

• from (n, k) to (n − 1, k) with rate c n(n−1)
K (1− k(k−1)

n(n−1) )

• from (n, k) to (n − 1, k − 1) with rate c n(n−1)
K

k(k−1)
n(n−1) = 2c

K
k(k−1)

2 .

Note that the ancestral process of a stationary logistic birth and
death process if exactly a Kingman coalescent ! (for other processes,
this is approximately true since the population density belongs to
[n̄ − ε, n̄ + ε] with high probability)
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Proof: the neutral case

Step 2 continued

• Mutations can then be added also in a Markovian way, since they
occur along ancestral lineages either at coalescence times or at
death times of the backward birth and death process for which
the coalescing pair contains one of the current ancestral lineages.

• When R̃K
t = k , this occurs on each ancestral line with rate

2c

K
(Ñ K

t − k) ≈ 2cn̄

• Each mutation produces a trait jump of ±σ with probability 1/2.
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Proof: the neutral case

Step 2 continued

Therefore, after rescaling time by 2c/K , the ancestral process is the
Kingman coalescent, whose branches are subject to symmetric
random walks with rate K n̄. This suggests that

Proposition

In the neutral case, and for tK � K , ν̂KtK /〈ν
K
tk , 1〉 scaled in space by

√
2

σ
√
Kn̄

converges in distribution for the weak topology to the centered

distribution of types in the Kingman coalescent with standard
Brownian motion along the branches.
In addition, the probability that the diameter of ν̂KtK is larger than

σK 1/2+a converges to 0 for all a > 0.
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Proof: the neutral case

Step 2 continued

What we actually need can be checked by hands:
• We want to compute the empirical variance of the traits.
• In the Kingman coalescent with Brownian motion, the

computation is easy (Blum, Damerval, Manel, Francois, TPB
2004):

• in the n-coalescent, the empirical variance is given by

Vn :=
1

n

∑
i

X 2
i −

1

n2

(∑
j

Xj

)2

=
1

n2

∑
i<j

(Xi −Xj )
2,

and E[(Xi −Xj )
2] = 2, so that Vn → 1.

• The computation in the case of the ancestral process of νKt can
be done in a very similar way.

Note: this 1st step works for more general models, allowing extinction
and for which the limit equation has a single stable equilibrium. One
then needs to use quasi-stationary distribution, time-reversed process
for quasi-stationary process, and estimates of convergence in the total
variation norm to the quasi-stationary distribution (cf. C. ad
Villemonais, 2014)
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Proof: the nearly neutral case

Step 3: the nearly neutral case

We now come back to the non-neutral case. Our goal is to prove that
one can approximate the trait distribution by that of a neutral
process as long as its support is not too big.

Coupling argument:
• as long as the support of the population is in some small interval

with maximum value b̄ and minimal value b for b(x ),
• the process can be coupled with a neutral process with birth rate

b until the first time a difference appears: at most with rate
(b̄ − b)K (n̄ + ε);

• after this time, I can obtain a process with more individuals by
assuming this new (marked) individual grows a population
independently of the first neutral process (no interaction  fewer
death events),

• this independent population will never reach K (n̄ + ε)
individuals,

• do the same for the next (marked) arrivals of a Poisson process
with rate (b̄ − b)K (n̄ + ε), until a time of order K
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Proof: the nearly neutral case

Step 3: the nearly neutral case

Now, b̄ − b can be assumed to be of order σK 1/2+a , and so the
assumption σ = o(K−5/2) means that (b̄ − b)K 2 → 0.

Hence, the probability to have one maked individual in the population
converges to 0. It is then easy to check that the empirical variance of
the nearly neutral population is very close to the one of the neutral
population.
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Conclusion and comments

• We obtained a third version of the canonical equation of adaptive
dynamics on intermediate time scales assuming mutations are
small but not rare and that the population is large but no too
much.

• The assumption relating σ and K might not be optimal, since we
only need the convergence of empirical variances. However, it
seems hard to obtain a coupling between the neutral and nearly
neutral processes and to contral the difference.

• Evolutionary branching should be studied in this case. However,
it seems that the current time scaling leads to a too recent
MRCA to hope that evolutionary branching could occur on a
short time-scale (it is rather a large deviations event)  it is
important to find a way to relax the assumption on σ.
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