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Mesoscopic oscillators 

40nm Mo 
50nm AlN 
100nm Mo 
20nm AlN 

Frequencies 0.1 – 10 GHz 
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Vibrational systems that are  

 sufficiently large to be individually accessed 

 small, so that classical and quantum fluctuations are substantial 

- means to learn new classical and quantum 
physics far from equilibrium with well-
characterized systems 
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Periodic state:  )cos( φω += tAq F

φ  and  Both A display hysteresis 

A Josephson junction based nonlinear oscillator 
(Siddiqi et al. PRL 2004, 2005) 

Hysteresis in modulated oscillators 

Bifurcation amplifier broadly used in quantum measurement 



Yeast population in sucrose 

Lei Dai, Daan Vorselen, Kirill S. Korolev, Jeff Gore (2012) 
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Switching rate near bifurcation points 

Near bifurcation points one of the motions is slow, a 
soft mode       universal behavior of the escape rate       

A multivariable system can be mapped onto a 1D 
overdamped (no inertia) Brownian particle 

thermal noise: D=kBT 

a Brownian particle colliding with molecules 
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exp (−𝛥𝛥/𝑘𝐵T) Josephson junctions, static potential, no ac modulation: Kurkijarvi (1972). 

General case of a nonequilibrium system/soft mode near a bifurcation point: MD & Krivoglaz  (1980)  
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If the noise is Gaussian, the switching rate is 

Switching rate near bifurcation points 

2/1,2/3 == ζξ

thermal noise: D=kBT 

Near bifurcation points one of the motions is slow, a 
soft mode       universal behavior of the escape rate       

A multivariable system can be mapped onto a 1D 
overdamped (no inertia) Brownian particle 

W = Ωeexp (−Δ𝑈𝑏 𝑘𝐵𝑇 ),     ⁄ 𝛥𝑈𝑏 = 4
3
𝜂𝜉 ,     Ωe ∝ 𝜂𝜁 , 



exp (−𝛥𝛥/𝑘𝐵T) MD, Mori, Ross, & Hunt (1994)  
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If the noise is Gaussian, the switching rate is 

Switching rate near bifurcation points 

2/3=ξ

noise: D∝1/N – inverse 
total number of particles 

Near bifurcation points one of the motions is slow, a 
soft mode       universal behavior of the escape rate       

A multivariable reaction  system can be mapped onto 
a 1D overdamped (no inertia) Brownian particle 

W = Ωeexp (−Δ𝑈𝑏 𝐷 ),     ⁄ 𝛥𝑈𝑏 =
4
3
𝜂𝜉 ,  

slowly varying combination of populations: 



For resonant modulation,                         close to bifurcation points.  

Scaling for a modulated classical oscillator 
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Josephson junctions (Siddiqi et al., 2005) 
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MEMS (Chan & Stambaugh, 2005/2006) 
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Quantum switching: tunneling? 

Low temperatures: conventionally, escape occurs via tunneling  

activation 

tunneling 
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, the relaxation rate Γ<<W



Driven oscillator: quantum noise 

Relaxation: transitions between the energy levels due to the 
coupling )(tF

Oscillator Hamiltonian: 

+ coupling to a thermal bath  
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Transitions happen at random. Classically, a  “kick” to the oscillator 
coordinate and momentum 

“Noise intensity” is the total transition rate (emission / absorption of bath excitations) 

à la Brownian particle colliding with molecules 
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The picture applies only near bifurcation points; one dynamical variable + many short collisions; ultra-
strong squeezing �  classical dynamics with Gaussian quantum noise 

MD, 2007, 2012 



Quantum activation: JBA experiment 
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(Bio)chemistry, 

population dynamics 
X                 X + r 

W(X;r) 

X = (X1 , X2 ,… Xm) 

Scaled population:  x = X/N 

Mean-field equation of motion 
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Bistability Extinction 
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Extinction plane XE = 0: 

W(X;r) = 0   for 0≠Er

xS is a stable state in 
the extinction plane 
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Reaction/population systems 

numbers of individuals/molecules 



Hamiltonian dynamics of an auxiliary system with action s(x)   [                                             ] 
- describes the least improbable sequence of reactions leading to switching 
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Beyond mean field: the master equation 

X             X + r 
W(X;r) 
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Switching: rare event, requires a large fluctuation, 
switching rate: Wsw << tr

-1 

switching 

Eikonal approximation:  )],(exp[)( xX Ns−=ρ NsHs /),,( Xxx x =∂−=

Hamilton-Jacobi equation for action s 



𝒑 is the fluctuational force that drives the system against  the “mean-field” force  

Beyond mean field: the master equation 

X             X + r 
W(X;r) 

swH x
r

pprrx;px ∂=−= ∑ ,]1))[exp((),(

1x

2x

Sx

1Ax

2Ax

∑ −−−=
∂

∂

r
XrX;rXrr;XX )]()()()([)( ρρρ WW

t

Switching: rare event, requires a large fluctuation, 
switching rate: Wsw << tr

-1 

switching 

Eikonal approximation:  )],(exp[)( xX Ns−=ρ

Hamilton-Jacobi equation for action s 
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Optimal fluctuational paths 

𝒙̇ = −𝑼′ 𝒙 + 𝒇 𝒕 , 〈𝒇 𝒕 𝒇 𝒕′ = 𝟐𝟐𝟐 𝒕 − 𝒕′ ,

𝑼 𝒙 = −
𝟏
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MD, McClntock, Smelyanskiy, Stein, & Stocks 
(1991) 

Chan, MD,& Stambaugh (2008) 



Interstate switching 
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switching 

Switching rate:    Wsw = C exp(-NRsw),     Rsw = s(xS) – s(xA)  

Optimal switching path:  from xA to xS 

the probability current is continuous across the saddle, no accumulation near the saddle point, as 
for switching in white-noise driven continuous dissipative systems 

MD, Mori, Ross, & Hunt (1994) 
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Extinction: current discontinuity 

“switching” “extinction” 

Individuals/molecules  that have reached 

the extinction plane XE = 0 accumulate 

there, 0≠−∇= Jρ
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Extinction also requires a large fluctuation 

Snapshot of the distribution tail for the SIS 
model, t/tr = 9, N = 50    (Khasin & MD, 2009)  

Extinction rate  We << tr
-1.  For tr << t << We -1  

the distribution is quasistationary away from the 

extinction plane. The in-plane population is We t.  𝑋2/𝑁 



Boundary conditions for the optimal extinction path 
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Quasistationary distribution away from the extinction plane: 

Optimal extinction path  xe(t), pe(t): 

Extinction rate:   We = C exp(-NRe),  Re = s(xS) – s(xA)  

Eikonal approximation: 
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optimal extinction path s(x) is minimal in the extinction plane for x= xS. 

from equation:  SEES rpw xxrx;
r

→=−∑ for  0}1])){exp[((0)(,0)( ≠=≠ ESEiS pp

The normal momentum component is not equal to zero! 



Optimal extinction path 
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optimal extinction path 

Specific systems: van Herwaarden & Grassman (1995); Elgar & Kamenev (2004) 

The system first approaches (xS, pS), and then moves to (xS, p=0), with no change in Qe.  

“Anomalous” scaling of the extinction exponent 𝑅𝑒 with the distance  𝜂  to the bifurcation point 

where xA and  xS merge:  𝑅𝑒 ∝ 𝜂2 instead of the scaling 𝑅𝑠𝑠 ∝ 𝜂3/2 

MD, Schawrtz, & Landsman (2008) 

General: MD, Schawrtz, & Landsman (2008); periodically modulated systems: Khasin,  MD, & Meerson (2010)  

plane  xE = 0 
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Disease extinction: the SIS model 
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Disease extinction:   I=X2 ≡ XE → 0    

0)(,0)( ≠=≠ ESEiS pp

S:   susceptible 

I :  infected 

µ:  birth and death rate 

β:  contact rate between S and I 

κ:  recovery rate 

Birth-death transition rates: 

221 ))1,1(;(,/))1,1(;( XWNXXW κβ =−=− XXInfection-recovery transition rates: 

- conserved total population, X1+X2 = N 0=µ [Weiss & Dishon (1971), Leigh (1981), Doering, 
Sargsyan, & Sander (2005), …] 

Explicit solution for the optimal extinction path gives:   )/ln()(,0)()( 12 κβ==≡ SSES ppp
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NSI /β

Iκ IµSµ

Nµ



Fragility in the SIS model 

Optimal extinction paths without and with birth-

death processes,                   and  0>µ0=µ

Extinction exponents [𝑊𝑒 = 𝐶𝑒exp(−𝑁𝑅𝑒) ]: 

)/(0 κµβ +=r , infection reproductive rate 
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Fragility in extinction: general condition 
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optimal extinction path 
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Solutions with (pS)i ≠ E  ≠ 0 are fragile 

Perturbation: )()()( )1( rX;rX;rX; WWW µ+→

Perturbed Hamiltonian: 
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If  (pS)i ≠ E  ≠ 0 and                              the integral diverges 0)()1( ≠r;x Sw ∞→tfor  



Fragility in extinction: effect of migration 

𝐴 → 2𝐴,          2𝐴 →  0 
𝑾  𝑾/𝑲𝒊 

𝝁 −  migration rate  

mean-field equations for populations 𝑥,𝑦 scaled by 𝐾1  

𝑾𝒙̇ = 𝒙 − 𝒙𝟐 − 𝝁 𝒙 − 𝒚 ,   𝑾𝒚̇ = 𝒚 −
𝑲𝟏

𝑲𝟐
𝒚𝟐 + 𝝁(𝒙 − 𝒚) 

𝑲
𝟏−
𝟏 ln

 𝑾
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Khasin, Meerson,Khain,& Sander, 2012 



Oscillator isolated from the thermal reservoir: Floquet (quasienergy) states 

Quasienergy states of a driven oscillator 

,)( ψψ tHi =

quasienergy 
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𝜓𝜀 𝑡 = 𝑒−𝑖𝑖𝑖 ℏ⁄  𝑢𝜀 𝑡 ,       𝑢𝜀 𝑡 +
2𝜋
𝜔𝐹

= 𝑢𝜀(𝑡) 

Values of 𝜀 are quantized, 𝜀 → 𝜀𝑛; discrete states of the modulated oscillator are 𝜓𝜀𝑛 



Relaxation and diffusion over quasienergy 
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Quasienergy states are linear combinations of Fock states. Inter-level transitions  

correspond  to inter-quasi-energy level transitions   

                              drift and quantum diffusion over quasienergy even for T = 0 
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Underdamped oscillator in the rotating frame: 

energy states quasi-energy states 
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Quantum heating 

scaled modulation intensity 

𝒏�𝒆 – “Planck number” of the distribution over quasienergy states  (experiment: Ong et al, 2013;  
theory: MD, Marthaler, & Peano, 2011; MD 2012; Peano & MD 2014) 

 

                                     near extremum: 𝜌𝑛 ∝ exp(−𝑔𝑛 𝑘𝐵𝑇𝑒⁄ ) 
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The eikonal approximation 

Balance equation for populations 𝜌𝑛 of quasienergy states 

Eikonal approximation: smooth 𝑅𝑛,     𝑅𝑛≡ 𝑅 𝑔𝑛 , 𝑅𝑛±1 − 𝑅𝑛 ∼ ℏ� ≪ 1 
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 quantum
activation

relaxation 𝜕𝑡𝜌𝑛 = ∑[𝑊(𝑛 − 𝑘; 𝑘)𝜌𝑛−𝑘 −𝑊(𝑛;𝑘)𝜌𝑛] 

              = ∑ 𝑒−𝑘𝜕𝑛 − 1 𝑊 𝑛; 𝑘 𝜌𝑛 

Far tail: steep distribution, 𝜌𝑛 =  exp −𝑅𝑛 ℏ�⁄      (ℏ� ≪ 1) 

Switching rate 𝑊sw ∝ Γexp(−𝑅𝑠𝑠 ℏ�)⁄ , 𝑅𝑠𝑠 = 𝑅 𝑔s − 𝑅(𝑔𝐴) 

Many “intrawell” states 𝑵 ∝ ℏ�−𝟏 ∝ ℏ−𝟏   

dimensionless Planck constant 

(MD & Smelyanskiy, 1988) 
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Surprise #1: Activation energy < tunneling exponent! 

Modulated oscillator: quantum activation vs tunneling* 

)~/2exp( tuntun SW −∝ )~/exp( swsw RW −∝
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Surprise # 2: Fragility -  in the WKB limit 
𝑅𝑠𝑠 𝑇 = 0 ≠ 𝑅𝑠𝑠(𝑇 → 0) 

*The plots refer to a parametric oscillator; Marthaler & MD (2006) 

𝑅𝑠𝑠 ,𝑛� = 0 

𝑅𝑠𝑠 ,𝑛� → 0 

swR
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Fighting fragility 

Balance equation:  𝜌̇𝑛 =  ∑[𝑊(𝑛 − 𝑘; 𝑘)𝜌𝑛−𝑘 −𝑊(𝑛; 𝑘)𝜌𝑛] 

Contribution to transition rates from “photon” emission and absorption: 

𝑊(𝑛;𝑘) = 𝑊 𝑒 (𝑛; 𝑘) + 𝑊 𝑎𝑎𝑎 (𝑛; 𝑘),         𝑊(𝑎𝑎𝑎) ∝ 𝑛� ∝ exp(−ℏ𝜔0 𝑘𝐵𝑇⁄ ) 

The absorption-induced transitions have longer “decay length” 

𝑊 𝑒 𝑛;𝑘 ∝ exp [−𝑘 𝜉 𝑒 (𝑛)], ⁄   

 𝑊 𝑎𝑎𝑎 𝑛; 𝑘 ∝ exp [−𝑘 𝜉 𝑎𝑎𝑎 (𝑛)],  
 

    𝝃
(𝒆)

< 𝝃(𝒂𝒂𝒂)⁄  

oscillator Fock states 

quasienergy states 𝑛� ≪ 1 

The perturbation theory in 𝒏�  breaks down for 𝑻 > 𝑻𝒄𝒄 ∝ ℏ𝟐,
                                            ln 𝒏� ∝ −ℏ−𝟏  



T>Tcr ∝ ℏ𝟐: onset of a kink 

quasienergy states Breakdown of the eikonal approach for T > T𝑐𝑐: 

starting with some 𝑛∗ ≡ 𝑛∗ 𝑇 ,  state populations are determined by the 

absorption-induced influx from  states close to the extremum of 𝑔  
inter-instanton kink at 𝐧∗ 𝑻 [𝒈𝒏∗ = 𝒈 𝒏∗ 𝑻 ], which moves with T 

|𝜕𝑔𝑅| 

𝑔𝑚𝑚𝑚, stable vibrational state 𝑔𝑠, saddle state 

𝑇 = 0 solution 

𝑇 > 𝑇𝑐𝑐 ∝  ℏ | logℏ�⁄ |,𝑛� ≪ 1   

L. Guo, V. Peano, M. Marthaler, and MD (2013) 



Quantum Arrhenius! 

)/exp( 0sw TkW Bω−∝inter-instanton kink, which 
moves with temperature 
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General fragility condition for the instanton Hamiltonian H 𝑥,𝑝 =H(0)  𝑥,𝑝 + 𝜖H(1) 𝑥,𝑝 .       

The instanton is “fragile” for ∫ 𝑑𝑑H(1) 𝑥 0 𝑡 ,𝑝 0 𝑡 → ∞ 

as in the problem of population extinction, although the mechanism is different 

 



The exponents and prefactors of switching rates scale as a power of the  distance to the 
bifurcation point. Different scaling for extinction 

Switching and extinction rates in systems lacking detailed balance display fragility: a 
parametrically large change of the rate exponent occurs in an extremely narrow 
parameter range – the beauty of real-time instantons. Watch out for fragility 

Quantum relaxation comes with noise. Escape of modulated quantum oscillators  
occurs via quantum activation – a restriction on JBA-based quantum measurements 

 

Conclusions 
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