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Mesoscopic oscillators
. . CNT
Vibrational systems that are

» sufficiently large to be individually accessed

» small, so that classical and quantum fluctuations are substantial

Frequencies 0.1 — 10 GHz

_angular frequency 10°

—10’
decay rate

- means to learn new classical and quantum
physics far from equilibrium with well-
characterized systems



Hysteresis in modulated oscillators

G+20g+wiq+yg° = FCcoswm,t

\

Periodic state: (¢ = ACOS(C()Ff + ¢)

/= Both 4 and ¢ display hysteresis
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Bifurcation amplifier broadly used in quantum measurement



Yeast population in sucrose

Lei Dai, Daan Vorselen, Kirill S. Korolev, Jeff Gore (2012)



Switching rate near bifurcation points

Near bifurcation points one of the motions is slow, a U
soft mode =) universal behavior of the escape rate

A multivariable system can be mapped onto a 1D ) l
overdamped (no inertia) Brownian particle

q:_ﬁquWST\)’ U(q)=-1¢*+nq, (f@fE))=2D5(r-7

noise thermal noise: D=KgT

o
/.
a Brownian particle colliding with molecules



Switching rate near bifurcation points

Near bifurcation points one of the motions is slow, a U
soft mode =) universal behavior of the escape rate

A multivariable system can be mapped onto a 1D ) l
overdamped (no inertia) Brownian particle

q:_aqu”(f\)’ U(q)=-1¢*+nq, (f@fE))=2D5(r-7

noise thermal noise: D=KgT

If the noise is Gaussian, the switching rate is
W = Qcexp (—AU,/kpT), AUy =3nf, Qeoxnf,  £=3/2, (=1/2

Josephson junctions, static potential, no ac modulation: Kurkijarvi (1972).

General case of a nonequilibrium system/soft mode near a bifurcation point: MD & Krivoglaz (1980)



Switching rate near bifurcation points

Near bifurcation points one of the motions is slow, a U
soft mode =) universal behavior of the escape rate

° ®
AU

A multivariable reaction system can be mapped onto [ l

a 1D overdamped (no inertia) Brownian particle

slowly varying combination of populations: q

q:_ﬁqu+f£T\)’ U(q)=-1¢*+nq, (f@fE))=2D5(r-7

noise noise: Dx1/N — Iinverse

total number of particles
If the noise is Gaussian, the switching rate is

4
W = Q.exp (—AU,/D), AU, =§nf, £=3/2

MD, Mori, Ross, & Hunt (1994)



Scaling for a modulated classical oscillator

For resonant modulation, AU, oc 7°'% close to bifurcation points.

(In W)2/3

In AUb
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MEMS (Chan & Stambaugh, 2005/2006) Josephson junctions (Siddiqi et al., 2005)



Quantum switching: tunneling?

Low temperatures: conventionally, escape occurs via tunneling

U(q)
W oc exp(-AU I k,T) = exp(-2S,,, /1)

activation

W << T, the relaxation rate

tunneling




Driven oscillator: qguantum noise

: o 1.2 ,1.,2.2 1,4 En
Oscillator Hamiltonian: Hy=5p" +50,q9" +3yq —qlF COSw,t
+ coupling to a thermal bath En.q —
[

Relaxation: transitions between the energy levels due to the E, . F(t)
coupling *
Transitions happen at random. Classically, a “kick” to the oscillator E, ‘ 1
coordinate and momentum

Fo —

Ey = Nho,

/.
a la Brownian patrticle colliding with molecules

“Noise intensity” is the total transition rate (emission / absorption of bath excitations)
— — -1
k,T = kT = hoy(2n+1)12, 7 =[exp(holk,T)-1]

The picture applies only near bifurcation points; one dynamical variable + many short collisions; ultra-
strong squeezing I classical dynamics with Gaussian quantum noise

MD, 2007, 2012



Quantum activation: JBA experiment

W, ocexp(-AU [ kyTy ), AU, < |F - F, 2

kT =ho,(m+3), 1 =[exp(io,/ k,T)-1]"

T, = [109(@yeme | W, )1 Vijay et al. (2009)

esc



Reaction/population systems

W(X;r)
X = X+r X=X, X,...X)
/V

(Bio)chemistry,

population dynamics

numbers of individuals/molecules

Mean-field equation of motion X = ZI’ W (X;r)
r

Scaled population: X = X/N X = z r w(x;r) w(X;r)=W(X; r)I N
r

Bistability Extinction
X, X, Extinction plane X = O:
N X w(X;ry=0 for 7, #0
o

X¢ is a stable state in

\ the extinction plane
X

S

b —¢
X, X,




Beyond mean field: the master equation

w(X;r) op(X)
X = X+r = SCE= B X=X =) =W (Xn)p(X)]
& = > [exp(-rd,) =1 W (X;r) p(X)]
Switching: rare event, requires a large fluctuation,
switching rate: W, <<¢1
/ X,
switching Hamilton-Jacobi equation for action s

e
Eikonal approximation: p(X) =exp[-Ns(x)], s= —H(X,5XS), X=X/IN

H(x,p) =Y w(x;r)[exp(pr) -1, p=20,s

Hamiltonian dynamics of an auxiliary system with action s(x) [w(X;r) =W (X;r)/ N]

- describes the least improbable sequence of reactions leading to switching



Beyond mean field: the master equation

op(X
X —> X+r =» 'Oa(t )=Z[W(X—r;r)p(x—r)—W(X;r)p(X)]
& = > [exp(-rd,) =1 W (X;r) p(X)]
Switching: rare event, requires a large fluctuation,
switching rate: W, <<¢1
/ X,
switching Hamilton-Jacobi equation for action s

e
Eikonal approximation: p(X) =exp[-Ns(x)], s= —H(X,a)(S), X=X/IN

H(x,p) =Y w(x;r)[exp(pr) -1, p=20,s

p is the fluctuational force that drives the system against the “mean-field” force



Optimal fluctuational paths

x==-U®+f@®), (FOFT)=2Ds-1),
1 1
U(x) = —Exz +Zx4

U(x)

Chan, MD,& Stambaugh (2008)

MD, McClntock, Smelyanskiy, Stein, & Stocks
(1991)



Interstate switching

Switching rate: W, = Cexp(-NR,,), R, =s(Xs)—s(X,)

Optimal switching path: from x, to Xg
Xol Xp
®
\ \
\ :
X X—>X,,p=0,5—>0 for t »> —oo;
\ .XAZ
x—>xS,for t — o
/ X1
switching

the probability current is continuous across the saddle, no accumulation near the saddle point, as
for switching in white-noise driven continuous dissipative systems

MD, Mori, Ross, & Hunt (1994)



Extinction: current discontinuity

Extinction also requires a large fluctuation “switching” “extinction”

dp(X)
ot

=Y W(X=r;r)p(X=r) =W (X;r)p(X)]

Individuals/molecules that have reached

the extinction plane X; = 0 accumulate

there, p =—-VJ =0

Extinction rate W, <<t Fort <<t<< W, 1
the distribution is quasistationary away from the

extinction plane. The in-plane population is W, .
X, /N

Snapshot of the distribution tail for the SIS
model, ¢, =9, N =50 (Khasin & MD, 2009)



Boundary conditions for the optimal extinction path

Eikonal approximation: p(X) = exp[—Ns(x)], s =—H(X, @XS) =—-H(X,p)

Quasistationary distribution away from the extinction plane: H(X,p) = ZW(X; r)[exp(pr)-1]=0
r
. X2
Extinction rate: W, = Cexp(-NR,), R, = s(Xg) — s(X)
/'\ XA
o
Optimal extinction path X,(¢), p.(?): |
\
h ~
X, = X,,p, = 0 for t > —x; xe—>xS, for t — oo S Xs
&
| x
s(X) is minimal in the extinction plane for X= X;. optimal extinction path

(Pg)z =0, (pg) #0 from equation: Zw(x;r){exp[(ps)ErE]—l}:O for x — X

The normal momentum component is not equal to zero!




Optimal extinction path

X2 plane x =0
/-\ Xa . “pa\\\ \<
® et — o
opt™® | T (Ps)e
y Y
| S ° \\ ( ) =0

| X X, Ps)E

1 N

optimal extinction path
The system first approaches (X, Pg), and then moves to (X, p=0), with no change in Q..

Specific systems: van Herwaarden & Grassman (1995); Elgar & Kamenev (2004)

General: MD, Schawrtz, & Landsman (2008); periodically modulated systems: Khasin, MD, & Meerson (2010)

“Anomalous” scaling of the extinction exponent R, with the distance 7] to the bifurcation point

where X, and Xgmerge: R, o 1n? instead of the scaling Rg,, & n3/?

MD, Schawrtz, & Landsman (2008)



Disease extinction: the SIS model

S: susceptible
I : infected

u: birth and death rate

B: contact rate between S and /

K. recovery rate

Birth-death transition rates: W (X;(L0)) = Nu, W(X;(-10)) = wX,, W(X;(0,-1)) = X,
Infection-recovery transition rates: w(X;(-11) = pX. X, /N, W(X;(1-1)=x«X,

Disease extinction: =X, =X, — 0

: [Weiss & Dishon (1971), Leigh (1981), Doering,
- conserved total population, X;+X, = N Sargsyan, & Sander (2005), ...]

Explicit solution for the optimal extinction path gives: (pS)E = (ps)z = O, (]95)1 = |n(ﬁ/7f)

inconsistentwith ~ (pg)._. =0, (py), #0



Optimal extinction paths without and with birth-

death processes, U = 0 and u>0

ry = P 1(1+ k) , infection reproductive rate

Extinction exponents [W, = C.exp(—NR,) ]:

R, =Inryg—1+r,!

p=0

Fragility in the SIS model

— u=0

~ u—0



Fragility in extinction: general condition

Solutions with (py); .z # 0 are fragile
optimal extinction path

Perturbation: W (X;1) = W (K1) + uW® (X;r) B
(Xs5:Ps)
<<
[
Perturbed Hamiltonian: H — H + pH ™ (x,,p,=0)

HO(x,p) =2, w? (x;r)[exp(pr) —1]

Perturbed extinction exponent:@— M Lo dt HW (XS) (1), p@

If (ps)izp #0and w® (x,;r) =0 the integral diverges for ¢ — oo




Fragility in extinction: effect of migration

w W/K;
A - 24, 24 - 0

U — migration rate

mean-field equations for populations x,y scaled by K;

. . K,
Wx=x—x2—u(x—y), Wy=y—K—2y2+ﬂ(x—y)

K{lnwT,

Khasin, Meerson,Khain,& Sander, 2012



Quasienergy states of a driven oscillator

Oscillator isolated from the thermal reservoir: Floquet (quasienergy) states

H(1)=%(p* + @, "q*) + 174" — qF cos(w,1), ihyr = H(t)y,

lp?(t) = e~iet/hy (p), Ug <t + i—ﬂ) = u.(t)

F

guasienergy

Values of ¢ are quantized, € — &,; discrete states of the modulated oscillator are ¥,



Relaxation and diffusion over quasienergy

Underdamped oscillator in the rotating frame:

e a4 RWA
H(t)=5(p" + @, q")+37q" —qF cos(w,t) wap C,g(0,P),

energy states &y X (wp — wg)?gn quasi-energy states
En 0.5
N\
Y <
EN-1 >
o —/
. D2 |
° - 0.
E2 'y F(t) _,c—_,E /~
c
\ Q -
E4 % 9
Y oa M
! 15 -0.5 0.5 15
Ep — 0
E, = Nho,

Quasienergy states are linear combinations of Fock states. Inter-level transitions ‘NFOCk> —> ‘NFOCk —1>
correspond to inter-quasi-energy level transitions ‘n> —> ‘n + m> —)

drift and quantum diffusion over quasienergy even for T =0



Quantum heating
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scaled modulation intensity

n, — “Planck number” of the distribution over quasienergy states (experiment: Ong et al, 2013;
theory: MD, Marthaler, & Peano, 2011; MD 2012; Peano & MD 2014)

near extremum: p,, X exp(— g,/kgTe)



The eikonal approximation

0.5

Balance equation for populations p,, of quasienergy states a
Ocpn = SIW (1 = ks K)pn_ic = W (5 K)py) 5 |\
= Z(e‘kan — 1)W(n; k)ps,
actvation  \
Many “intrawell” states N « A=1 o« 471 T |-0.5 | Io.s 15

‘\ Q
dimensionless Planck constant

Far tail: steep distribution, p,, = exp (— Rn/ﬁ) (h < 1)

Eikonal approximation: smooth R,;, R, = R(g,), |Rnil - Rnl ~h«1

Switching rate W,,, < T'exp(— Ry, /h), Rsy = R(gs) — R(g4)

(MD & Smelyanskiy, 1988)



Modulated oscillator: quantum activation vs tunneling*

W, ocexp(=2S,, | h) W ocexp(-R. [ h)

sw

n =[exp(hew, | kT)-1]™
Surprise #1: Activation energy < tunneling exponent!

Surprise # 2: Fragility - in the WKB limit
RSW(T =0)+# Rgy (T — 0)

*The plots refer to a parametric oscillator; Marthaler & MD (2006)



Fighting fragility

oscillator Fock states

T

Balance equation: p, = Y [Wn —k; k)p,_,x —Wmn; k)p,]

Contribution to transition rates from “photon” emission and absorption:

W k) =W m; k) + Wb (n; k), W) « it o« exp(— hwo/kgT) T F(2)
guasienergy states n<«l1 I
v ‘l’ E\ = Nhw,

The absorption-induced transitions have longer “decay length”

W®© (n; k) < exp[—k/E©E (n)],

W @s) (n; k) o exp[— k/&@PS) (n)],

The perturbation theory in n breaks down forT > T4 < h?,
Inn o« —h1



T>T,, x h?: onset of a kink

quasienergy states Breakdown of the eikonal approach for T > T_;:
v starting with some n* = n*(T), state populations are determined by the
‘l’ absorption-induced influx from states close to the extremum of g

ms) inter-instanton kink at n*(T)[g,, = g(n*(T))], which moves with T

|6gR| T = 0 solution

—

T>T,,x h/|logh|,n <« 1 —_—

7 N

Js, saddle state Imax, Stable vibrational state

L. Guo, V. Peano, M. Marthaler, and MD (2013)



Quantum Arrhenius!

inter-instanton kink, which W, «<exp(-haw,!k,T)
moves with temperature 1
|agR| ~dRA
hdT—1
hw,
kgT

General fragility condition for the instanton Hamiltonian FH (x,p) =HO( x,p) + e H® (x, p).
The instanton is “fragile” for [ dtHO(x© (), p @ (¢)) - oo

as in the problem of population extinction, although the mechanism is different



Conclusions

»The exponents and prefactors of switching rates scale as a power of the distance to the
bifurcation point. Different scaling for extinction

»Switching and extinction rates in systems lacking detailed balance display fragility: a
parametrically large change of the rate exponent occurs in an extremely narrow
parameter range — the beauty of real-time instantons. Watch out for fragility

»Quantum relaxation comes with noise. Escape of modulated quantum oscillators
occurs via quantum activation — a restriction on JBA-based quantum measurements

10gR]

Tro
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