Scaling and fragility of the rates of rare events

Mark Dykman

Department of Physics and Astronomy, Michigan State University

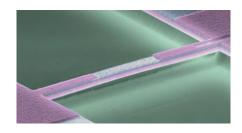
In collaboration with

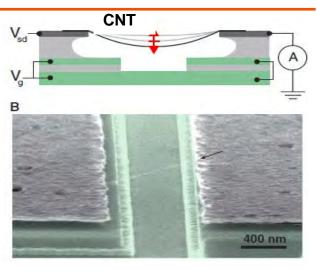
Michael Khasin, Michigan State University / NASA Ames Michael Marthaler, Karlsruhe Institute of Technology Vittorio Peano, Michigan State University / ITP Erlangen Vadim Smelyanskiy, NASA Ames

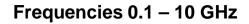
Mesoscopic oscillators

Vibrational systems that are

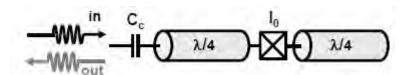
- sufficiently large to be individually accessed
- > small, so that classical and quantum fluctuations are substantial

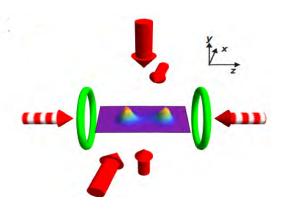




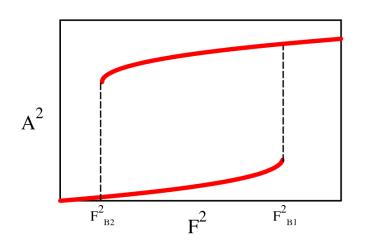


$$Q = \frac{\text{angular frequency}}{\text{decay rate}} \sim 10^3 - 10^7$$





- means to learn new classical and quantum physics far from equilibrium with well-characterized systems

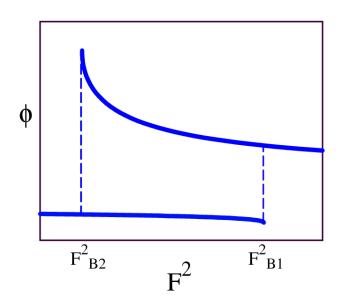


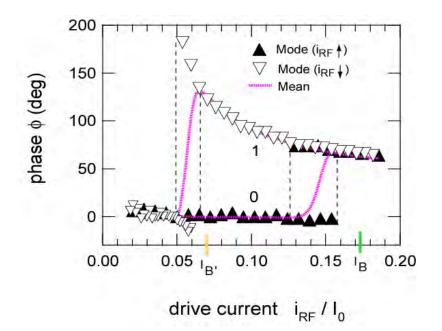
$$\ddot{q} + 2\Gamma \dot{q} + \omega_0^2 q + \gamma q^3 = F \cos \omega_F t$$

Periodic state: $q = A\cos(\omega_F t + \phi)$

Both A and ϕ display hysteresis

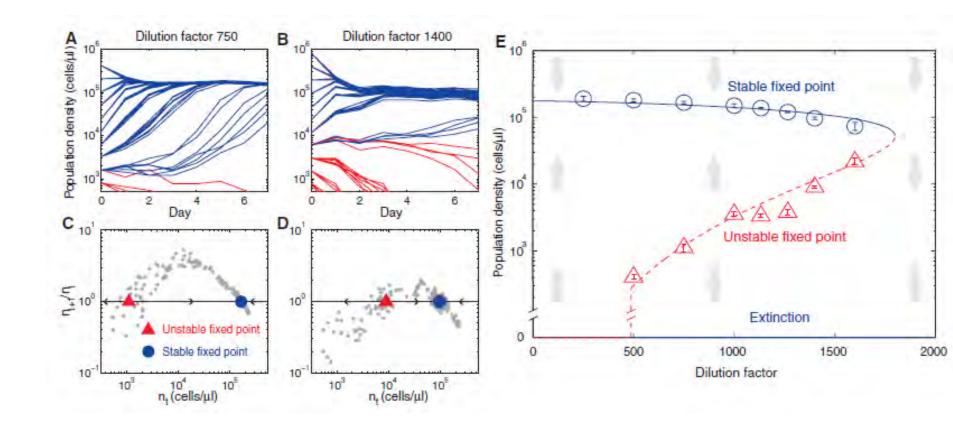
A Josephson junction based nonlinear oscillator (Siddiqi et al. PRL 2004, 2005)





Bifurcation amplifier broadly used in quantum measurement

Yeast population in sucrose

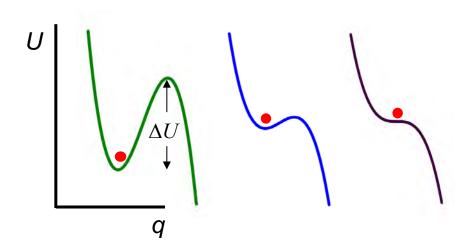


Lei Dai, Daan Vorselen, Kirill S. Korolev, Jeff Gore (2012)

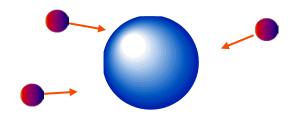
Switching rate near bifurcation points

Near bifurcation points one of the motions is **slow**, **a soft mode universal behavior of the escape rate**

A **multivariable** system can be mapped onto a 1D overdamped (no inertia) Brownian particle



$$\dot{q} = -\partial_q U_b + f(\tau), \quad U_b(q) = -\tfrac{1}{3} \, q^3 + \eta \, q, \qquad \left\langle f(\tau) f(\tau') \right\rangle = 2D \, \delta(\tau - \tau')$$
 noise
$$\qquad \qquad \text{thermal noise: } D = k_B T$$

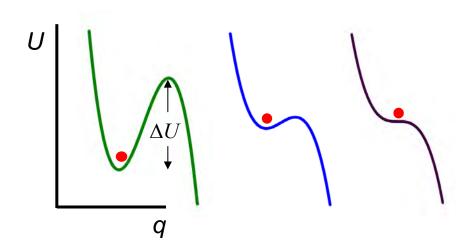


a Brownian particle colliding with molecules

Switching rate near bifurcation points

Near bifurcation points one of the motions is **slow**, **a soft mode universal behavior of the escape rate**

A **multivariable** system can be mapped onto a 1D overdamped (no inertia) Brownian particle



$$\dot{q} = -\partial_q U_b + f(\tau), \quad U_b(q) = -\tfrac{1}{3} \, q^3 + \eta \, q, \qquad \left\langle f(\tau) f(\tau') \right\rangle = 2D \, \delta(\tau - \tau')$$
 noise
$$\qquad \qquad \text{thermal noise: } D = k_B T$$

If the noise is Gaussian, the switching rate is

W =
$$\Omega_{\rm e} \exp{\left(-\Delta U_b/k_BT\right)}$$
, $\Delta U_b = \frac{4}{3}\eta^{\xi}$, $\Omega_{\rm e} \propto \eta^{\zeta}$, $\xi = 3/2$, $\zeta = 1/2$

Josephson junctions, static potential, no ac modulation: Kurkijarvi (1972).

General case of a nonequilibrium system/soft mode near a bifurcation point: MD & Krivoglaz (1980)

Switching rate near bifurcation points

total number of particles

Near bifurcation points one of the motions is **slow**, **a soft mode white in the motion is slow**, **a**

A multivariable **reaction** system can be mapped onto a 1D overdamped (no inertia) Brownian particle

slowly varying combination of populations:

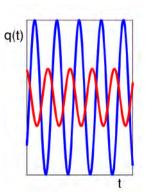
$$\dot{q} = -\partial_q U_b + f(\tau), \quad U_b(q) = -\tfrac{1}{3} q^3 + \eta \, q, \qquad \left\langle f(\tau) f(\tau') \right\rangle = 2D \, \delta(\tau - \tau')$$
 noise noise: $D \propto I/N$ – inverse

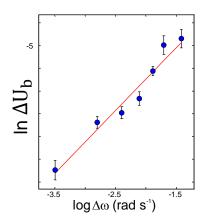
If the noise is Gaussian, the switching rate is

W =
$$\Omega_{\rm e} \exp\left(-\Delta U_b/D\right)$$
, $\Delta U_b = \frac{4}{3}\eta^{\xi}$, $\xi = 3/2$

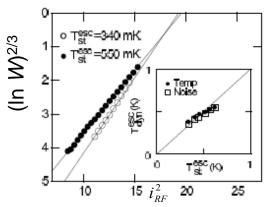
MD, Mori, Ross, & Hunt (1994)

For resonant modulation, $\,\Delta U_b \varpropto \eta^{^{3/2}}$ close to bifurcation points.





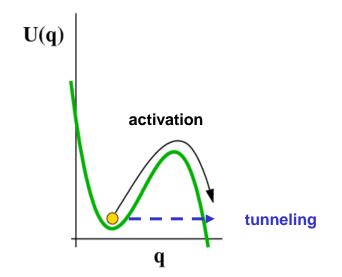
MEMS (Chan & Stambaugh, 2005/2006)



Josephson junctions (Siddiqi et al., 2005)

Quantum switching: tunneling?

Low temperatures: conventionally, escape occurs via tunneling



$$W \propto \exp(-\Delta U/k_B T) \Rightarrow \exp(-2S_{\text{tun}}/\hbar)$$

 $W << \Gamma$, the relaxation rate

Driven oscillator: quantum noise

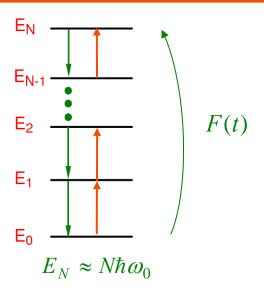
Oscillator Hamiltonian:

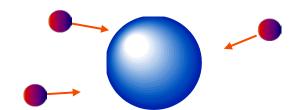
$$H_0 = \frac{1}{2} p^2 + \frac{1}{2} \omega_0^2 q^2 + \frac{1}{4} \gamma q^4 - qF \cos \omega_F t$$

+ coupling to a thermal bath

Relaxation: transitions between the energy levels due to the coupling

Transitions happen at random. Classically, a "kick" to the oscillator coordinate and momentum





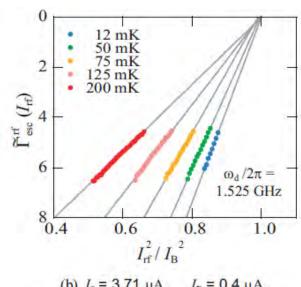
à la Brownian particle colliding with molecules

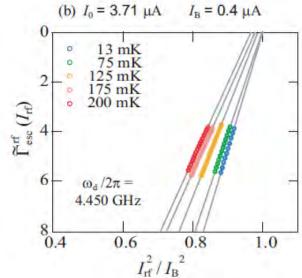
"Noise intensity" is the total transition rate (emission / absorption of bath excitations)

$$k_B T \Rightarrow k_B T_{\text{eff}} = \hbar \omega_0 (2\overline{n} + 1)/2, \quad \overline{n} = \left[\exp(\hbar \omega_0 / k_B T) - 1 \right]^{-1}$$

The picture applies only near bifurcation points; one dynamical variable + many short collisions; <u>ultra-strong squeezing</u> classical dynamics with Gaussian quantum noise

MD, 2007, 2012

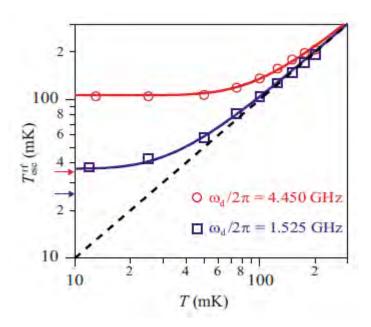




$$\widetilde{\Gamma}_{\rm esc}^{rf} = \left[\log(\omega_{\rm attempt}/W_{\rm A})\right]^{2/3}$$

$$W_A \propto \exp(-\Delta U_A / k_B T_{\text{eff}}), \qquad \Delta U_A \propto |F - F_B|^{3/2}$$

$$k_B T_{\text{eff}} = \hbar \omega_0 (\overline{n} + \frac{1}{2}), \ \overline{n} = \left[\exp(\hbar \omega_0 / k_B T) - 1 \right]^{-1}$$



Vijay et al. (2009)

Reaction/population systems

(Bio)chemistry, population dynamics

W(X;r)

→

$$\mathbf{X} + \mathbf{r} \qquad \mathbf{X} = (X_1, X_2, \dots X_m)$$

numbers of individuals/molecules

Mean-field equation of motion

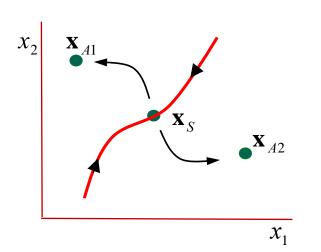
$$\dot{\mathbf{X}} = \sum_{\mathbf{r}} \mathbf{r} W(\mathbf{X}; \mathbf{r})$$

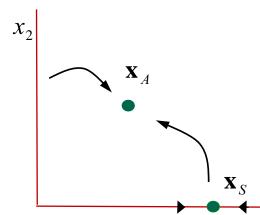
Scaled population: $\mathbf{x} = \mathbf{X}/N$

$$\dot{\mathbf{x}} = \sum_{\mathbf{r}} \mathbf{r} \ w(\mathbf{x}; \mathbf{r})$$

$$w(\mathbf{x};\mathbf{r}) = W(\mathbf{X};\mathbf{r})/N$$

Bistability





Extinction plane $X_E = 0$:

 $W(\mathbf{X};\mathbf{r}) = 0$ for $r_E \neq 0$

 \mathbf{x}_{S} is a stable state in the extinction plane

$$\begin{array}{c}
W(\mathbf{X}; \mathbf{r}) \\
\mathbf{X} & \longrightarrow \mathbf{X} + \mathbf{r} \\
x_2 & X_{A1} \\
& X_{S} \\
& X_{A2}
\end{array}$$
switching

$$\frac{\partial \rho(\mathbf{X})}{\partial t} = \sum_{\mathbf{r}} [W(\mathbf{X} - \mathbf{r}; \mathbf{r}) \rho(\mathbf{X} - \mathbf{r}) - W(\mathbf{X}; \mathbf{r}) \rho(\mathbf{X})]$$
$$= \sum_{\mathbf{r}} [\exp(-\mathbf{r}\partial_{\mathbf{X}}) - 1] W(\mathbf{X}; \mathbf{r}) \rho(\mathbf{X})]$$

Switching: rare event, requires a large fluctuation, switching rate: $W_{sw} << t_r^{-1}$

Hamilton-Jacobi equation for action s

Eikonal approximation:
$$\rho(\mathbf{X}) = \exp[-Ns(\mathbf{x})], \quad \dot{s} = -H(\mathbf{x}, \partial_{\mathbf{x}} s), \quad \mathbf{x} = \mathbf{X}/N$$

$$H(\mathbf{x}, \mathbf{p}) = \sum_{\mathbf{r}} w(\mathbf{x}; \mathbf{r}) [\exp(\mathbf{p}\mathbf{r}) - 1], \quad \mathbf{p} = \partial_{\mathbf{x}} s$$

Hamiltonian dynamics of an auxiliary system with action $s(\mathbf{x}) [w(\mathbf{x}; \mathbf{r}) = W(\mathbf{X}; \mathbf{r}) / N]$

- describes the least improbable sequence of reactions leading to switching

$$\begin{array}{c}
W(\mathbf{X}; \mathbf{r}) \\
\mathbf{X} \longrightarrow \mathbf{X} + \mathbf{r} \longrightarrow \\
x_2 \longrightarrow \mathbf{X}_{A1} \longrightarrow \\
\mathbf{X}_{A2} \longrightarrow \\
\mathbf{X}_{A3} \longrightarrow \\
\mathbf{X}_{A4} \longrightarrow \\
\mathbf{X}_$$

$$\frac{\partial \rho(\mathbf{X})}{\partial t} = \sum_{\mathbf{r}} [W(\mathbf{X} - \mathbf{r}; \mathbf{r}) \rho(\mathbf{X} - \mathbf{r}) - W(\mathbf{X}; \mathbf{r}) \rho(\mathbf{X})]$$
$$= \sum_{\mathbf{r}} [\exp(-\mathbf{r}\partial_{\mathbf{X}}) - 1] W(\mathbf{X}; \mathbf{r}) \rho(\mathbf{X})]$$

Switching: rare event, requires a large fluctuation, switching rate: $W_{sw} << t_r^{-1}$

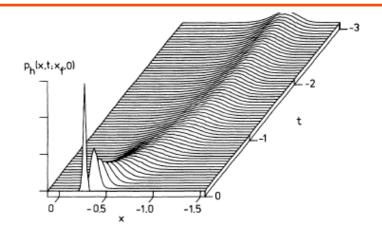
Hamilton-Jacobi equation for action s

Eikonal approximation: $\rho(\mathbf{X}) = \exp[-Ns(\mathbf{x})], \quad \dot{s} = -H(\mathbf{x}, \partial_{\mathbf{x}} s), \quad \mathbf{x} = \mathbf{X}/N$

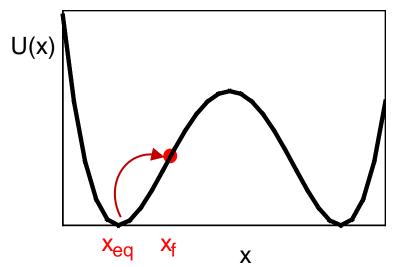
$$H(\mathbf{x}, \mathbf{p}) = \sum_{\mathbf{r}} w(\mathbf{x}; \mathbf{r}) [\exp(\mathbf{p}\mathbf{r}) - 1], \quad \mathbf{p} = \partial_{\mathbf{x}} s$$

p is the fluctuational force that drives the system against the "mean-field" force

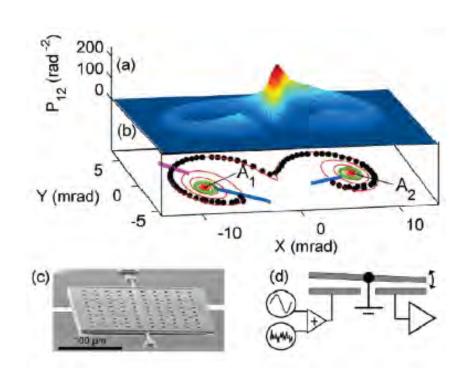
Optimal fluctuational paths



$$\dot{x} = -U'(x) + f(t), \quad \langle f(t)f(t') = 2D\delta(t - t'), \ U(x) = -\frac{1}{2}x^2 + \frac{1}{4}x^4$$

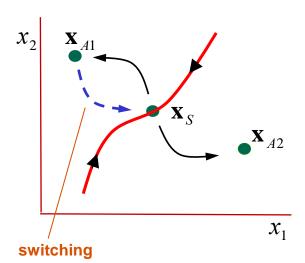


MD, McCIntock, Smelyanskiy, Stein, & Stocks (1991)



Chan, MD,& Stambaugh (2008)

Switching rate:
$$W_{sw} = C \exp(-NR_{sw})$$
, $R_{sw} = s(\mathbf{x}_S) - s(\mathbf{x}_A)$



Optimal switching path: from x_A to x_S

$$\mathbf{x} \to \mathbf{x}_A, \mathbf{p} = \partial_{\mathbf{x}} s \to \mathbf{0} \text{ for } t \to -\infty;$$

$$\mathbf{x} \to \mathbf{x}_{S}, \mathbf{p} \to \mathbf{0} \text{ for } t \to \infty$$

the probability current is continuous across the saddle, no accumulation near the saddle point, as for switching in white-noise driven continuous dissipative systems

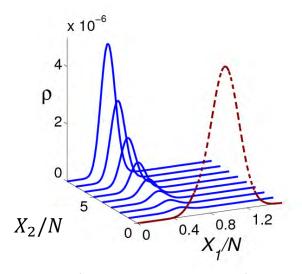
MD, Mori, Ross, & Hunt (1994)

Extinction: current discontinuity

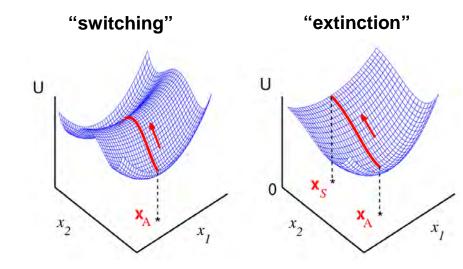
Extinction also requires a large fluctuation

$$\frac{\partial \rho(\mathbf{X})}{\partial t} = \sum_{\mathbf{r}} [W(\mathbf{X} - \mathbf{r}; \mathbf{r}) \rho(\mathbf{X} - \mathbf{r}) - W(\mathbf{X}; \mathbf{r}) \rho(\mathbf{X})]$$

Individuals/molecules that have reached the extinction plane $X_E = 0$ accumulate there, $\dot{\rho} = -\nabla \mathbf{J} \neq 0$



Snapshot of the distribution tail for the SIS model, $t/t_r = 9$, N = 50 (Khasin & MD, 2009)



Extinction rate $W_e << t_r^{-1}$. For $t_r << t << W_e^{-1}$ the distribution is quasistationary away from the extinction plane. The in-plane population is $W_e t$.

Boundary conditions for the optimal extinction path

Eikonal approximation:
$$\rho(\mathbf{X}) = \exp[-N_S(\mathbf{x})], \ \dot{S} = -H(\mathbf{x}, \partial_{\mathbf{x}} S) \equiv -H(\mathbf{x}, \mathbf{p})$$

Quasistationary distribution away from the extinction plane:

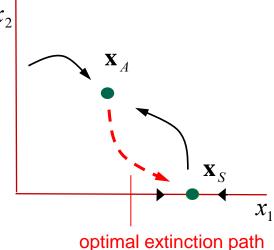
$$H(\mathbf{x}, \mathbf{p}) = \sum_{\mathbf{r}} w(\mathbf{x}; \mathbf{r}) [\exp(\mathbf{pr}) - 1] = 0$$

Extinction rate:
$$W_e = C \exp(-NR_e)$$
, $R_e = s(\mathbf{x}_S) - s(\mathbf{x}_A)$

Optimal extinction path $\mathbf{x}_e(t)$, $\mathbf{p}_e(t)$:

$$\mathbf{x}_e \to \mathbf{x}_A, \mathbf{p}_e \to \mathbf{0} \text{ for } t \to -\infty; \ \mathbf{x}_e \to \mathbf{x}_S, (\mathbf{p}_e \to \mathbf{p}_S) \text{ for } t \to \infty$$

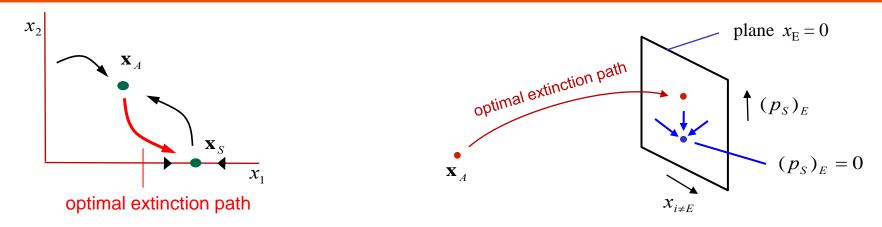
 $s(\mathbf{x})$ is minimal in the extinction plane for $\mathbf{x} = \mathbf{x}_S$.



$$(p_S)_{i\neq E} = 0$$
, $(p_S)_E \neq 0$ from equation:
$$\sum_{\mathbf{r}} w(\mathbf{x}; \mathbf{r}) \{ \exp[(p_S)_E r_E] - 1 \} = 0 \text{ for } \mathbf{x} \rightarrow \mathbf{x}_S$$

The normal momentum component is not equal to zero!

Optimal extinction path



The system first approaches $(\mathbf{x}_S, \mathbf{p}_S)$, and then moves to $(\mathbf{x}_S, \mathbf{p}=\mathbf{0})$, with no change in Q_e .

Specific systems: van Herwaarden & Grassman (1995); Elgar & Kamenev (2004)

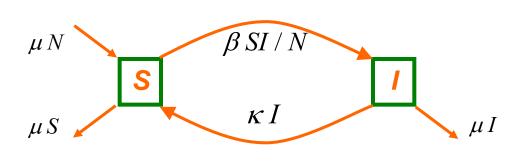
General: MD, Schawrtz, & Landsman (2008); periodically modulated systems: Khasin, MD, & Meerson (2010)

"Anomalous" scaling of the extinction exponent R_e with the distance $\,\eta\,$ to the bifurcation point

where ${\bf x}_{\!\scriptscriptstyle A}$ and ${\bf x}_{\!\scriptscriptstyle S}$ merge: $R_e \propto \eta^2$ instead of the scaling $R_{\scriptscriptstyle SW} \propto \eta^{3/2}$

MD, Schawrtz, & Landsman (2008)

Disease extinction: the SIS model



S: susceptible

I: infected

μ: birth and death rate

 β : contact rate between S and I

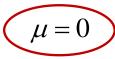
Birth-death transition rates:

$$W(\mathbf{X};(1,0)) = N\mu, \ W(\mathbf{X};(-1,0)) = \mu X_1, \ W(\mathbf{X};(0,-1)) = \mu X_2$$

Infection-recovery transition rates:

$$W(\mathbf{X}; (-1,1)) = \beta X_1 X_2 / N, \quad W(\mathbf{X}; (1,-1)) = \kappa X_2$$

Disease extinction: $I=X_2 \equiv X_E \rightarrow 0$



- conserved total population, $X_1 + X_2 = N$

[Weiss & Dishon (1971), Leigh (1981), Doering, Sargsyan, & Sander (2005), ...]

Explicit solution for the optimal extinction path gives:

$$(p_S)_E \equiv (p_S)_2 = 0, (p_S)_1 = \ln(\beta/\kappa)$$

inconsistent with

$$(p_S)_{i\neq E} = 0, (p_S)_E \neq 0$$

Optimal extinction paths without and with birthdeath processes, $\mu=0$ and $\mu>0$

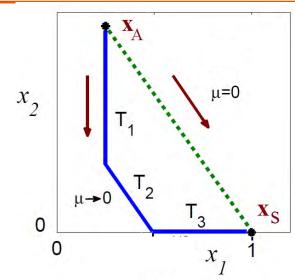
 $r_0 = \beta / (\mu + \kappa)$, infection reproductive rate

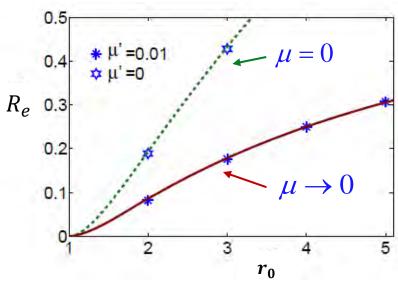
Extinction exponents $[W_e = C_e \exp(-NR_e)]$:

$$R_e \Big|_{\mu=0} = \ln r_0 - 1 + r_0^{-1}$$

$$R_e \Big|_{\mu o 0} = \left(r_0^{1/2} - 1\right)^2 / r_0$$

$$\mu >> W_e$$





 $(\mathbf{x}_A, \mathbf{p}_A = \mathbf{0})$

Solutions with $(p_S)_{i \neq E} \neq 0$ are *fragile*

Perturbation:
$$W(\mathbf{X}; \mathbf{r}) \to W(\mathbf{X}; \mathbf{r}) + \mu W^{(1)}(\mathbf{X}; \mathbf{r})$$

$$|\mu| << 1$$

Perturbed Hamiltonian: $H \rightarrow H + \mu H^{(1)}$

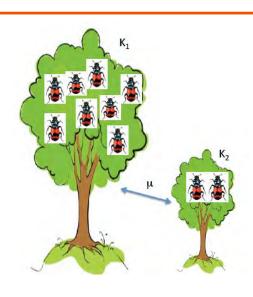
$$H^{(1)}(\mathbf{x}, \mathbf{p}) = \sum_{\mathbf{r}} w^{(1)}(\mathbf{x}; \mathbf{r}) [\exp(\mathbf{p}\mathbf{r}) - 1]$$

Perturbed extinction exponent:

$$R^{(1)} = -\mu \int_{-\infty}^{\infty} dt \, H^{(1)}(\mathbf{x}_e^{(0)}(t), \mathbf{p}_e^{(0)}(t))$$

If $(p_S)_{i\neq E}\neq 0$ and $w^{(1)}(\mathbf{x}_S;\mathbf{r})\neq 0$ the integral diverges for $t\to\infty$

Fragility in extinction: effect of migration

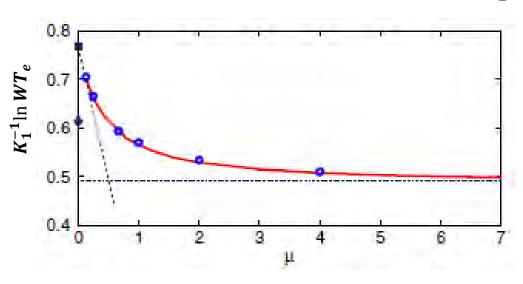


$$W$$
 W/K_i $A \rightarrow 2A$, $2A \rightarrow 0$

 μ – migration rate

mean-field equations for populations x, y scaled by K_1

$$W\dot{x} = x - x^2 - \mu(x - y),$$
 $W\dot{y} = y - \frac{K_1}{K_2}y^2 + \mu(x - y)$



Khasin, Meerson, Khain, & Sander, 2012

Quasienergy states of a driven oscillator

Oscillator isolated from the thermal reservoir: Floquet (quasienergy) states

$$H(t) = \frac{1}{2}(p^2 + \omega_0^2 q^2) + \frac{1}{4}\gamma q^4 - qF\cos(\omega_F t), \qquad i\hbar\dot{\psi} = H(t)\psi,$$

$$\psi_{\varepsilon}(t) = e^{-i\varepsilon t/\hbar}\,u_{\varepsilon}(t), \qquad u_{\varepsilon}\left(t + \frac{2\pi}{\omega_F}\right) = u_{\varepsilon}(t)$$
 quasienergy

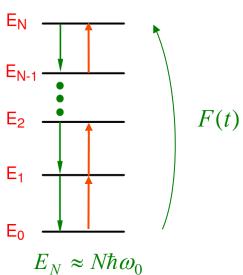
Values of ε are quantized, $\varepsilon \to \varepsilon_n$; discrete states of the modulated oscillator are ψ_{ε_n}

Relaxation and diffusion over quasienergy

Underdamped oscillator in the rotating frame:

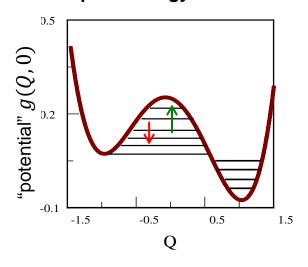
$$H(t) = \frac{1}{2}(p^2 + \omega_0^2 q^2) + \frac{1}{4}\gamma q^4 - qF\cos(\omega_F t) \xrightarrow{\text{RWA}} C_g g(Q, P),$$

energy states



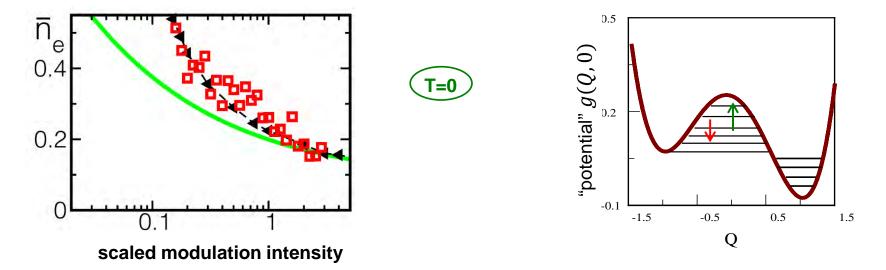
$$\varepsilon_n \propto (\omega_F - \omega_0)^2 g_n$$

quasi-energy states



Quasienergy states are linear combinations of Fock states. Inter-level transitions $|N_{\rm Fock}\rangle \to |N_{\rm Fock}-1\rangle$ correspond to inter-quasi-energy level transitions $|n\rangle \to |n\pm m\rangle$

drift and quantum diffusion over quasienergy even for T = 0



 \overline{n}_e – "Planck number" of the distribution over quasienergy states (experiment: Ong et al, 2013; theory: MD, Marthaler, & Peano, 2011; MD 2012; Peano & MD 2014)

near extremum: $\rho_n \propto \exp(-g_n/k_BT_e)$

The eikonal approximation

Balance equation for populations ρ_n of quasienergy states

$$\partial_t \rho_n = \sum [W(n-k;k)\rho_{n-k} - W(n;k)\rho_n]$$
$$= \sum (e^{-k\partial_n} - 1)W(n;k)\rho_n$$

Many "intrawell" states $N \propto \widetilde{\hbar}^{-1} \propto \hbar^{-1}$

O.5

Prelaxation

O.2

quantum
activation

-0.1

-1.5

Q

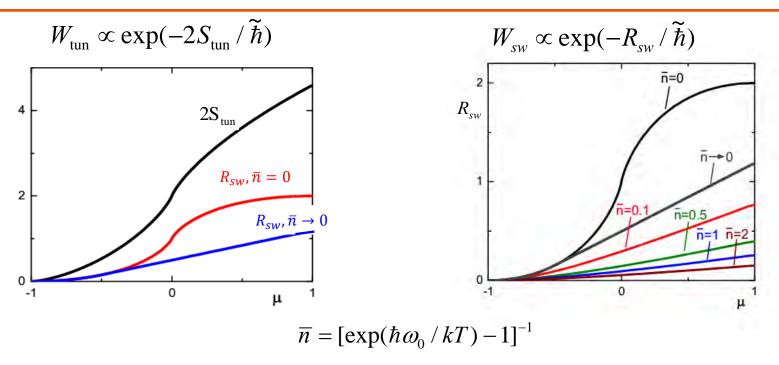
Far tail: steep distribution, $\rho_n = \exp\left(-R_n/\widetilde{\hbar}\right) \quad (\widetilde{\hbar} \ll 1)$

Eikonal approximation: smooth R_n , $R_n \equiv R(g_n)$, $\left| R_{n\pm 1} - R_n \right| \sim \widetilde{\hbar} \ll 1$

Switching rate
$$W_{\rm sw} \propto \Gamma \exp(-R_{sw}/\tilde{\hbar})$$
, $R_{sw} = R(g_s) - R(g_A)$

(MD & Smelyanskiy, 1988)

Modulated oscillator: quantum activation vs tunneling*



Surprise #1: Activation energy < tunneling exponent!

Surprise # 2: Fragility - in the WKB limit
$$R_{SW}(T=0) \neq R_{SW}(T \rightarrow 0)$$

*The plots refer to a parametric oscillator; Marthaler & MD (2006)

Fighting fragility

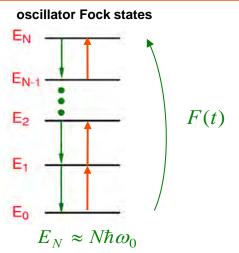
Balance equation: $\dot{\rho}_n = \sum [W(n-k;k)\rho_{n-k} - W(n;k)\rho_n]$

 $Q_{\mathcal{S}}$

 Q_a

Contribution to transition rates from "photon" emission and absorption:

$$W(n;k) = W^{(e)}(n;k) + W^{(abs)}(n;k), \qquad W^{(abs)} \propto \bar{n} \propto \exp(-\hbar\omega_0/k_BT)$$
 quasienergy states $\bar{n} \ll 1$

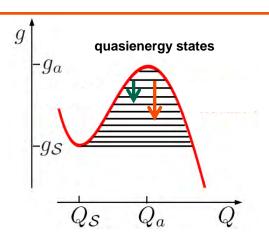


The absorption-induced transitions have longer "decay length"

$$W^{(e)}(n;k) \propto \exp[-k/\xi^{(e)}(n)],$$

$$W^{(abs)}(n;k) \propto \exp[-k/\xi^{(abs)}(n)],$$

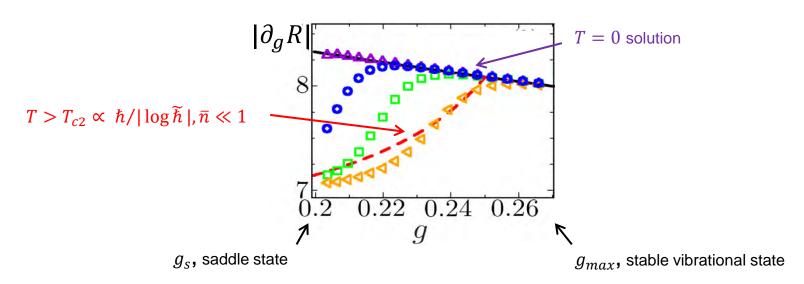
The perturbation theory in \overline{n} breaks down for $T>T_{c1} \propto \hbar^2$, $\ln \overline{n} \propto -\hbar^{-1}$



Breakdown of the eikonal approach for $T > T_{c1}$:

starting with some $n^*\equiv n^*(T)$, state populations are determined by the absorption-induced influx from states close to the extremum of g

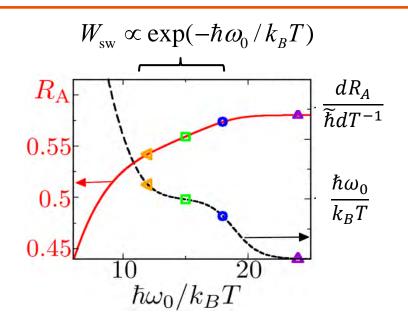
 \Longrightarrow inter-instanton kink at $\mathbf{n}^*(T)[oldsymbol{g}_{oldsymbol{n}^*}=oldsymbol{g}(oldsymbol{n}^*(T))]$, which moves with T



L. Guo, V. Peano, M. Marthaler, and MD (2013)

Quantum Arrhenius!





General fragility condition for the instanton Hamiltonian $\mathcal{H}(x,p) = \mathcal{H}^{(0)}(x,p) + \epsilon \mathcal{H}^{(1)}(x,p)$.

The instanton is "fragile" for $\int dt \mathcal{H}^{(1)} (x^{(0)}(t), p^{(0)}(t)) \rightarrow \infty$

as in the problem of population extinction, although the mechanism is different

Conclusions

- The exponents and prefactors of switching rates scale as a power of the distance to the bifurcation point. Different scaling for extinction
- Switching and extinction rates in systems lacking detailed balance display fragility: a parametrically large change of the rate exponent occurs in an extremely narrow parameter range the beauty of real-time instantons. Watch out for fragility
- ➤ Quantum relaxation comes with noise. Escape of modulated quantum oscillators occurs via quantum activation a restriction on JBA-based quantum measurements

