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Branching Brownian motion

Definition BBM

Start a Brownian motion x in 0.

After an exponential holding time T the particle splits into k offspring
(according to a specified probability law).

Each of these performs independent Brownian motion starting at
x(T).

The new particles are subject of the same splitting rule.

Picture by Matt Roberts, Bath
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Branching Brownian motion

Variable speed BBM

Let A : [0, 1]→ [0, 1] be increasing. Define

Σ2(s) = tA(s/t).

Brownian motion with speed function Σ2

BΣ
s = BΣ2(s).

Variable speed BBM:
same splitting rules, but if a particle splits at time s < t:
law of movement independent copies of {BΣ

r − BΣ
s }t≥r≥s
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Branching Brownian motion

Example for Gaussian process labelled by tree

A time-homogeneous tree. Label
individuals at time t as
i1(t), . . . , in(t)(t).

Canonical tree-distance:
d(i`(t), ik(t)) ≡ time of most recent
common ancestor of i`(t) and ik(t)
For fixed time horizon t, define Gaussian
process, (x tk(s), k ≤ n(t), s ≤ t), with
covariance

Ex tk(r)x t` (s) = tA(t−1d(ik(r), i`(s)))

for A : [0, 1]→ [0, 1], increasing.
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Extremal Process of variable speed BBM

Question: Extreme value theory

Is there a rescaling ut(x), such that

P
(

max
k≤n(t)

xk(t) ≤ ut(x)

)
→ F (x)?

Is there a limiting extremal process, P, such that∑
k≤n(t)

δu−1
t (xk (t)) → P?

Lisa Hartung (with Anton Bovier) IAM Bonn Variable speed branching Brownian motion EURANDOM, Eindhoven, 2014



Extremal Process of variable speed BBM

Question: Extreme value theory

Is there a rescaling ut(x), such that

P
(

max
k≤n(t)

xk(t) ≤ ut(x)

)
→ F (x)?

Is there a limiting extremal process, P, such that∑
k≤n(t)

δu−1
t (xk (t)) → P?

Lisa Hartung (with Anton Bovier) IAM Bonn Variable speed branching Brownian motion EURANDOM, Eindhoven, 2014



Extremal Process of variable speed BBM

Extremal Process of variable speed BBM

Assumptions on A : [0, 1]→ [0, 1]:

increasing, A(0) = 0, A(1) = 1

below the identity: A(x) < x for
x ∈ (0, 1)

A′(0) = σ2
b < 1

A′(1) = σ2
e > 1
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Extremal Process of variable speed BBM

Description of the extremal process

Poisson Point Process: PY =
∑

i∈N δpi ≡ PPP
(
C (σe)Yσbe

−
√

2xdx
)
,

where Yσb is the limit of a martingale that only depends on σb!

Cluster process: {x̄k(t)}k≤n(t) standard BBM,

∆(t) ≡
∑
k

δx̄k (t)−maxj≤n(t) x̄j (t).

conditioned on the event
{

maxj≤n(t) x̄j(t) >
√

2σet
}

converges in law to point process, ∆.

Eσb,σe ≡
∑
i ,j∈N

δ
pi+σe∆

(i)
j

, ∆(i) iid copies of ∆
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Extremal Process of variable speed BBM

Convergence of Extremal process

Theorem (Bovier, H. ’13, ’14)

Assume that A(x) < x , ∀x ∈ (0, 1), A′(0) = σ2
b < 1, A′(1) = σ2

e > 1. Let
m̃(t) =

√
2t − 1

2
√

2
ln t. Then

P
(
maxk≤n(t) xk(t)− m̃(t) ≤ x

)
→ Ee−C(σe)Yσb e

−
√

2x∑
k≤n(t) δxk (t)−m̃(t) → Eσb,σe =

∑
i ,j δpi+σe∆

(i)
j

Universality of limiting objects:
Only depend on the slope of A at 0 and 1!

Poisson point process: depends on σ2
b through RANDOM VARIABLE

Yσb and on σe through a constant C (σe).

Cluster process: Only depends on σe !
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Extremal Process of variable speed BBM

Idea:
Use comparison for Laplace trans-
forms with two-speed process; only
good approximation of covariance
near 0 and 1 needed.

⇒ Proof in two steps:
1. Extremal Process of two speed BBM
2. Gaussian Comparison
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Extremal Process of variable speed BBM

Two-speed BBM

Let σ2
b < 1 and σ2

e > 1. Consider the two-
speed BBM with speed

σ2(s) =

σ
2
b, for 0 < s ≤ 1−σ2

e

σ2
b−σ2

e
t,

σ2
e , for 1−σ2

e

σ2
b−σ2

e
t < s ≤ t,

Theorem (Bovier, H. ’13)

Then

P
(
maxk≤n(t) xk(t)− m̃(t) ≤ x

)
→ Ee−C(σe)Yσb e

−
√

2x∑
k≤n(t) δxk (t)−m̃(t) → Eσb,σe =

∑
i ,j δpi+σe∆

(i)
j
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Extremal Process of variable speed BBM

Step 1.1: Localization

Localisation of the particles
reaching extreme levels

at the time of the speed
change in a narrow (

√
t)

gate around
√

2btσ2
b

stay in a tube√
2σ2

bs±O(sγ), 1
2 < γ < 1

for s < bt

Figure: Path of extremal particle
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Extremal Process of variable speed BBM

Step 1.2: FKPP-equation

∂tu(x , t) =
1

2
∂2
xu(x , t) + u − u2

Asymptotics of solutions of the FKPP equation at very large values ahead
of the travelling wave:
x =
√

2(σe − 1)t + o(1)

u(t,
√

2t + x) ∼ C (σe)t−
1
2 e−

√
2x−x2/2t
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Extremal Process of variable speed BBM

Step 1.3: Martingale Convergence

Let x̄k(s), k ≤ n(s) be particles of a standard BBM .
Show convergence of the McKean martingale

Yσb(s) ≡
n(s)∑
i=1

e−s(1+σ2
b)+
√

2σb x̄i (s).

For σb < 1 Yσb(s) is uniformly integrable!
Shown by truncated second moment method.

Lisa Hartung (with Anton Bovier) IAM Bonn Variable speed branching Brownian motion EURANDOM, Eindhoven, 2014



Extremal Process of variable speed BBM

Step 2: Convergence of Extremal Process
for general A

Tightness of extremal process: X
Convergence of finite dimensional distributions:
for u ∈ R,

Nu(t) =

n(t)∑
i=1

1Ixi (t)−m̃(t)>u.

Lemma

For all k ∈ N and u1, . . . , uk ∈ R

{Nu1(t), . . . ,Nuk (t)} d→ {Nu1 , . . . ,Nuk}

as t ↑ ∞.
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Extremal Process of variable speed BBM

Step 2.1: Gaussian Comparison

2)For general A that satisfies assumption:

To establish convergence of finite di-
mensional distributions use Gaussian
comparison! Only good approxima-
tion at 0 and 1 needed!
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Extremal Process of variable speed BBM

Step 2.1: Definition of auxiliary two-speed processes

Define two-speed BBM’s with
the same underlying Galton
Watson tree:

(y1, . . . , yn(t))
(y

1
, . . . , y

n(t)
)

time0
t

Galton−Watson tree

0 ttime

s

p

a

c

e

Branching Bownian motion

first order Taylor expansion around 0 and upper respectively lower
bound the remainder!

the same at 1 and bound remainder from below respectively above!

Lemma

The extremal processes of (y1, . . . , yn(t)) and (y
1
, . . . , y

n(t)
) BOTH

converge to Eσb,σe .
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Extremal Process of variable speed BBM

Step 2.3: Gaussian Comparison

We want to compare the Laplace functionals of original process and
(y1, . . . , yn(t))!
⇒ function of particle positions at time t!
Compare the difference

EB

(
f (x1(t), . . . , xn(t)(t))

)
− EB

(
f (y1(t), . . . , yn(t)(t))

)
,

where EB denotes expectation w.r.t. particle movement (tree fixed).

Using the interpolating process with speed function

Σ2
h(s) = hΣ2(s) + (1− h)Σ

2
(s).

this is equal to

EB

(∫ 1

0

d

dh
f (xh(t))dh

)
.
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Extremal Process of variable speed BBM

Step 2.3: Gaussian Comparison

Now as in the normal Gaussian comparison, we would get

n(t)∑
i,j=1

i 6=j

[
EB(xi (t)xj(t))− EB(y i (t)y j(t))

]
EB

(
∂2f (xh(t))

∂xi∂xj

)

Looks like a second moment! Would like to take expectation w.r.t tree
structure and simple bounds...!
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Extremal Process of variable speed BBM

Second moment type computation
BUT that has to be done in a clever way:
Introduce localization [Needs justification!!!]

n(t)∑
i,j=1

i 6=j

[
EB(xi (t)xj(t))− EB(y i (t)y j(t))

]
EB

(
1Ixhi ∈T

γ

t,Ī ,Σ2
h

∂2f (xh(t))

∂xi∂xj

)

Motion of single particle
= Time change of BM

BΣ
s = BΣ2(s).
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Extremal Process of variable speed BBM

Monotonicity around 0 and t

Green region: Using localization show that terms in sum are o(1).

Red region:
EB(xi (t)xj(t))− EB(y i (t)y j(t)) < 0

and
∂2f (xh(t))

∂xi∂xj
≥ 0!

⇒ Upper and lower bound on corresponding terms in the sum!

Lisa Hartung (with Anton Bovier) IAM Bonn Variable speed branching Brownian motion EURANDOM, Eindhoven, 2014



Extremal Process of variable speed BBM

Monotonicity around 0 and t

Green region: Using localization show that terms in sum are o(1).
Red region:

EB(xi (t)xj(t))− EB(y i (t)y j(t)) < 0

and
∂2f (xh(t))

∂xi∂xj
≥ 0!

⇒ Upper and lower bound on corresponding terms in the sum!
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Extremal Process of variable speed BBM

Thank you for your attention!

Lisa Hartung (with Anton Bovier) IAM Bonn Variable speed branching Brownian motion EURANDOM, Eindhoven, 2014
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