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Does noisy environment facilitate 
extinction, or stabilize population? 

 

 



Noise in reaction models 

Internal, due to discreteness of agents 

       (demographic, shot…)  

 

External, due to rate variations  

       (environmental, bath…)  

Both affect large deviations statistics  



Environmental noise 
Temporal variation in the water level (m above sea level) at Lokka 
reservoir (67849’ N, 27844’ E) in northern Finland during 1968–2008. 



Extinction in time-varying environment 



Logistic model 
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“Quantum mechanics” of populations 
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Extinction in the presence of noise 
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Accelerated extinction  
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Phase Diagram   

 
     AK, Meerson, Shklovskii (2008) 
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state n = 0. Large fluctuat ions are rare and therefore

stat ist ically independent . As a result , the long-t ime sur-

vival probability obeys Poisson’s law

∞

n = 1

Pn (t) = 1 − P0(t) = e− t / τ 0 , (2)

where Pn (t) is the probability to find n individuals at

t ime t, and τ0 is the MTE. It is a well-known result (that

we will reproduce short ly) that τ0 scales exponent ially

with the average populat ion size K , see e.g. Ref. [8].

In the limit of r µ, that we will be interested in, one

obtains with exponent ial accuracy:

τ0 ∝ exp(rK / µ) . (3)

where we have assumed rK / µ 1.

Environmental noise manifests itself as a t ime-

modulat ion of the birth and/ or death rates. We will

assume a modulat ion of the parameter r :

r → r (t) = r − ξ(t) , (4)

whereξ(t) isa “ red” (posit ively correlated) Gaussian ran-

dom process with zero mean, variance v µ2 and corre-

lat ion t ime tc. For convenience, we choose the Ornstein-

Uhlenbeck noise defined by the correlator ξ(t)ξ(t ) =

v e− |t − t |/ t c . The stat ist ical weight of a given realizat ion

of this noise is P[ξ(t)] ∝ exp{ − S[ξ(t)]} , where

S[ξ(t)] =
1

4v
dt tc ξ̇

2 + t− 1
c ξ2 . (5)

The environmental noise does not change the Poisson

character of the survival probability, Eq. (2). Unless the

noise is too weak, however, it exponentially reduces the

MTE. We found that the MTE τξ , reduced by the noise,

can be expressed in terms of the unperturbed MTE τ0

and two dimensionless parameters: the rescaled noise

variance V = vK / (rµ) and the rescaled noise correlat ion

t ime T = tc/ t r = r tc:

ln τξ = F (V, T ) ln τ0 , (6)

where the funct ion F (V, T) describes various parameter

regimes summarized in Fig. 1. Important ly, each of these

regimes is also characterized by an optimal realization of

the noise (ORN) which causespopulat ion ext inct ion with

the highest probability. Not only the different regimes

have exponent ially different MTEs: they also feature

qualitat ively different ORNs.

Our theory, which leads to Eq. (6), Fig. 1 and other

results, starts from the master equat ion for the t ime-

dependent probability dist ribut ion funct ion Pn (t):

Ṗn = λn− 1Pn− 1 − (λn + µn )Pn + µn + 1Pn + 1 , (7)

with the birth and death rates given by Eq. (1). One can

show that , for K 1 and r µ, this master equat ion
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FIG. 1: Various regimes of ext inct ion on the plane of rescaled
parameters V and T . The dashed lines are schemat ic borders

of the adiabat ic, Eq. (16), and white-noise, Eq. (14) limits.
The dot ted line is the border of the weak-noise, Eq. (17),

regime. The shaded area is a crossover region.

can be accurately approximated by the Fokker-Planck

equat ion, derivable by a standard procedure of van Kam-

pen system size expansion [1, 2]. Switching to the cont in-

uous notat ions n → q, one can write the Fokker-Planck

equat ion as Ṗ = Ĥ P , with the linear dif ferent ial operator

Ĥ (q, p̂) =
µ

2
p̂2q+ p̂(rq − aq2) . (8)

Here p̂ = − ∂q so that [q, p̂] = 1. In the presence of envi-

ronmental noise, seeEq. (4), one obtains theHamiltonian

Ĥ ξ (q, p̂, t) = Ĥ (q, p̂) − ξ(t)p̂q.

The evolut ion operator Û(qf , t f ; qi , t i ) of the Fokker-

Planck equat ion can be represented as a path integral

over t ime-dependent t rajectories q(t) and p(t). Below we

discuss the boundary condit ions for such trajectories for

the case of populat ion ext inct ion. Eventually the evolu-

t ion operator must be averaged over realizat ions of the

environmental noise, result ing in

Û = Dξ DqDp e− S[ξ]−
R

dt [pq̇− H (q,p)+ ξpq] , (9)

where p(t) and H (q, p) areunderstood as “ classical” vari-

ables, rather than the operators.

Rare events in general and populat ion ext inct ion in

part icular are described by “ classical” t rajectories ac-

cumulat ing a large act ion (and therefore having expo-

nent ially small probabilit ies). For this reason the cor-

responding path integral can be evaluated using the

saddle point approximat ion near the most probable (or

rather least improbable) t rajectory, describing a given

rare event . Such an opt imal t rajectory is determined by

the variat ion of the exponent in Eq. (9) over q(t), p(t)

and ξ(t). The variat ion over ξ yields the ORN which de-

termines a given rare event with the highest probability.

Execut ing this program, one arrives at the following set

of classical equat ions of mot ion for q(t), p(t) and ξ(t):

q̇ =
∂H

∂p
− ξq, ṗ = −

∂H

∂q
+ ξp, (10)

t2
c ξ̈ − ξ = 2vtcpq. (11)

noise amplitude  
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FIG. 1: Various regimes of ext inct ion on the plane of rescaled
parameters V and T. The dashed lines are schemat ic borders

of the adiabat ic, Eq. (16), and white-noise, Eq. (14) limits.
The dot ted line is the border of the weak-noise, Eq. (17),
regime. The shaded area is a crossover region.

can be accurately approximated by the Fokker-Planck

equat ion, derivableby a standard procedureof van Kam-

pen system sizeexpansion [1, 2]. Switching to thecont in-

uous notat ions n → q, one can write the Fokker-Planck

equat ion asṖ = Ĥ P, with the linear dif ferent ial operator

Ĥ (q, p̂) =
µ

2
p̂2q+ p̂(rq− aq2) . (8)

Here p̂ = − ∂q so that [q, p̂] = 1. In the presence of envi-

ronmental noise, seeEq. (4), oneobtainstheHamiltonian

Ĥξ (q, p̂, t) = Ĥ (q, p̂) − ξ(t)p̂q.

The evolut ion operator Û(qf , t f ; qi , t i ) of the Fokker-

Planck equat ion can be represented as a path integral

over t ime-dependent trajectories q(t) and p(t). Below we

discuss the boundary condit ions for such trajectories for

the case of populat ion ext inct ion. Eventually the evolu-

t ion operator must be averaged over realizat ions of the

environmental noise, result ing in

Û = DξDqDp e− S[ξ]−
R

dt [pq̇− H (q,p)+ ξpq] , (9)

wherep(t) and H (q, p) areunderstood as“ classical” vari-

ables, rather than the operators.

Rare events in general and populat ion ext inct ion in

part icular are described by “ classical” trajectories ac-

cumulat ing a large act ion (and therefore having expo-

nent ially small probabilit ies). For this reason the cor-

responding path integral can be evaluated using the

saddle point approximat ion near the most probable (or

rather least improbable) t rajectory, describing a given

rare event. Such an opt imal trajectory is determined by

the variat ion of the exponent in Eq. (9) over q(t), p(t)

and ξ(t). The variat ion over ξ yields the ORN which de-

termines a given rare event with the highest probability.

Execut ing this program, one arrives at the following set

of classical equat ions of mot ion for q(t), p(t) and ξ(t):

q̇ =
∂H

∂p
− ξq, ṗ = −

∂H

∂q
+ ξp, (10)

t2
c ξ̈ − ξ = 2vtcpq. (11)



However: Noise may also stabilize   
populations 

      
     Parker, Meerson, AK (2011) 

             Well-known analogs in equilibrium context: 

 

 

 

Coleman-Weinberg effect in quantum gauge theories 

 

 

 Order by disorder phenomena in classical phase transitions 
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Deterministic and stochastic evolution 
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Theory 
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Results 
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Last transparency of the day! 

   Environmental noise may greatly accelerate   

the extinction. It may even change exponential 

scaling of the extinction time to a power-law. 

 

     

   Noise may trap population in an exponentially 

long-lived quasi-stationary state. (Coleman-

Weinberg, or “order by disorder”mechanism.)       

 

 


