# Does noisy environment facilitate extinction, or stabilize population?

Alex Kamenev

Eindhoven, 2014

University of Minnesota

Matt Parker Baruch Meerson Boris Shklovskii U of M Hebrew U U of M



United States - Israel Binational Science Foundation PRL **101**, 268103 (2008); PRL **107**, 180603 (2011);

### Noise in reaction models

Internal, due to discreteness of agents (demographic, shot...)

External, due to rate variations (environmental, bath...)

### Both affect large deviations statistics

### **Environmental noise**

Temporal variation in the water level (m above sea level) at Lokka reservoir (67849' N, 27844' E) in northern Finland during 1968–2008.



Trends in Ecology and Evolution Vol.24 No.10

### **Extinction in time-varying environment**

Extinction rates of populations of different sizes, compared with those expected in a constant environment

| Number of breeding nairs per popu-                     | 4-10            | 11-30            | 31-60 | over 60            |
|--------------------------------------------------------|-----------------|------------------|-------|--------------------|
| lation                                                 | 4 10            |                  | 01 00 | 0,0,00             |
| Proportion of populations dying out<br>within 80 years | 0.30            | 0.09             | 0.15  | 0.02               |
| (b) Theoretical populations in a constant              | environme       | $nt \ (r = 0.2)$ |       |                    |
| Equilibrium population size (indivi-<br>duals)         | $12\frac{1}{2}$ | 25               | 50    | 100                |
| Chance of dying out within 80 genera-<br>tions         | 0.73            | 0.18             | 0.002 | $5 \times 10^{-7}$ |

J. theor. Biol. (1981) 90, 213-239

### Logistic model

 $A \rightarrow 0$  rate  $d_n = d$  $A \rightarrow 2A$  rate  $b_n = b - cn$ 

rate equation :

stationary solution:

$$\dot{n} = (b-d)n - cn^2$$
$$N = \frac{b-d}{c}$$

$$P_{n} = d_{n+1}P_{n+1} - d_{n}P_{n} + b_{n-1}P_{n-1} - b_{n}P_{n}$$
$$= (e^{\partial_{n}} - 1)d_{n}P_{n} + (e^{-\partial_{n}} - 1)b_{n}P_{n} = \hat{H}(n,\partial_{n})P_{n}$$

"Hamiltonian":  $H(n, p) = (e^p - 1)d(n) + (e^{-p} - 1)b(n)$ 

### "Quantum mechanics" of populations

evolution operator:

$$\hat{U}_{n_{f}n_{i}} = \int_{n_{i}}^{n_{f}} D[n, p] e^{\int_{i}^{f} dt[p\dot{n} - H(n, p)]}$$

large fluctuations – stationary trajectories (WKB)



Dykman, et.al. (1994) Freidlin, Wentzel (1969)

$$\tau_{\rm ext} = e^{\frac{1}{2}\frac{b-d}{b+d}N}$$

exponential with the system size N

### Extinction in the presence of noise

$$b \rightarrow b - \xi(t) \qquad \qquad \mathcal{P}[\xi(t)] \propto \exp\{-S[\xi(t)]\}$$
$$S[\xi(t)] = \frac{1}{4v} \int dt (t_c \dot{\xi}^2 + t_c^{-1} \xi^2)$$

### optimal noise realisation :

$$\dot{n} = \partial_{p} H(n, p, \xi);$$
  
$$\dot{p} = -\partial_{n} H;$$
  
$$t_{c}^{2} \ddot{\xi} + \xi = 2v t_{c} \partial_{\xi} H$$



### **Accelerated extinction**



power-law with the system size N

Leigh (1981) AK, Meerson, Shklovskii (2008)

### **Phase Diagram**



AK, Meerson, Shklovskii (2008)

 $In \tau_{\xi} = F(V, T) In \tau_{0}$ 

## However: Noise may also stabilize populations

Parker, Meerson, AK (2011)

#### Well-known analogs in **equilibrium** context:

Coleman-Weinberg effect in quantum gauge theories

• Order by disorder phenomena in classical phase transitions

#### **Radiative Corrections as the Origin of Spontaneous Symmetry Breaking\***

Sidney Coleman

and

Erick Weinberg Lyman Laboratory of Physics, Harvard University, Cambridge, Massachusetts 02138

(Received 8 November 1972)

We investigate the possibility that radiative corrections may produce spontaneous symmetry breakdown in theories for which the semiclassical (tree) approximation does not indicate such breakdown. Massless scalar electrodynamics does not remain massless, nor does it remain electrodynamics;



### Classical: order by disorder

<sup>19</sup>J. Villain, R. Bidaux, J. P. Carton, and R. Conte, J. Phys. (Paris) **41**, 1263 (1980).

VOLUME 62, NUMBER 17 PHYSICAL REVIEW LETTERS

24 April 1989

#### Ordering Due to Disorder in a Frustrated Vector Antiferromagnet

Christopher L. Henley

In many continuous spin systems, competing interactions give nontrivial degeneracies of the classical ground states. Degeneracy-breaking free-energy terms arise from thermal (or quantum) fluctuations,



Increasing temperature drives the system into a stable **ordered** state

### Neutral genetic drift

 $A + B \leftrightarrow 2A \qquad A + B \leftrightarrow 2B$ 

fast mutations, conserving total number

 $S \rightarrow 0$   $2A \rightarrow 2A + S$   $2B \rightarrow 2B + S$ 

S is either A or B; slow non - conserving processes

 $x = n_A + n_B$  slow variable, close to bifurcation  $y = n_A - n_B$  fast variable, mean - field  $y \rightarrow 0$ 

### The model

$$x = n_A + n_B \qquad \qquad y = n_A - n_B$$

 $\dot{y} = -2y + \xi_y(t)$  entropic drift + strong fluctuations

$$\dot{x} = -V'(x) - y^2 + \xi_x(t)$$

drift, feedback, weak fluctuations

### **Deterministic and stochastic evolution**

$$\dot{x} = -V'(x) - y^2 + \xi_x(t), \qquad \dot{y} = -2y + \xi_y(t)$$



### Lifetime



exponential stability



???



### **Rare events**





### Theory

$$S = p_x \dot{x} + p_y \dot{y} + p_x [V'(x) + y^2] + 2p_y y + T_x p_x^2 + T_y p_y^2$$

$$= p_x \dot{x} + p_x V'(x) + T_x p_x^2 + \begin{pmatrix} y & p_y \end{pmatrix} \begin{bmatrix} p_x(t) & -\partial_t + 1 \\ \partial_t + 1 & T_y \end{bmatrix} \begin{pmatrix} y \\ p_y \end{pmatrix}$$



### Results



$$\log \tau_{\rm esc} \propto \begin{cases} T_y^{3/2} / T_x; \\ \sqrt{T_y} / T_x; \end{cases}$$

 $T_{y} < \sqrt{T_{x}}$  $T_{y} > \sqrt{T_{x}}$ 

### Last transparency of the day!

Environmental noise may greatly accelerate the extinction. It may even change exponential scaling of the extinction time to a power-law.

Noise may trap population in an exponentially long-lived quasi-stationary state. (Coleman-Weinberg, or "order by disorder" mechanism.)