Is there more biodiversity in non-homogeneous environments than in homogeneous ones?

(in progress + S. Kliem, ALEA, Lat. Am. J. Probab. Math. Stat. 11 (1), 43-140. 2014.)

Anton Klimovsky

Joint work with Andreas Greven, Frank den Hollander

August, 28, 2014

Challenge

Need

- mathematical models for (forwards in time) evolution of spatially structured populations, and
- consistent (backwards in time) models for genealogies (data, inference!).

This talk

- Introduce a new model for structured populations, based on interacting Cannings processes.
- Explain duality techniques to study the large space-time scale behaviour of the system (~> backwards in time models).
- Derive the renormalisation transformation that connects the behaviour on successive space-time scales.
- Consider this model in **inhomogeneous environment**.

Renormalisation program

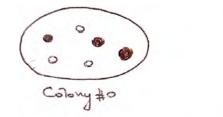
- Probabilistic part (construction, duality, scaling).
- Analytic part (renormalisation mapping, its orbits, attractors).

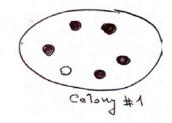
Substantial literature on renormalisation of **diffusive spatial models** (T. Cox, D. Dawson, A. Greven, F. den Hollander, R. Sun, J. Swart, J. Vaillancourt, et al.)

This talk:

 Universality for a class of non-diffusive spatio-temporal models with jumps.

Geographically structured colonies of individuals





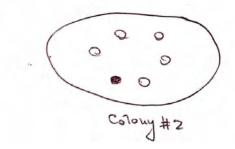


Figure: Colonies with individuals

Migration

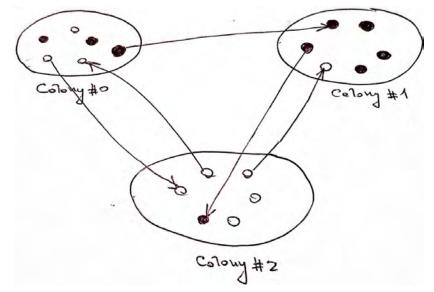
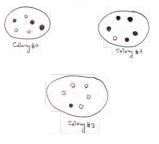
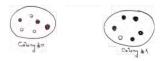


Figure: Random walk between the colonies

More geographical structure...





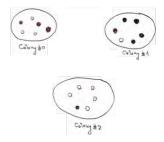
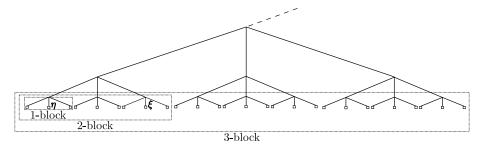


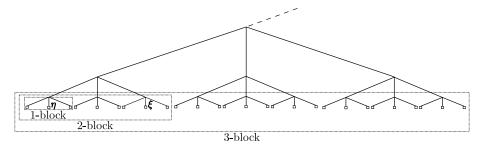
Figure: Another level of spatial structure



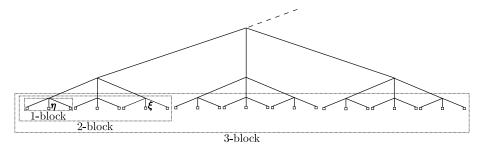
► Hierarchical group: $\Omega_N = \Big\{ \eta = (\eta^l)_{l \in \mathbb{N}_0} \in \{0, 1, \dots, N-1\}^{\mathbb{N}_0} \colon \sum_{l \in \mathbb{N}_0} \eta^l < \infty \Big\}.$

Branching parameter $N \in \mathbb{N}$ (regular tree).

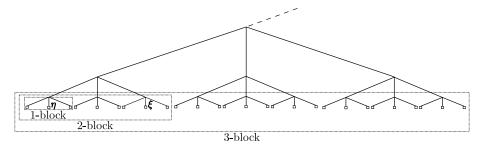
- Distance: $d(\eta, \zeta) = \min\{k \in \mathbb{N}_0 : \eta^l = \zeta^l, \text{ for all } l \ge k\}, \eta, \zeta \in \Omega_N.$
- ► Topology: $B_k(\eta) = \{\zeta \in \Omega_N : d(\eta, \zeta) \le k\}, \eta \in \Omega_N, k \in \mathbb{N}_0$



- $\begin{array}{l} \bullet \quad \text{Hierarchical group:} \\ \Omega_N = \Big\{ \boldsymbol{\eta} = (\boldsymbol{\eta}^l)_{l \in \mathbb{N}_0} \in \{0, 1, \ldots, N-1\}^{\mathbb{N}_0} \colon \sum_{l \in \mathbb{N}_0} \boldsymbol{\eta}^l < \infty \Big\}. \end{array}$
- Branching parameter $N \in \mathbb{N}$ (regular tree).
- Distance: $d(\eta,\zeta) = \min\{k \in \mathbb{N}_0 \colon \eta^l = \zeta^l, \text{ for all } l \geq k\}, \, \eta,\zeta \in \Omega_N.$
- ► Topology: $B_k(\eta) = \{\zeta \in \Omega_N : d(\eta, \zeta) \le k\}, \eta \in \Omega_N, k \in \mathbb{N}_0$

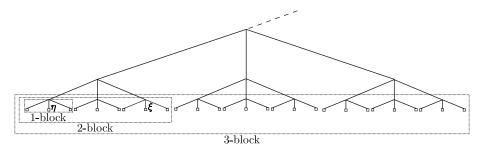


- $\begin{array}{l} \textbf{Hierarchical group:} \\ \Omega_{N} = \Big\{ \boldsymbol{\eta} = (\boldsymbol{\eta}^{l})_{l \in \mathbb{N}_{0}} \in \{0, 1, \dots, N-1\}^{\mathbb{N}_{0}} \colon \sum_{l \in \mathbb{N}_{0}} \boldsymbol{\eta}^{l} < \infty \Big\}. \end{array}$
- Branching parameter $N \in \mathbb{N}$ (regular tree).
- Distance: $d(\eta, \zeta) = \min\{k \in \mathbb{N}_0 : \eta^l = \zeta^l, \text{ for all } l \ge k\}, \eta, \zeta \in \Omega_N.$
- ▶ Topology: $B_k(\eta) = \{\zeta \in \Omega_N \colon d(\eta, \zeta) \leq k\}, \, \eta \in \Omega_N, k \in \mathbb{N}_0$



- $\begin{array}{l} \textbf{Hierarchical group:} \\ \Omega_{N} = \Big\{ \boldsymbol{\eta} = (\boldsymbol{\eta}^{l})_{l \in \mathbb{N}_{0}} \in \{0, 1, \dots, N-1\}^{\mathbb{N}_{0}} \colon \sum_{l \in \mathbb{N}_{0}} \boldsymbol{\eta}^{l} < \infty \Big\}. \end{array}$
- ▶ Branching parameter $N \in \mathbb{N}$ (regular tree).
- Distance: $d(\eta, \zeta) = \min\{k \in \mathbb{N}_0 : \eta^l = \zeta^l, \text{ for all } l \ge k\}, \eta, \zeta \in \Omega_N.$
- ► Topology: $B_k(\eta) = \{\zeta \in \Omega_N : d(\eta, \zeta) \le k\}, \eta \in \Omega_N, k \in \mathbb{N}_0$

Migration on the hierarchical space (Dawson, Gorostiza, Wakolbinger)



Hierarchical random walk:

- Migration rates: $\underline{c} := (c_k)_{k \in \mathbb{N}_0} \in (0, N)^{\mathbb{N}_0}$
- ▶ each indiv. at $\eta \in \Omega_N$ jumps unif. in $B_k(\eta)$ at rate c_{k-1}/N^{k-1}

Reproduction within a colony (Cannings)

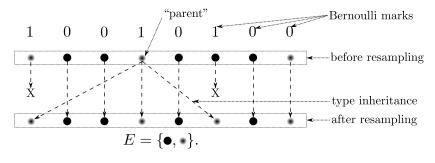
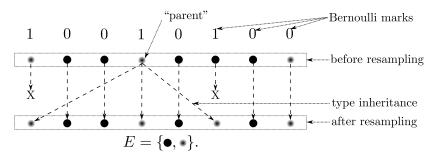


Figure: Resampling

Cannings model (discrete time):

- M fixed (# of individuals).
- ► Exchangeable collection of r.v. $\{v_i^{(M)} \in [0:M]: i \in [1:M]\}.$
- $\triangleright \ \sum_{i=1}^{M} v_i^{(M)} = M.$

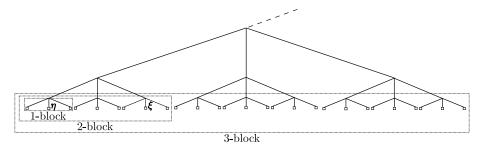
$\Lambda\mathchar`-Cannings model (continous time, continuous mass limit)$



A large universality class ($M \rightarrow \infty$, Sagitov'1999, Möhle-Sagitov'2001):

- ▶ Driven by **PPP** on $\mathbb{R}_+ \times [0,1]$ with $dt \otimes \Lambda(dr)/r^2$, where $\Lambda \in \mathscr{M}_{\text{finite}}([0,1]), \Lambda(\{0\}) = 0.$
- ► Resampling $(r\delta_1 + (1-r)\delta_0)^{\otimes M}$ (Bernoulli experiment).
- ► For $M \to \infty$, study the **distribution of types**: $X(t) := \frac{1}{M} \sum_{i=1}^{M} \delta_{T(i,t)} \in \mathscr{M}_1(E)$ in a colony.

Non-local resampling-reshuffling



Catastrophies in $B_k(\xi)$:

- ► Driven by **PPP** on $\mathbb{R}_+ \times [0,1]$ with $dt \otimes N^{-2k} \Lambda_k(dr)/r^2$, where $\Lambda_k \in \mathscr{M}_1([0,1]), \Lambda(\{0\}) = 0$.
- **Reshuffle** the individuals in $B_k(\xi)$.
- **Resample** the individuals in $B_k(\xi)$ using Λ_k .

Summary (so far)

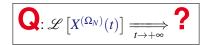
Hierarchically interacting $(\underline{c}, \underline{\Lambda})$ -Cannings process

$$X^{(\Omega_N)} = \left(X^{(\Omega_N)}(t)\right)_{t \ge 0} \quad \text{with} \quad X^{(\Omega_N)}(t) = \left\{X^{(\Omega_N)}_{\eta}(t)\right\}_{\eta \in \Omega_N} \in \mathscr{M}_1(E)^{\Omega_N}$$

Competition between:

- (Hierarchy of) slow and fast time scales.
- N.B. Important features:
 - Non-diffusive behaviour: PPP driven jumps.
 - Strongly correlated global updates: non-local reshuffling-resampling.

Long-time behaviour of the spatial process



Biodiversity?

Duality with a spatial coalescent with non-local coalescence

Relate $X = \{X_t\}_{t \in \mathbb{R}_+}$ with a simpler process. Find H and $Y = \{Y_t\}_{t \in \mathbb{R}_+}$:

$$\mathbb{E}_{X_0}[H(X_t, Y_0)] = \mathbb{E}_{Y_0}[H(X_0, Y_t)], \text{ for all } (X_0, Y_0), \quad t \in \mathbb{R}_+$$

- Backwards in time dynamics of the coalescing lineages.
- Spatial Λ -coalescent with non-local coalescence: Y_t .
- At start, infinitely many singleton families.
- Families move around according to the HRW.
- At coalescence event, k ≥ 2 families in B_k(η) coalesce. Then, all families in B_k are reshuffled.

► Driven by **PPP** d*t*
$$\otimes$$
 d η \otimes $\left(N^{-2k}$ d $k\left[\Lambda_k(dr)\left(r\delta_1+(1-r)\delta_0\right)^{\otimes\mathbb{N}}\right](d\omega)\right)$.

Biodiversity dichotomy: clustering vs. coexistence

Dichotomy seen backwards in time:

- ► Single family in the long run ~> no **biodiversity** (clustering).
- ► More then one family ~→ coexistence.

Exchangeability \rightsquigarrow enough to consider **two coalescing random walks** $(Z_t^1, Z_t^2)_{t\geq 0}$ on Ω_N with migration coefficients $(c_k + \lambda_{k+1}N^{-(k+1)})_{k\in\mathbb{N}_0}$ and coalescence at rates $(\lambda_k = \Lambda_k([0, 1]))_{k\in\mathbb{N}_0}$. Consider the time-*t* accumulated hazard for coalescence of this pair:

$$H_N(t) = \sum_{k \in \mathbb{N}_0} \lambda_k N^{-k} \int_0^t \mathbb{1}\left\{ d(Z_s^1, Z_s^2) \le k \right\} \, \mathrm{d}s.$$

Lemma

- ▶ $\lim_{t\to\infty} H_N(t) = \infty$ a.s. \rightsquigarrow no biodiversity (clustering).
- ▶ $\lim_{t\to\infty} H_N(t) < \infty$ a.s \rightsquigarrow coexistence.

Biodiversity dichotomy: criterion

Theorem (Migration – resampling-reshuffling tradeoff)

- $\sum_{k \in \mathbb{N}_0} (1/c_k) \sum_{l=0}^k \Lambda_l([0,1]) = \infty \rightsquigarrow$ no biodiversity (clustering).
- $\sum_{k \in \mathbb{N}_0} (1/c_k) \sum_{l=0}^k \Lambda_l([0,1]) < \infty$ a.s. \rightsquigarrow coexistence.

Large space-time scale analysis: $N \rightarrow \infty$, hierarchical mean-field limit

- Analyse the system scale by scale.
- "Separate" slow and fast time scales.
- Renormalise.
- Macroscopic observables:

$$Y^{(N)}_{\eta,k}(tN^k) = rac{1}{N^k} \sum_{\zeta \in B_k(\eta)} X^{(\Omega_N)}_\zeta(tN^k), \qquad \eta \in \Omega_N, k \in \mathbb{Z}_+$$

(block averages of order $k \in \mathbb{Z}_+$).

- Single scale (mean-field) ~ propagation of chaos and appearance of McKean-Vlasov process.
- ▶ Multiple scales simultaneously: ~→ Markov interaction chain.
- All this in the hierarchical mean-field limit:

$$\Omega_N \uparrow \Omega_\infty, \quad N \to +\infty.$$

McKean-Vlasov limiting object

Algebra of test functions: $\mathscr{B} \subseteq C_b(\mathscr{M}_1(E), \mathbb{R})$ with $G \in \mathscr{B}$:

$$G(x) = \int_{E^n} x^{\otimes n}(\mathrm{d} u) \, \boldsymbol{\varphi}(u), \qquad x \in \mathscr{M}_1(E), n \in \mathbb{N}, \, \boldsymbol{\varphi} \in C_\mathrm{b}(E^n, \mathbb{R}).$$

Generator:

$$\begin{split} (L^{c,d,\Lambda}_{\theta}G)(x) &= c \int_{E} \left(\theta - x\right) (\mathrm{d}a) \, \frac{\partial G(x)}{\partial x} [\delta_{a}] \leftarrow \text{ [drift]} \\ &+ d \int_{E} \int_{E} Q_{x}(\mathrm{d}u,\mathrm{d}v) \, \frac{\partial^{2}G(x)}{\partial x^{2}} [\delta_{u},\delta_{v}] \leftarrow \text{ [Fleming-Viot diffision]} \\ &+ \int_{[0,1]} \Lambda^{*}(\mathrm{d}r) \int_{E} x(\mathrm{d}a) \left[G\big((1-r)x + r\delta_{a}\big) - G(x) \right] \leftarrow \text{ [jumps]}, \quad G \in \mathscr{B}, \end{split}$$

where

$$Q_x(\mathrm{d} u,\mathrm{d} v)=x(\mathrm{d} u)\,\delta_u(\mathrm{d} v)-x(\mathrm{d} u)\,x(\mathrm{d} v).$$

 C^{Λ} -processes with immigration-emigration:

$$Z^{c,d,\Lambda}_{\theta} = \left(\mathbf{Z}^{c,d,\Lambda}_{\theta}(t) \right)_{t \ge 0}, \quad \mathbf{Z}^{c,d,\Lambda}_{\theta}(0) = \theta.$$

Asymptotic behaviour of the macroscopic observables

► Volatility constants:
$$\underline{d} = (d_k)_{k \in \mathbb{Z}_+}$$
,

$$d_0=0, \qquad d_{k+1}=rac{c_k(\lambda_k/2+d_k)}{c_k+(\lambda_k/2+d_k)}, \quad k\in\mathbb{Z}_+,$$

where $\lambda_k = \Lambda_k([0;1])$.

▶ N.B. (inhomogeneous) Möbius transformation.

Theorem (behaviour of the macroscopic observables)

Let $X^{(\Omega_N)}(0)$ be i.i.d. with the single-site mean $\theta \in \mathscr{P}(E)$ For every $k \in \mathbb{Z}_+$, uniformly in $\eta \in \Omega_{\infty}$,

$$\mathscr{L}\left[\left(Y_{\eta,k}^{(N)}(tN^{k})\right)_{t\geq 0}\right] \xrightarrow[N\to+\infty]{} \mathscr{L}\left[\left(Z_{\theta}^{c_{k},d_{k},\Lambda_{k}}(t)\right)_{t\geq 0}\right]$$

Ergodic behaviour of $X^{(N)}$, $N < \infty$

Set

$$m_k:=\frac{\lambda_k/2+d_k}{c_k}.$$

Theorem (Clustering vs. coexistence criterion)

- ▶ [Clustering] (= formation of large mono-type regions), if $\sum_{k \in \mathbb{Z}_+} m_k = \infty$ vs.
- ▶ **[Local coexistence]** (= convergence to multi-type equilibria), if $\sum_{k \in \mathbb{Z}_+} \frac{m_k}{m_k} < \infty$.

N.B. $\sum_{k \in \mathbb{Z}_+} m_k = \infty$ vs. $< \infty \Leftrightarrow \sum_{k \in \mathbb{N}_0} (1/c_k) \sum_{l=0}^k \lambda_l = \infty$ vs. $< \infty$.

- ▶ Recurrent migration ~→ clustering.
- ► ∃ transient migrations and strong enough reshuffling-resampling $\sum_{l \in \mathbb{N}_0} \lambda_l = \infty \rightsquigarrow$ clustering.

Dichotomy for $N < \infty$

Theorem (Clustering vs. coexistence criterion)

The following dichotomy holds:

(a) [Local coexistence] If $\sum_{k \in \mathbb{Z}_+} m_k < \infty$, then for every $\theta \in \mathscr{P}(E)$ and every $X^{(\Omega_N)}(0)$ whose law is stationary and ergodic w.r.t. translations in Ω_N and has a single-site mean θ ,

$$\mathscr{L}\left[X^{(\Omega_N)}(t)\right] \xrightarrow[t \to +\infty]{} v^{(\Omega_N),\underline{c},\underline{\lambda}}_{\theta} \in \mathscr{P}(\mathscr{P}(E)^{\Omega_N})$$

for some unique law $v_{\theta}^{(\Omega_N),\underline{c},\underline{\lambda}}$ that is stationary and ergodic w.r.t. translations in Ω_N and has single-site mean θ .

(b) [Clustering] If $\sum_{k \in \mathbb{Z}_+} m_k = \infty$, then, for every $\theta \in \mathscr{P}(E)$,

$$\mathscr{L}\left[X^{(\Omega_N)}(t)\right] \xrightarrow[t \to +\infty]{} \int_0^1 \boldsymbol{ heta}(\mathrm{d} u) \boldsymbol{\delta}_{(\boldsymbol{\delta}_u)^{\Omega_N}} \in \mathscr{P}(\mathscr{P}(E)^{\Omega_N}).$$

Inhomogeneous iterates of the Möbius transformation: universality classes

Polynomial case. Regular variation at infinity.

$$c_k \sim L_c(k)k^a, \quad a \in \mathbb{R}, \qquad \lambda_k \sim L_\lambda(k)k^b, \quad b \in \mathbb{R}, \qquad k \to +\infty,$$

Denote $\lim_{k\to\infty} \frac{\lambda_k}{c_k} = K \in [0,\infty]$, $\lim_{k\to\infty} k^2 \frac{c_k}{\lambda_k} = L \in [0,\infty]$.

Theorem (Scaling of the volatility)

(a) If $K \in (0,\infty)$, then

$$\lim_{k \to \infty} \frac{d_k}{c_k} = M \text{ with } M = \frac{1}{2}K[-1 + \sqrt{1 + (4/K)}] \in (0, 1).$$

(b) If $K = \infty$, then $\lim_{k\to\infty} \frac{d_k}{c_k} = 1$. (c) If K = 0, $L = \infty$, then $\lim_{k\to\infty} \frac{d_k}{\sqrt{c_k\lambda_k}} = 1$. (d) If K = 0, $L < \infty$, then $\lim_{k\to\infty} \sigma_k d_k = M' \in [1,\infty)$ with $M' = 1 \Leftrightarrow L = 0$.

Multi-scale analysis

- Scale of the age of the system $N^j t$.
- ▶ Interaction chain $(M_k^{(j)})_{k=-(j+1),\dots,0}, j \in \mathbb{Z}_+$, initial state at time -(j+1),

$$M_{-(j+1)}^{(j)} = \boldsymbol{\theta} \in \mathscr{M}_1(E),$$

- **Equilibrium of the McKean-Vlasov process** $Z_x^{c,d,\Lambda}$: $v_x^{c,d,\Lambda}$
- ▶ Transition $-(k+1) \rightsquigarrow -k, k = j, \dots, 0$:

$$K_k(x,\cdot) = \mathbf{v}_x^{c_k,d_k,\Lambda_k}(\cdot), \quad x \in \mathcal{M}_1(E), \quad k \in \mathbb{Z}_+,$$

Theorem (multi-scale behaviour)

Let $(t_N)_{N \in \mathbb{N}}$ be such that $\lim_{N \to \infty} t_N = \infty$ and $\lim_{N \to \infty} t_N / N = 0$. Then, for every $j \in \mathbb{Z}_+$, uniformly in $\eta \in \Omega_\infty$ and $u_k \in (0, \infty)$, $k = 0, \dots, j$,

$$\begin{aligned} \mathscr{L}\left[\left(Y_{\eta,k}^{(N)}(N^{j}\boldsymbol{t_{N}}+N^{k}\boldsymbol{u_{k}})\right)_{k=j,\ldots,0}\right] & \xrightarrow[N \to +\infty]{} \mathscr{L}\left[\left(M_{-k}^{(j)}\right)_{k=j,\ldots,0}\right], \\ \mathscr{L}\left[Y_{\eta,j+1}^{N}(N^{j}\boldsymbol{t_{N}})\right] & \xrightarrow[N \to +\infty]{} \delta_{\theta}. \end{aligned}$$

Inhomogeneous environment

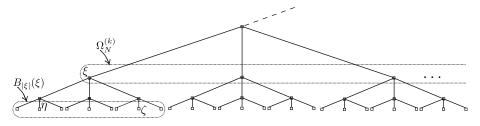


Figure: $\Omega_N^{\mathbb{T}}$ with N = 3, $\xi \in \Omega_N^{(k)} \subset \Omega_N^{\mathbb{T}}$, $|\xi| = k = 2$, $\eta, \zeta \in B_{|\xi|}(\xi)$. The elements of $\Omega_N^{\mathbb{T}}$ are the vertices of the tree (indicated by \Box 's).

Spatially inhomogeneous reshuffling-resampling:

$$\underline{\Lambda}(\boldsymbol{\omega}) = \left\{ \Lambda^{\xi}(\boldsymbol{\omega}) \colon \, \xi \in \Omega_N^{\mathbb{T}}
ight\}$$

Model via a random environment *a*.

Assumptions on the random environment

Assume

$$\Lambda^{\xi}(\boldsymbol{\omega}) = \lambda_{|\xi|} \boldsymbol{\chi}^{\xi}(\boldsymbol{\omega})$$

where

- ► $\underline{\lambda} = (\lambda_k)_{k \in \mathbb{N}_0}$ is a deterministic seq., and
- {χ^ξ(ω): ξ ∈ Ω_N^T} is an M_f([0,1])^{Ω_N^T}-valued random field that is stationary under translations.

Denote the **total mass** of χ by

$$\mathscr{A}^{\xi}(\boldsymbol{\omega}) = \boldsymbol{\chi}^{\xi}(\boldsymbol{\omega})([0,1]).$$

Assume that

$$\mathbb{E}[\mathscr{A}^{\xi}(\boldsymbol{\omega})] = 1, \qquad \mathbb{E}[(\mathscr{A}^{\xi}(\boldsymbol{\omega}))^{2}] \in (0, \infty),$$

and let the terminal σ -algebra generated by χ be trivial.

Long time behaviour: $t \rightarrow \infty$

Theorem (Equilibrium)

Fix $N \in \mathbb{N} \setminus \{1\}$. Suppose that $X^{(\Omega_N)}(\boldsymbol{\omega}; 0)$ is a random field (w.r.t. $\boldsymbol{\omega}$) that is stationary and ergodic under the law \mathbb{P} with mean single-coordinate measure $\boldsymbol{\theta} \in \mathscr{P}(E)$. Then for \mathbb{P} -a.s. $\boldsymbol{\omega}$ there exists a $v_{\boldsymbol{\theta}}(\boldsymbol{\omega}) \in \mathscr{P}(\mathscr{P}(E)^{\Omega_N})$, the equilibrium measure given $\boldsymbol{\omega}$, such that

$$\lim_{t\to\infty}\mathscr{L}[X^{(\Omega_N)}(\boldsymbol{\omega};t)]=\boldsymbol{v}_{\boldsymbol{\theta}}(\boldsymbol{\omega}),$$

where

$$\int_{\mathscr{P}(E)^{\Omega_N}} x_0 \, \boldsymbol{v}_{\boldsymbol{\theta}}(\boldsymbol{\omega})(\mathrm{d} x) = \boldsymbol{\theta}.$$

Moreover, $\omega \mapsto v_{\theta}(\omega)$ is stationary and ergodic under the law \mathbb{P} .

$N < \infty$

Theorem (Dichotomy for finite system) Fix $N \in \mathbb{N} \setminus \{1\}$. (a) Let $\mathscr{C} = \{\omega: \text{ coexistence given } \omega \text{ occurs}\}$. Then $\mathbb{P}(\mathscr{C}) \in \{0,1\}$. (b) $\mathbb{P}(\mathscr{C}) = 1$ if and only if

$$\sum_{k\in\mathbb{N}_0}rac{1}{c_k+N^{-1}\lambda_{k+1}}\sum_{l=0}^{\kappa}\lambda_l<\infty$$

Hierarchical mean-field limit: $N \rightarrow \infty$

Macro-colony averages

$$Y_{\eta,k}^{(\Omega_N)}(\boldsymbol{\omega};t) = rac{1}{N^k} \sum_{\zeta \in B_k(\eta)} X_{\zeta}^{(\Omega_N)}(\boldsymbol{\omega};t), \qquad \eta \in \Omega_N.$$

Theorem (Hierarchical mean-field limit and renormalisation)

Suppose that for each *N* the random field $X^{(\Omega_N)}(\boldsymbol{\omega}; 0)$ is the restriction to Ω_N of a random field $X(\boldsymbol{\omega})$ indexed by $\Omega_{\infty} = \bigoplus_{\mathbb{N}} \mathbb{N}$ that is i.i.d. with single-component mean $\theta \in \mathscr{P}(E)$. Then, for \mathbb{P} -a.s. $\boldsymbol{\omega}$ and for every $k \in \mathbb{N}$ and $\eta \in \Omega_{\infty}$,

$$\lim_{N \to \infty} \mathscr{L}\left[\left(Y_{\eta,k}^{(\Omega_N)}(\boldsymbol{\omega}; tN^k) \right)_{t \ge 0} \right] = \mathscr{L}\left[\left(Z_{\theta}^{c_k, d_k, \Lambda^{\mathsf{MC}_k(\eta)}(\boldsymbol{\omega})}(t) \right)_{t \ge 0} \right]$$

where $\operatorname{MC}_{k}(\eta) \in \Omega_{\infty}^{(k)}$ is the unique site at height k above $\eta \in \Omega_{\infty}$, i.e., the label of the block (= macro-colony) of radius k in Ω_{∞} around $\eta \in \Omega_{\infty}$ (see Fig. 5). The same is true for k = 0 when $Z_{\theta}^{c_{0},d_{0},\Lambda^{\eta}(\boldsymbol{\omega})}(0) = X^{(\Omega_{N})}(\boldsymbol{\omega};0)$ instead of $Z_{\theta}^{c_{0},d_{0},\Lambda^{\eta}(\boldsymbol{\omega})}(0) = \theta$.

Volatilities in the inhomogeneous case: $d_k = ?$

In the theorem $\underline{d} = (d_k)_{k \in \mathbb{N}_0}$ is the sequence of **volatility constants** defined recursively as

$$d_{k+1} = \mathbb{E}_{\mathscr{L}_{\mathscr{A}}}\left[\frac{c_k(\mu_k\mathscr{A} + d_k)}{c_k + (\mu_k\mathscr{A} + d_k)}\right], \quad k \in \mathbb{N}_0,$$

where

- $\blacktriangleright \ \mu_k = \frac{1}{2}\lambda_k$
- ✓ is the (0,∞)-valued random variable whose law L_A is the same as that of A⁰(ω) under P.
- $\mathbb{E}_{\mathscr{L}_{\mathscr{A}}}$ is expecation w.r.t. $\mathscr{L}_{\mathscr{A}}$.

The right-hand side is the average of a random Möbius transformation that depends on \mathscr{A} .

Theorem (Randomness lowers volatility) If $d_0^0 = d_0 = d_0^*$, then $d_k^0 < d_k < d_k^*$ for all $k \in \mathbb{N}$.

Scaling regimes

Theorem (Scaling of the Fleming-Viot volatility: polynomial coefficients)

- (a) If $K = \infty$, then $\lim_{k\to\infty} d_k/c_k = 1$.
- (b) If $K \in (0,\infty)$, then $\lim_{k\to\infty} d_k/c_k = M$ with $M \in (0,1)$ the unique solution of the equation

$$M = \mathbb{E}_{\mathscr{L}_{\mathscr{A}}}\left[\frac{(K\mathscr{A} + M)}{1 + (K\mathscr{A} + M)}\right].$$

- (c) If K = 0 and $L = \infty$, then $\lim_{k \to \infty} d_k / \sqrt{c_k \mu_k} = 1$.
- (d) If K = 0, $L \in [0, \infty)$ and $a \in (-\infty, 1)$, then $\lim_{k\to\infty} \sigma_k d_k = M^*$ with $M^* \in [1, \infty)$ given by

$$M^* = \frac{1}{2} \left[1 + \sqrt{1 + 4L/(1-a)^2} \right],$$

where $\sigma_k = \sum_{l=0}^{k-1} (1/c_l)$.

Summary

- Constructed the hierarchically interacting Cannings processes in random environment.
- ► Dichotomy: the clustering vs. local coexistence dichotomy in the long-time behaviour in terms of <u>c</u>, <u>λ</u>. Also for finite N.
- The dichotomy is not affected by the random environment.
- Identified its space-time scaling behaviour in the hierarchical mean-field limit N → ∞. Volatilities decrease in the inhomogeneous environment. Changes in the scaling regimes. Clusters grow slower.
- Fluctuations in the environment reduce clustering ~> increased biodiversity.

Outlook:

• Other geographical spaces. Continuum limit to the geographic space \mathbb{R}^2 .

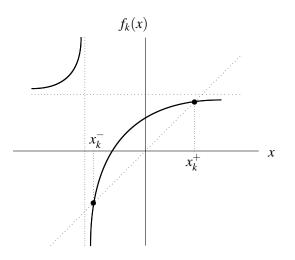


Figure: The Möbius-transformation $x \mapsto f_k(x)$.

R.J. Kooman (1998)