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Challenge

Need

I mathematical models for (forwards in time) evolution of spatially
structured populations, and

I consistent (backwards in time) models for genealogies (data,
inference!).



This talk

I Introduce a new model for structured populations, based on interacting
Cannings processes.

I Explain duality techniques to study the large space-time scale
behaviour of the system ( backwards in time models).

I Derive the renormalisation transformation that connects the behaviour
on successive space-time scales.

I Consider this model in inhomogeneous environment.



Renormalisation program

I Probabilistic part (construction, duality, scaling).

I Analytic part (renormalisation mapping, its orbits, attractors).

Substantial literature on renormalisation of diffusive spatial models (T. Cox,
D. Dawson, A. Greven, F. den Hollander, R. Sun, J. Swart, J. Vaillancourt, et
al.)

This talk:
I Universality for a class of non-diffusive spatio-temporal

models with jumps.



Geographically structured colonies of individuals

Figure: Colonies with individuals



Migration

Figure: Random walk between the colonies



More geographical structure...

Figure: Another level of spatial structure



Hierarchical geography (Felsenstein, Sawyer)

I Hierarchical group:

ΩN =
{

η = (η l)l∈N0 ∈ {0,1, . . . ,N−1}N0 : ∑l∈N0
η l < ∞

}
.

I Branching parameter N ∈ N (regular tree).

I Distance: d(η ,ζ ) = min{k ∈ N0 : η l = ζ l, for all l≥ k}, η ,ζ ∈ΩN .

I Topology: Bk(η) = {ζ ∈ΩN : d(η ,ζ )≤ k}, η ∈ΩN , k ∈ N0
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Migration on the hierarchical space (Dawson, Gorostiza,
Wakolbinger)

Hierarchical random walk:

I Migration rates: c := (ck)k∈N0 ∈ (0,N)N0

I each indiv. at η ∈ΩN jumps unif. in Bk(η) at rate ck−1/Nk−1



Reproduction within a colony (Cannings)

Figure: Resampling

Cannings model (discrete time):

I M fixed (# of individuals).

I Exchangeable collection of r.v. {ν(M)
i ∈ [0 : M] : i ∈ [1 : M]}.

I ∑
M
i=1 ν

(M)
i = M.



Λ-Cannings model (continous time, continuous mass
limit)

A large universality class (M→ ∞, Sagitov’1999, Möhle-Sagitov’2001):

I Driven by PPP on R+× [0,1] with dt⊗Λ(dr)/r2, where
Λ ∈Mfinite([0,1]), Λ({0}) = 0.

I Resampling (rδ1 +(1− r)δ0)
⊗M (Bernoulli experiment).

I For M→ ∞, study the distribution of types:
X(t) := 1

M ∑
M
i=1 δT(i,t) ∈M1(E) in a colony.



Non-local resampling-reshuffling

Catastrophies in Bk(ξ ):

I Driven by PPP on R+× [0,1] with dt⊗N−2kΛk(dr)/r2, where
Λk ∈M1([0,1]), Λ({0}) = 0.

I Reshuffle the individuals in Bk(ξ ).

I Resample the individuals in Bk(ξ ) using Λk.



Summary (so far)

Hierarchically interacting (c,Λ)-Cannings process

X(ΩN) =
(
X(ΩN)(t)

)
t≥0 with X(ΩN)(t) =

{
X(ΩN)

η (t)
}

η∈ΩN
∈M1(E)ΩN .

Competition between:
I Migration c = (ck)k∈Z+ (spatial movement)

vs.
Resampling Λ = (Λk)k∈Z+ (reproduction under constrained resources).
plus

I (Hierarchy of) slow and fast time scales.

N.B. Important features:

I Non-diffusive behaviour: PPP driven jumps.

I Strongly correlated global updates: non-local reshuffling-resampling.



Long-time behaviour of the spatial process

Q: L
[
X(ΩN)(t)

]
====⇒

t→+∞
?

Biodiversity?



Duality with a spatial coalescent with
non-local coalescence

Relate X = {Xt}t∈R+ with a simpler process. Find H and Y = {Yt}t∈R+ :

EX0 [H(Xt,Y0)] = EY0 [H(X0,Yt)], for all (X0,Y0), t ∈ R+

I Backwards in time dynamics of the coalescing lineages.

I Spatial Λ-coalescent with non-local coalescence: Yt.

I At start, infinitely many singleton families.

I Families move around according to the HRW.

I At coalescence event, k ≥ 2 families in Bk(η) coalesce. Then, all families
in Bk are reshuffled.

I Driven by PPP dt⊗dη⊗
(

N−2kdk
[
Λk(dr)

(
rδ1 +(1− r)δ0

)⊗N
]
(dω)

)
.



Biodiversity dichotomy: clustering vs. coexistence

Dichotomy seen backwards in time:

I Single family in the long run no biodiversity (clustering).

I More then one family coexistence.

Exchangeability enough to consider two coalescing random walks
(Z1

t ,Z
2
t )t≥0 on ΩN with migration coefficients (ck +λk+1N−(k+1))k∈N0 and

coalescence at rates (λk = Λk([0,1]))k∈N0 . Consider the time-t accumulated
hazard for coalescence of this pair:

HN(t) = ∑
k∈N0

λkN−k
∫ t

0
1
{

d(Z1
s ,Z

2
s )≤ k

}
ds.

Lemma
I limt→∞ HN(t) = ∞ a.s.  no biodiversity (clustering).

I limt→∞ HN(t)< ∞ a.s coexistence.



Biodiversity dichotomy: criterion

Theorem (Migration – resampling-reshuffling tradeoff)

I ∑k∈N0
(1/ck)∑

k
l=0 Λl([0,1]) = ∞ no biodiversity (clustering).

I ∑k∈N0
(1/ck)∑

k
l=0 Λl([0,1])< ∞ a.s.  coexistence.



Large space-time scale analysis: N→ ∞, hierarchical
mean-field limit
I Analyse the system scale by scale.
I “Separate" slow and fast time scales.
I Renormalise.
I Macroscopic observables:

Y(N)
η ,k (tN

k) =
1

Nk ∑
ζ∈Bk(η)

X(ΩN)
ζ

(tNk), η ∈ΩN , k ∈ Z+

(block averages of order k ∈ Z+).

I Single scale (mean-field) propagation of chaos and appearance of
McKean-Vlasov process.

I Multiple scales simultaneously:  Markov interaction chain.
I All this in the hierarchical mean-field limit:

ΩN ↑Ω∞, N→+∞.



McKean-Vlasov limiting object
Algebra of test functions: B ⊆ Cb(M1(E),R) with G ∈B:

G(x) =
∫

En
x⊗n(du)ϕ(u), x ∈M1(E), n ∈ N, ϕ ∈ Cb(En,R).

Generator:

(Lc,d,Λ
θ

G)(x) = c
∫

E
(θ − x)(da)

∂G(x)
∂x

[δa]← [drift]

+d
∫

E

∫
E

Qx(du,dv)
∂ 2G(x)

∂x2 [δu,δv]← [Fleming-Viot diffision]

+
∫
[0,1]

Λ
∗(dr)

∫
E

x(da)
[
G
(
(1− r)x+ rδa

)
−G(x)

]
← [jumps], G ∈B,

where
Qx(du,dv) = x(du)δu(dv)− x(du)x(dv).

CΛ-processes with immigration-emigration:

Zc,d,Λ
θ

=
(
Zc,d,Λ

θ
(t)
)

t≥0, Zc,d,Λ
θ

(0) = θ .



Asymptotic behaviour of the macroscopic observables

I Volatility constants: d = (dk)k∈Z+ ,

d0 = 0, dk+1 =
ck(λk/2+dk)

ck +(λk/2+dk)
, k ∈ Z+,

where λk = Λk([0;1]).
I N.B. (inhomogeneous) Möbius transformation.

Theorem (behaviour of the macroscopic observables)

Let X(ΩN)(0) be i.i.d. with the single-site mean θ ∈P(E) For every k ∈ Z+,
uniformly in η ∈Ω∞,

L

[(
Y(N)

η ,k (tN
k)
)

t≥0

]
====⇒

N→+∞
L

[(
Zck,dk,Λk

θ
(t)
)

t≥0

]
.



Ergodic behaviour of X(N), N < ∞

Set

mk :=
λk/2+dk

ck
.

Theorem (Clustering vs. coexistence criterion)
I [Clustering] (= formation of large mono-type regions), if ∑k∈Z+

mk = ∞

vs.
I [Local coexistence] (= convergence to multi-type equilibria), if

∑k∈Z+
mk < ∞.

N.B. ∑k∈Z+
mk = ∞ vs. < ∞⇔ ∑k∈N0

(1/ck)∑
k
l=0 λl = ∞ vs. < ∞.

I Recurrent migration clustering.

I ∃ transient migrations and strong enough reshuffling-resampling
∑l∈N0

λl = ∞ clustering.



Dichotomy for N < ∞

Theorem (Clustering vs. coexistence criterion)

The following dichotomy holds:

(a) [Local coexistence] If ∑k∈Z+
mk < ∞, then for every θ ∈P(E) and

every X(ΩN)(0) whose law is stationary and ergodic w.r.t. translations in
ΩN and has a single-site mean θ ,

L
[
X(ΩN)(t)

]
====⇒

t→+∞
ν
(ΩN),c,λ
θ

∈P(P(E)ΩN )

for some unique law ν
(ΩN),c,λ
θ

that is stationary and ergodic w.r.t.
translations in ΩN and has single-site mean θ .

(b) [Clustering] If ∑k∈Z+
mk = ∞, then, for every θ ∈P(E),

L
[
X(ΩN)(t)

]
====⇒

t→+∞

∫ 1

0
θ(du)δ(δu)ΩN ∈P(P(E)ΩN ).



Inhomogeneous iterates of the Möbius transformation:
universality classes
Polynomial case. Regular variation at infinity.

ck ∼ Lc(k)ka, a ∈ R, λk ∼ Lλ (k)k
b, b ∈ R, k→+∞,

Denote limk→∞
λk
ck
= K ∈ [0,∞], limk→∞ k2 ck

λk
= L ∈ [0,∞].

Theorem (Scaling of the volatility)

(a) If K ∈ (0,∞), then

lim
k→∞

dk

ck
= M with M = 1

2 K[−1+
√

1+(4/K)] ∈ (0,1).

(b) If K = ∞, then limk→∞
dk
ck
= 1.

(c) If K = 0, L = ∞, then limk→∞
dk√
ckλk

= 1.

(d) If K = 0, L < ∞, then limk→∞ σkdk = M′ ∈ [1,∞) with M′ = 1⇔ L = 0.



Multi-scale analysis
I Scale of the age of the system Njt.
I Interaction chain (M(j)

k )k=−(j+1),...,0, j ∈ Z+, initial state at time −(j+1),

M(j)
−(j+1) = θ ∈M1(E),

I Equilibrium of the McKean-Vlasov process Zc,d,Λ
x : ν

c,d,Λ
x

I Transition −(k+1) −k, k = j, . . . ,0:

Kk(x, ·) = ν
ck,dk,Λk
x (·), x ∈M1(E), k ∈ Z+,

Theorem (multi-scale behaviour)

Let (tN)N∈N be such that limN→∞ tN = ∞ and limN→∞ tN/N = 0.
Then, for every j ∈ Z+, uniformly in η ∈Ω∞ and uk ∈ (0,∞), k = 0, . . . , j,

L

[(
Y(N)

η ,k (N
jtN +Nkuk)

)
k=j,...,0

]
====⇒

N→+∞
L

[(
M(j)
−k

)
k=j,...,0

]
,

L
[
YN

η ,j+1(N
jtN)
]
====⇒

N→+∞
δθ .



Inhomogeneous environment

Figure: ΩT
N with N = 3, ξ ∈Ω

(k)
N ⊂ΩT

N , |ξ |= k = 2, η ,ζ ∈ B|ξ |(ξ ). The elements of
ΩT

N are the vertices of the tree (indicated by �’s).

Spatially inhomogeneous reshuffling-resampling:

Λ(ω) =
{

Λ
ξ (ω) : ξ ∈Ω

T
N
}

Model via a random environment ω .



Assumptions on the random environment

Assume

Λ
ξ (ω) = λ|ξ |χ

ξ (ω)

where

I λ = (λk)k∈N0 is a deterministic seq., and

I {χξ (ω) : ξ ∈ΩT
N} is an Mf ([0,1])ΩT

N -valued random field that is
stationary under translations.

Denote the total mass of χ by

A ξ (ω) = χ
ξ (ω)([0,1]).

Assume that

E[A ξ (ω)] = 1, E[(A ξ (ω))2] ∈ (0,∞),

and let the terminal σ -algebra generated by χ be trivial.



Long time behaviour: t→ ∞

Theorem (Equilibrium)

Fix N ∈ N\{1}. Suppose that X(ΩN)(ω;0) is a random field (w.r.t. ω) that is
stationary and ergodic under the law P with mean single-coordinate measure
θ ∈P(E). Then for P-a.s. ω there exists a νθ (ω) ∈P(P(E)ΩN ), the
equilibrium measure given ω , such that

lim
t→∞

L
[
X(ΩN)(ω; t)

]
= νθ (ω),

where ∫
P(E)ΩN

x0 νθ (ω)(dx) = θ .

Moreover, ω 7→ νθ (ω) is stationary and ergodic under the law P.



N < ∞

Theorem (Dichotomy for finite system)

Fix N ∈ N\{1}.
(a) Let C = {ω : coexistence given ω occurs}. Then P(C ) ∈ {0,1}.
(b) P(C ) = 1 if and only if

∑
k∈N0

1
ck +N−1λk+1

k

∑
l=0

λl < ∞.



Hierarchical mean-field limit: N→ ∞

Macro-colony averages

Y(ΩN)
η ,k (ω; t) =

1
Nk ∑

ζ∈Bk(η)

X(ΩN)
ζ

(ω; t), η ∈ΩN .

Theorem (Hierarchical mean-field limit and renormalisation)

Suppose that for each N the random field X(ΩN)(ω;0) is the restriction to ΩN

of a random field X(ω) indexed by Ω∞ =
⊕

N N that is i.i.d. with
single-component mean θ ∈P(E). Then, for P-a.s. ω and for every k ∈ N
and η ∈Ω∞,

lim
N→∞

L

[(
Y(ΩN)

η ,k (ω; tNk)
)

t≥0

]
= L

[(
Zck,dk,Λ

MCk(η)(ω)
θ

(t)
)

t≥0

]
,

where MCk(η) ∈Ω
(k)
∞ is the unique site at height k above η ∈Ω∞, i.e., the

label of the block (= macro-colony) of radius k in Ω∞ around η ∈Ω∞ (see
Fig. 5). The same is true for k = 0 when Zc0,d0,Λ

η (ω)
θ

(0) = X(ΩN)(ω;0) instead

of Zc0,d0,Λ
η (ω)

θ
(0) = θ .



Volatilities in the inhomogeneous case: dk =?

In the theorem d = (dk)k∈N0 is the sequence of volatility constants defined
recursively as

dk+1 = ELA

[
ck(µkA +dk)

ck +(µkA +dk)

]
, k ∈ N0,

where

I µk =
1
2 λk

I A is the (0,∞)-valued random variable whose law LA is the same as
that of A 0(ω) under P.

I ELA
is expecation w.r.t. LA .

The right-hand side is the average of a random Möbius transformation that
depends on A .

Theorem (Randomness lowers volatility)

If d0
0 = d0 = d∗0, then d0

k < dk < d∗k for all k ∈ N.



Scaling regimes

Theorem (Scaling of the Fleming-Viot volatility: polynomial coefficients)

(a) If K = ∞, then limk→∞ dk/ck = 1.

(b) If K ∈ (0,∞), then limk→∞ dk/ck = M with M ∈ (0,1) the unique solution
of the equation

M = ELA

[
(KA +M)

1+(KA +M)

]
.

(c) If K = 0 and L = ∞, then limk→∞ dk/
√

ckµk = 1.

(d) If K = 0, L ∈ [0,∞) and a ∈ (−∞,1), then limk→∞ σkdk = M∗ with
M∗ ∈ [1,∞) given by

M∗ = 1
2

[
1+
√

1+4L/(1−a)2

]
,

where σk = ∑
k−1
l=0 (1/cl).



Summary

I Constructed the the hierarchically interacting Cannings processes in
random environment.

I Dichotomy: the clustering vs. local coexistence dichotomy in the
long-time behaviour in terms of c,λ . Also for finite N.

I The dichotomy is not affected by the random environment.

I Identified its space-time scaling behaviour in the hierarchical
mean-field limit N→ ∞. Volatilities decrease in the inhomogeneous
environment. Changes in the scaling regimes. Clusters grow slower.

I Fluctuations in the environment reduce clustering increased
biodiversity.

Outlook:
I Other geographical spaces. Continuum limit to the geographic space R2.



fk(x)

x
x+k

x−k

s

s

Figure: The Möbius-transformation x 7→ fk(x).

R.J. Kooman (1998)
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