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Fithess landscapes

S. Wright, Proc. 6th Int. Congress of Genetics (1932)
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”...selection will easily carry the species to the nearest peak, but there will
be innumerable other peaks that will be higher but which are separated by
‘valleys’. The problem of evolution as | see it is that of a mechanism by which
the species may continually find its way from lower to higher peaks...



Mathematical setting

Genotypes are binary sequences 0 = (01,0, ...,0.) with ¢; € {0,1} or
o, € {—1,1} (presence/absence of mutation).

A fitness landscape is a function (o) on the space of 2- genotypes
Epistasis implies interactions between the effects of different mutations

Sign epistasis: Mutation at a given locus is beneficial or deleterious
depending on the state of other loci Weinreich, Watson & Chao (2005)

Reciprocal sign epistasis for L = 2:
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Measures of epistasis

Local fithess optima Haldane 1931, Wright 1932

e A genotype o is a local optimum if f(g) > f(g’) for all one-mutant
neighbors o’

e In the absence of sign epistasis there is a single global optimum

e Reciprocal sign epistasis is a necessary but not sufficient condition for the
existence of multiple fithess peaks Poelwijk et al. 2011, Crona et al. 2013

Selectively accessible paths Weinreich et al. 2005

e A path of single mutations connecting two genotypes o — 0’ with
f(o) < f(0’) is selectively accessible if fitness increases monotonically
along the path

e In the absence of sign epistasis all paths to the global optimum are
accessible, and vice versa



Empirical example: The Aspergillus niger fitness landscape

J.A.G.M. de Visser, S.C. Park, JK, American Naturalist 174, S15 (2009)
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e Combinations of 8 individually deleterious marker mutations
(one out of (3) = 56 five-dimensional subsets shown)

e 3 local fithess optima, 25 out of 120 paths are accessible



A metaanalysis of empirical data sets

Szendro et al., JSTAT 2013; de Visser & Krug, Nat. Rev. Genet. 2014

specificity

ID System Available Fitness Direction of  Known
(organism/gene) combinations  (proxy) mutations effects

A Methylobacterium 16/16 Growth rate  Beneficial Combined
extorquens

B Escherichia 32/32 Fitness Beneficial Combined
coli

C-D  Dihydrofolate 16/16 Resistance/  Beneficial Individual/
reductase Growth rate Combined

E [-lactamase 32/32 Resistance Beneficial Combined

F [-lactamase 32/32 Resistance Beneficial Combined

G Saccharomyces 64/64 Growth rate  Deleterious  Individual
cerevisiae

H Aspergillus 186/256 Growth rate  Deleterious  Individual
niger

1-J Terpene synthase 418/512 Enzymatic — —
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Random field models
of fithess landscapes



Null model: House-of-cards

In the house-of-cards model fithess is assigned randomly to genotypes
Kingman 1978, Kauffman & Levin 1987

What is the expected number of shortest, selectively accessible paths n,.
from an arbitrary genotype at distance d to the global optimum?

The total number of paths is d!, and a given path consists of d independent,
identically distributed fitness values fo, ...., fg_1.

A path is accessible iff fo < f1.... < fq_1

Since all d! permutations of the d random variables are equally likely, the
probability for this event is 1/d!

= E(Nyec) :d—l!xd! =1

This holds in particular for the L! paths from the reversal genotype/antipode
of the global optimum.



Distribution of number of accessible paths from reversal genotype

J. Franke et al., PLoS Comp. Biol. 7 (2011) e1002134
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e "Condensation of probability" at n,.. = 0

e Characterize the distribution B_(n) by E(n,..) and the probability B (0) that
no path is accessible = define accessibility as P_ = 1— R (0)



“Accessiblility percolation” as a function of initial fithess

e \When fithesses are drawn from the uniform distribution and the fithess of

the initial genotype is fg, then Hegarty & Martinsson, Ann. Appl. Prob. 2014
( InL
O for fo > T
limP_ =
o0 ) InL
1 for fo < T,
\

e This implies in particular that lim__.,P_. =0 for the HoC model with
unconstrained initial fithess

e If arbitrary paths with backsteps are allowed, the accessibility threshold
becomes independent of L Berestycki, Brunet, Shi, arXiv:1401.6894

e On a regular tree of height h and branching number b the accessibility
threshold for h,b — o occurs ath/b=e
Nowak & Krug, EPL 2013; Roberts & Zhao, ECP 2013



Landscapes with tunable ruggedness



Kauffman’s NK-model Kauffman & Weinberger 1989

e Each locus interacts randomly with K < L — 1 other loci:

f(O') = 2 fi(o-i‘o-ip'“?O-iK)

fi: Uncorrelated RV’s assigned to each of the 21 possible arguments
e K = 0: Non-epistatic K =L — 1: House-of-cards
Rough Mt. FUji model Aita et al. 2000; Neidhart et al., arXiv:1402.3065

e Non-epistatic (“Mt. Fuji”) landscape perturbed by a random component:
f(0) = —cd(0,0'9) +n(0)
c>0:slope  d(o,0’): Hamming distance n:iid. RV's

e lim _o.P.=1foranyc>0 Hegarty & Martinsson 2014



“Genetic architecture” in Kauffman’'s NK-model

e Different schemes for choosing the interaction partners:
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e Which properties of the fithess landscape are sensitive to this choice?



“Genetic architecture” in Kauffman’'s NK-model

e Fitness correlation function is manifestly independent of the neighborhood
scheme P.R.A. Campos, C. Adami, C.O. Wilke (2002)
J. Neidhart, 1.G. Szendro, JK, JTB 2013

e In the block model, the mean number of local maxima is given exactly by

2L
E(nggg‘) — (K n 2) W A.S. Perelson, C.A. Macken (1995)

which is very close (but not identical) to rigorous results for the adjacent
model Durrett & Limic (2003), Limic & Pemantle (2004)

e Mean number of accessible paths in the block model:

. (nPlocky — H B. Schmiegelt, JK 2013
acc - [(K_|_1)|]L/(K+1) . SChmiegelt,



Path decomposition for the block model
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Evolutionary accessibility in the block model

B. Schmiegelt, JK, J. Stat. Phys. 154, 334 (2014)

A given pathway spanning the whole landscape is accessible iff all
subpaths within the B =L /(K 4 1) blocks are accessible

L!
[(K+1)1)B

Each combination of accessible subpaths can be combined into
global paths

— nblock _ L! > r](i)
acc [(K+1)|]B||:| acc

Since the blocks are HoC-landscapes of size K-+1, the expected
L!

ni;’nlier of accessible paths is E(nPock) = e and the accessibility is
DblOoC

PB = [52?&]&1 which approaches zero exponentially fast in L for any K

Full distribution of N°'°°c can be computed in terms of the HoC distributions,

accC

explicit results for K =1 and K = 2.



Mean number of paths Is insensitive to genetic architecture
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..but accessibility is very sensitive....
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..at least for system sizes that can be simulated!
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Global reciprocal sign epistasis

e A fitness landscape displays global reciprocal sign epistasis if there is a
pair of loci that has reciprocal sign epistasis in all posssible backgrounds:
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e In the presence of global reciprocal sign epistasis there are no accessible
paths across the hypercube

e Proposition: (B. Schmiegelt)
Global reciprocal sign epistasis exists with probability tending to unity for
L — oo, K fixed, for any neighborhood choice of the NK-model



Random NK-model with L = 30,K = 1: Neighborhood graph




Random NK-model with L = 30,K = 1. Epistasis graph




Random NK-model with L = 30,K = 1: Sign epistasis graph
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Adjacent NK-model with L =50,K =2

e interaction graph e sign epistasis graph



Global reciprocal sign epistasis in the adjacent NK-model:

P[Z>0]

K=1

B. Schmiegelt (unpublished)

P[Z>0] for AN model with k=1
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Global reciprocal sign epistasis in the adjacent NK-model: K=2

B. Schmiegelt (unpublished)

P[Z>0] for AN model with k=2
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Adaptive walks



Adaptive walks

e An adaptive walk is a Markov chain on sequence space that is constrained
to move to genotypes of larger fithess and terminates at local fithess
maxima

e Three flavors of adaptive walks differing in their transition probabilities:

Random Adaptive Walk (RAW) Macken & Perelson 1989
All fitter genotypes are chosen with equal probability

Greedy Adaptive Walks (GAW) Orr 2003
The most fit genotype is chosen deterministically

True Adaptive Walk (TAW)
Transition rate is proportional to the fithess difference between the
resident and mutant genotype Gillespie 1983, Orr 2002

e Quantities of interest: Average length ¢ and achieved fitness (height) f*



Walk length in the HoC landscape

RAW'’s and GAW'’s are fully determined by the rank ordering of the fithess
landscape. Their properties are independent of the fithess distribution and
only depend on the number of uphill directions L in the initial state.

RAW: ¢ ~ In(L) + 1.1 for large L Flyvbjerg & Lautrup 1992

GAW: !/ —e—1~1.71828... Orr 2003

TAW length asymptotics depends on the extreme value index K of the

fitness distribution according to Neidhart & Krug 2011, Jain 2011
1—kK
l =~ In(L) +c, for K <1
AL DR

where K > 0, K = 0 and K < O correspond to the Fréchet, Gumbel and
Welibull classes, respectively.

The TAW becomes effectively random (greedy) for K — —oo (K — 1)



Walk height in the HoC landscape

S. Nowak (unpublished)
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e For uniform fitness distribution the expected final fithess is of the form
1—E(f*) ~ £ with Braw ~ 0.6243.. and Boaw ~ 0.4003...



Random adaptive walks in the RMF landscape

S.-C. Park, I1.G. Szendro, J. Neidhart, JK, arXiv:1408:4856

RAW'’s starting at antipode (maximal distance L from reference sequence)

Assume RAW takes only ‘uphill’ steps that decrease d(0o, 0(0)), and draw
random fithness component from exponential distribution with mean 1

Then the mean walk length can be computed analytically and displays a
phase transition at ¢ = 1.

(InL/(1—c), c<1
¢0< (InL)?, c=1,
LO(L), c>1

For tails thinner (fatter) than exponential, £ ~ L (¢ ~InL) forallc> 0

Equivalent to zero temperature Metropolis dynamics of a random energy
spin glass in an external field



Random adaptive walks in the RMF landscape
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e Numerical verification of phase transition in simulations with backsteps



Greedy adaptive walks in the RMF landscape

S.-C. Park, J. Neidhart, JK, in preparation

e For Gumbel-distributed random fitness components, the length of GAW'’s
starting from the antipode of the reference sequence satisfies

1-e°© 1
P(length > | |_| ok

Moo

1-q"

where [n]q = ¢

IS the g-number.

e Correspondingly the mean walk length is given by the g-exponential

{ =eXpgc(l)—1—e—1 for c—0

e If the walk starts at distance d = aL from the reference sequence with
a < % the walk length is nonmonotonic in ¢ and reaches / — 1fora — 0O



Mean length of GAW’s with Gumbel-distributed randomness
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Minimum in GAW length with Gumbel-distributed randomness
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Summary

e Increasing number of empirical fithess landscapes provide insights into
patterns of epistasis

e Existence of accessible pathways is not simply correlated to overall
‘ruggedness’ of the landscape:

— In the RMF model pathways exist with unity probability for any ¢ > 0O
— In the NK-model accessibility vanishes asymptotically for L — oo,
possibly at hyperastronomically large values of L

e Static view focused on landscape structure is complemented by dynamic
view of accessibility in term of adaptive walks



Summary

e Increasing number of empirical fithess landscapes provide insights into
patterns of epistasis

e Existence of accessible pathways is not simply correlated to overall
‘ruggedness’ of the landscape:

— In the RMF model pathways exist with unity probability for any ¢ > 0O
— In the NK-model accessibility vanishes asymptotically for L — oo,
possibly at hyperastronomically large values of L

e Static view focused on landscape structure is complemented by dynamic
view of accessibility in term of adaptive walks

Thanks to:

Jasper Franke, Johannes Neidhart, Stefan Nowak, Benjamin Schmiegelt,
lvan Szendro (Cologne)

Arjan de Visser (Wageningen), Su-Chan Park (Seoul)



