
3. What do extremal

trajectories look like?

J. Kurchan (PMMH-ESPCI) Rare events 1 / 46



a glass
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Density functional theory

a mean-field free energy

F [ρ] = T

∫
d3x ρ[ln ρ(x)− 1]− 1

2

∫
d3x d3x′ [ρ(x)− ρo]C(x− x′)[ρ(x′)− ρo]

has many local minima, solutions of

δF [ρ(x)]

δρ
= 0

liquid – crystal + many amorphous
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Analogy with dynamic systems Ruelle + Aubry-Mather theory

space → time

ρ(x) = ρo liquid → fixed point

crystal → periodic solution

amorphous → chaotic solution
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Density functional theory reduced to the essential

F [ρ(x)] =

∫
d3x ρ[ln ρ(x)− 1]− 1

2

∫
d3x d3x′ [ρ(x)− ρo]C(x− x′)[ρ(x′)− ρo]

↓

F [ρ(x)] =

∫
d3x V (ρ)− 1

2

∫
d3x (aoρ

2 − a1(∇ρ)2 + a2(∇2ρ)2 + ...)

Swift-Hohenberg like
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What are then the stationary solutions of

F [ρ(x)] =

∫
d3x V (ρ)− 1

2

∫
d3x (aoρ

2 − a1(∇ρ)2 + a2(∇2ρ)2)

and , in particular, its ground state?
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constrained, elastic
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Chiche, et al
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One dimension

F [ρ(t)] =

∫
dt V (ρ)− 1

2

∫
dt (aoρ

2 − a1(ρ̇)2 + a2(ρ̈)
2)

the action corresponding, in the coordinates (ρ, ρ̂) and
(w, ŵ) to

H = V (ρ) + 1
2aoρ

2 − 1
2a1w

2 + wρ̂− 1
2ŵ

2

a non-linear, unbounded, Hamiltonian with more than one
degree of freedom
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and now we really have chaos in the sense of dynamical
systems

ρ(x) versus dρ
dx
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we search for bounded solutions with small free energies

space

density

and we unexpectedly find ourselves back with a planetary
stability -like problem!
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Density functional theory in higher dimension:
Chaos with several variables and three dimensional time...
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What do extremal trajectories look like?
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The baker’s map
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... is as chaotic as you can be.
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And yet, orbits minimising a function, e.g.
A ≡

∫
dt (q(t)− q∗)2

ρ = 3/13 ≈ 0.231

q∗ ∈ [0.2360, 0.2362]

ρ = 5/17 ≈ 0.294

q∗ ∈ [0.29395, 0.29397]

are periodic or quasiperiodic but unstable!

Hunt and Ott — Khan-Dang Nguyen Thu Lam, JK , D Levine
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If this metaphor is good, we should see:

during exceptional times
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large deviations are sometimes important. we know how to
simulate them efficiently

extreme events in chaotic systems may be expected to be
ordered, but unstable

deep glassy states are analogous to extreme trajectories of
chaotic systems with space↔ time
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4. Large deviations and

Metastability
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Dynamical phase transitions
large deviations of the activity

JP Garrahan, RL Jack, V Lecomte, E Pitard, K van Duijvendijk, and
Frederic van Wijland
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Competition between colonies

=(escape time)

x

A

B
A

BλA
λ

B
=A in  =A in A

τ

λA − λB + 1/τ
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• A collection of metastable states

• each with its own emigration rate

• and its cloning/death rates dependent upon the observable

One way to understand the relation between
metastability and large deviations
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Large deviations with metastability as first order
transitions: space time view

A dynamics: e.g. Langevin: ẋi = −fi(x) + ηi

= add all trajectories with weight: S[x] = − 1
T

∫
dt {ẋi + fi(x)}2...

For small T , all trajectories that stay in a metastable state
ẋi = fi = 0 contribute ‘almost’ the same
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in detail

x

t

x

A

B

cost ~ escape rate

cost ~ 0

cost ~ \ln(escape time)

(small!)

ice-water at -0.001 oC
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Large deviations and first order

Large deviation function 〈eλ
∫
dtA[x]〉 =

∫
dλP (A)e−λA

= trajectories with weight:

SA[x] =
1
T

∫
dt {ẋi + fi(x)}2...+ λA(x)
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The observable A chooses the phase, for λ just larger than the
escape rate

x

t

x

A

B

cost ~ escape rate

cost ~ 0

cost ~ \ln(escape time)

(small!)

A

+ A in 

+A in 

A
B

Another way to understand the relation between
metastability and large deviations
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Activity, ‘glass’ transition Garrahan and Jack

inactive

EA > 0

qEA > 0

T

T

TK

d

o
qEA = 0

s

T

active
(metastable)

active
(paramagnet)

(spin glass)

q
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Champagne cup potential - spherical coordinates

O(N)

A Langevin process for the radius: ṙ = − d
dr {V − (N − 1)T ln r}
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Champagne cup potential - Phase diagram

critical

T

s

‘liquid’

metastableT

T

‘solid’
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5. Cell dynamics with selection
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A cell performs complex dynamics: DNA codes for the
production of proteins, which themselves modify how the
reading is done. A bit like a program and its RAM content.

DNA contains about the same amount of information as the TeXShop program for Mac

This dynamics admits more than one attractor: same DNA
yields liver and eye cells...

The dynamical state is inherited.

On top of this process, there is the selection associated to
the death and reproduction of individual cells
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Stern, Dror, Stolovicki, Brenner, and Braun

An arbitrary and dramatic rewiring of the genome of a yeast cell:

the presence of glucose causes repression of histidine
biosynthesis, an essential process

Cells are brutally challenged in the presence of glucose, nothing
in evolution prepared them for that!
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Stern, Dror, Stolovicki, Brenner, and Braun

J. Kurchan (PMMH-ESPCI) Rare events 35 / 46



Stern, Dror, Stolovicki, Brenner, and Braun
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the system finds a transcriptional state with many changes

two realizations of the experiment yield vastly different
solutions

the same dynamical system seems to have chosen a
different attractor which is then inherited over many generations

J. Kurchan (PMMH-ESPCI) Rare events 37 / 46



If this interpretation is confirmed, we are facing a dynamics in a
complex landscape

with the added element of selection

but note that fitness does not drive the dynamics, it acts on its
results

the landscape is not the ‘fitness landscape’
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A model

T Brotto, G Bunin, JK
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M individuals. Attractors with timescale τa and reproduction
rate λa

max

P( )τQ( )λ

λ τλ τ
max
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Without selection pressure the population reaches a finite
(smallish) 〈τ〉

As soon as the λi are turned one, the stationary state
dissappears

〈τ〉 → ∞, and λ ∼ λmax
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Evolution of attractor lifetime

〈τ〉(t) ∼ t if P (τ) ∼ τ−α a power law with α > 2

〈τ〉(t) ∼ t
1
2 if P (τ) ∼ e−aτ

〈τ〉(t) ∼ t
1
3 if P (τ) ∼ e−aτ2

Population divergence time
fitness/mutation-rate (anti)correlation

tdiv ∼ t if P (τ) ∼ τ−α a power law with α > 2

tdiv ∼ t2 if P (τ) ∼ e−aτ ,
tdiv ∼ t3 if P (τ) ∼ e−aτ2 ,
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Aging curves
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Fraction of population at t born before t∗
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How can we understand this anti-intuitive result?

max

λmax

aging

stationary

1/τ
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Most of the population stays in states with untypically large
stability

Average fitness of the population hardly improves with time

At large times, lineages present at the beginning manifest
themselves!

We may understand this from the large-deviation point
of view
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