
1. Large Deviations and

Population Dynamics
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Unusual time averages
We ask for the probability that it sustains an unusual time-average for an observable during a long interval:

1

t

∫
dt′ A(t′) = A

The most celebrated example is the average power, which can be interpreted in some cases as entropy production:

σt = −1

t

∫ t

0
dt′

f q̇

T

P (A) =
∑

Trajec.
(Prob. Trajectory) δ

(
tA−

∫ t

o
dt′ A(t′)

)
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a pendulum immersed in a low-temperature bath
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a pendulum immersed in a low-temperature bath

θ
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and ask: given that during a specific minute the average angle
took the value θ

i) what is the probability of this? ii) how does this come about?

θ
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Imposing the average angle, the trajectory shares its time
between saddles 0o and 180o

180

θ

Θ(τ)

τ

0

phase-separation, a first order transition!
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Consider a process:

dP (q, t)

dt
= −LP (q, t)

P (qo, to → q, t) = e−LtP (q, 0) =

∫
D[q] (Prob. Trajectory)

=

∫
D[q] e−Lt(trajectory)
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Writing the delta function as an exponential

δ

(
tA−

∫ t

o
dt′ A(t′)

)
=

∫ +i∞

−i∞
dµ eµ(tA−

∫ t
o dt′ A(t′))

P (A) =
∫ +i∞
−i∞ dµ eµtA

∫
D[q] (Prob. Trajectory) e−µ

∫ t
o dt′ A(t′)︸ ︷︷ ︸

↓
=

∫ +i∞
−i∞ dµ eµtA × e−tG(µ)

which defines the large-deviation function G(µ).
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For example, in the Fokker-Planck case, it reads:

e−tG(µ) =

∫
D[q] e

∫
dt′ [

∑
i−L−µ

∫ t
o dt′ A(t′)]

What we have done is nothing but the analogue of a passage from a microcanonical calculation of ‘entropy’ = ln Ā,

to a canonical calculation of ‘free energy’ G(µ)/µ at ‘inverse temperature’ µ. The ‘space’ in our problem is in fact the

time, and ‘extensive quantities’ are those that are proportional to time: we extracted a time in the definition ofG(µ) in

order to make it ‘intensive’.

For large t, in analogy with the thermodynamic limit, assuming that G(µ) has a good limit, we may evaluate the

integral over µ by saddle point, to obtain:

lnP (A) ∼ t[µ∗A−G(µ∗)]

A(µ∗) =
dG

dµ

∣∣∣∣
µ∗

() Dynamics with selection, large deviations and metastability 10 / 38



This is the Legendre transform taking from canonical to microcanonical.
Now, by simple comparison, operator language:

e−tG(µ) = 〈final|e−t[L+µA(q)]|init〉

Note the fundamental difference between this large-deviation functions and those of Friedlin-Wentzell: in that case by ‘large’

deviations we meant that they are exponentially small in the temperature (or the coarse-graining size) while here we mean that

they are sustained for long times, and the only large parameter is precisely the time t.
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Simulating large deviations – relation with
selection

Ṗ = −[L+ µA]P → P (q, t) = e−t[L+µA]

We are dealing with a dynamics without probability conservation. In fact, we can reproduce it by using a large number

of non-interacting walkers, each performing the original (Langevin) dynamics with independent noises, occasionally

giving birth to another walker starting in the same place, or dying. A negative (positive) value of µA(q) gives a

probability |µA(q)|dt of making a clone or of dying, respectively, in a time-interval dt. At each time, the global

number of clones M(t) changes, in such a way that for long times M(t)/M(t = 0) ∼ e−λmin(µ)t . In practice,

one can normalise the total number periodically by cloning or decimating all walkers with a random factor. The factor

needed to keep the population constant is, again, the exponential of the lowest eigenvalue.
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N     independent   simulations

with probability  c . A per unit time kill or clone

x x

...    continue  ...

a way to count trajectories weighted with ecA
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∆

2.71 ∆ λ

1
Lyapunov time=

Trajectories with rare values of Lyapunov exponents: vector
process
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à la Diffusion Monte Carlo: particles have a vector ~u attached,
which evolves with

u̇i = − ∂2V

∂xixj
uj

Particles perform ordinary diffusion + cloning ∝ d|u|
dt
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2. Large Deviations:

an Advertisement
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because planets disturb one another, the dynamics is chaotic
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chaotic?

∆

2.71 ∆ λ

1
Lyapunov time=

difference between trajectories multiplies by e = 2.71... every ∼ 5M years Laskar

λ ≡ 1/5MY rs is called the Lyapunov exponent

λ > 0 → chaos
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Poincaré section: a better visualisation:
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Consider this:

The solar system formed ∼ 4.5 GYr ago
starting from the present conditions, depending on details, 1% of
histories run into trouble in 5 GYr Laskar and Gastineau

If you start a random planetary system in your computer, almost
always it quickly runs into trouble.
If you observe a planetary system, many conditions within the
observational error imply recent formation or immediate
destruction

You need to know rare trajectories
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Laskar et al
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Another example

The Draupner rogue wave Taylor, Wiki
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Another example

The Draupner rogue wave Taylor, Wiki
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Another example

T. Duriez, J..L. Aider, E. Masson, J.E. Wesfreid ; Qualitative investigation of the main flow features over a 

TGV ; Proceedings of the Euromech Colloquium 509, Vehicle Aerodynamics, Berlin, Allemagne, 2009, p. 52-57 

http://opus.kobv.de/tuberlin/volltexte/2009/2249/ 

f̄τ = 1
τ

∫ τ
0 f(t) dt
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probability

average drag

larger times (or sizes)

f̄τ = 1
τ

∫ τ
0 f(t) dt
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peptide helix-coil transition most trajectories spend their time
around one configuration
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We wish to simulate an event with an unusually large value of A

without having to wait for this to happen spontaneously

but without forcing the situation artificially
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N     independent   simulations

with probability  c . A per unit time kill or clone

x x

...    continue  ...

a way to count trajectories weighted with ecA
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Some examples
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Driven Lorentz Gas
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Fermi-Pasta-Ulam chain

H =

N∑
i=1

(
1

2
p2i +

1

2
(xi − xi+1)

2 +
β

4
(xi − xi+1)

4

)

A = t ∗ λ
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typical

unusually unchaotic
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unusually chaotic: breathers (Tailleur et al)
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The Symmetric Exclusion Process
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The SEP: unusually low current (a jam)
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The x2y2 potential: regular islands

-1.5

-1

-0.5

0

0.5

1

1.5

-1 -0.5 0 0.5 1 1.5 2 2.5 3 3.5

y

x

() Dynamics with selection, large deviations and metastability 36 / 38



Lagrange Point
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Effect of eccentricity and mass ratio
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