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A toy model for two interacting populations

Consider a population consisting of red and blue particles.

Start with bu0Nc red particles and bv0Nc blue particles.

Independently, each particle either gives birth to two children or dies (with
equal probability) – at a rate that is proportional to the number of particles
of the opposite colour.

Speeding up time by N, scaling number of particles down by N gives for N →∞
a system of coupled SDEs started in (u0, v0)

dut =
√
γutvt dB1

t

dvt =
√
γutvt dB2

t ,

ut denotes proportion of red particles, vt proportion of blue particles.

γ > 0 is a branching rate and B1
t ,B

2
t are independent Brownian motions.

Long-term behaviour: A.s. after a finite time, one of the two-populations dies
out.
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The symbiotic branching SPDE
The continuous-space symbiotic branching model cSBM(γ, %) describes the
evolution of two interacting populations ut(x) and vt(x) on the real line given by

∂
∂t ut(x) = 1

2∆ut(x) +
√
γut(x)vt(x)Ẇ 1(t, x),

∂
∂t vt(x) = 1

2∆vt(x) +
√
γut(x)vt(x)Ẇ 2(t, x),

for initial conditions u0(·), v0(·) ≥ 0, where (Ẇ 1, Ẇ 2) is a pair of correlated
standard Gaussian white noises with correlation parameter % ∈ [−1, 1]. The
parameter γ > 0 is called the branching rate.

Branching : At a rate proportional to population of opposite color.

Correlation: The driving noises are correlated. If % < 0, negative correlated
branching, % = 0 independent and % > 0 positively correlated branching.

Migration: 1
2∆u(t, x) (corresponds to simple random walk in the

discrete-space case).

Introduced by [Etheridge, Fleischmann 2004]: Rigorous formulation,
existence + uniqueness in terms of a martingale problem (see below).
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Relation to other models
The symbiotic branching model

∂
∂t ut(x) = 1

2∆ut(x) +
√
γut(x)vt(x) Ẇ 1

t (x),

∂
∂t vt(x) = 1

2∆vt(x) +
√
γvt(x)ut(x) Ẇ 2

t (x)

interpolates between several classical models by varying the correlation %:

% = −1: Then Ẇ 1 = −Ẇ 2. Take v0 = 1− u0, then vt = 1− ut for all t

∂
∂t u = 1

2∆u +
√
γu(1− u)Ẇ .

model. This is the stepping stone model (; mathematical population
genetics).

% = 0: Ẇ 1 and Ẇ 2 independent ; mutually catalytic branching. Introduced
by [Dawson, Perkins ’98].

% = 1: Then Ẇ 1 = Ẇ 2. Take u0 = v0, then one obtains

∂
∂t

u = 1
2∆u +

√
γuẆ .

; parabolic Anderson model .
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The interface in the symbiotic branching model
Throughout this talk: we will start with complementary Heaviside functions as
initial conditions:

u0(x) = 1lR−(x) and v0(x) = 1lR+(x).

Definition 1
The interface between the two populations is defined as

Ifc(t) = cl
{

x : ut(x)vt(x) > 0
}
,

Moreover, we define the right and left end point of the interface as

Rt := sup{x : ut(x)vt(x) > 0} and Lt = inf{x : ut(x)vt(x) > 0}

1 vu
1 vu

L_t R_t
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Compact interface property

Theorem 1

Let (u0, v0) = (1lR− , 1lR+).
(a) [Etheridge, Fleischmann, 2004]: For any % ∈ [−1, 1], we have almost
surely for all T sufficiently large⋃

t≤T

Ifc(t) ⊂ [−CT ,CT ].

(b) [Blath, Döring, Etheridge, 2011]: For all % ’very close’ to −1, we have
almost surely for all T sufficiently large⋃

t≤T

Ifc(t) ⊂ [−C
√

T log T ,C
√

T log T ].

In (b), the strong restriction on % is due to the technique of the proof, which
requires boundedness in t of 35th moments of ut(x).

; Can we do better?

Marcel Ortgiese (WWU Münster) The Interface of the SBM 28 August 2014 6 / 1



The case % = −1: stepping stone Model
Theorem 2 ([Tribe 1995])

Rescale the endpoints of the interface diffusively

R (n)

t := 1
nRn2t and L(n)

t := 1
nLn2t

then we have
(L(n)

t ,R
(n)

t )t≥0
d−−−→

n↑∞
(Bt ,Bt)t≥0,

where (Bt)t≥0 is a standard Brownian motion.

In fact, Tribe shows that for the diffusively rescaled solution

u(n)

t (x) := un2t(nx).

we have convergence (in distribution) of

(u(n)

t (x)dx , (1− u(n)

t (x))dx)t≥0
d−−−→

n↑∞
(1l{x≤Bt}dx , 1l{x≥Bt}dx)t≥0

(in the sense of measure-valued processes), where (Bt)t≥0 is as above.

t

x

L_t R_t
t

x

n^2

B_t

n
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Extension to % > −1: Scaling property
Fix % > −1 and consider cSBM(γ, %) for fixed γ > 0. Rescale solutions diffusively:

u(n)

t (x) = un2t(nx) and v (n)

t (x) = vn2t(nx).

Lemma 2 ([Etheridge, Fleischmann 2004])

(u(n), v (n)) satisfies cSBM(nγ, %), i.e.

∂
∂t u(n)

t (x) = 1
2∆u(n)

t (x) +
√

nγu(n)

t (x)v (n)

t (x) ˙̃W 1
t (x),

∂
∂t v (n)

t (x) = 1
2∆v (n)

t (x) +
√

nγv (n)

t (x)u(n)

t (x) ˙̃W 2
t (x).

Note that complementary Heaviside initial conditions u0 = 1lR− , v0 = 1lR+ are
invariant under this rescaling.

Instead of rescaling space / time equivalent to send γ →∞.
Verified for a discrete space model: existence of an infinite rate limit γ →∞
by [Klenke, Mytnik 2010-12], [Klenke, Oeler 2010], [Döring,
Mytnik 2011-12]
This suggest there might be an interesting scaling limit for % > −1 as well.
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But . . .: moment asymptotics
Unlike in the case % = −1, for % > −1 local densities are not bounded
(uniformly in time).

Varying % affects the moment asymptotics. Define the critical moment curve

p(%) =
π

arccos(−%)
.

Theorem 3 ([Blath, Döring, Etheridge 2011])

sup
t≥0

E1l,1l[ut(x)p] <∞ iff p < p(%) =
π

arccos(−%)
.

In particular,

for % = −1 (stepping stone case), all moments remain bounded (clear, since
local density bounded by 1),
for % < − 1√

2
, the fourth moment remains bounded,

the second moment stays bounded iff % < 0.
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Our main result: a scaling limit
Let (ut , vt)t be a solution of cSBM(γ, %) started with (u0, v0) = (1l(−∞,0], 1l[0,∞)).
Diffusive rescaling:

u(n)

t (x) = un2t(nx) and v (n)

t (x) = vn2t(nx).

Define measures on R:

µ(n)

t (dx) := u(n)

t (x)dx and ν (n)

t (dx) := v (n)

t (x)dx .

Theorem 4 (Blath, Hammer, O. 2013)

Suppose % ∈ (−1,− 1√
2

). The sequence (µ(n)

t , ν
(n)

t )t≥0, n ∈ N of measure-valued

processes converges weakly to a limit (µt , νt)t≥0 with the following properties:

Absolute continuity: For each fixed t > 0,

µt(dx) = µt(x)dx , νt(dx) = νt(x)dx P-a.s.

Separation of types: For each fixed t > 0, the densities satisfy

µt(·)νt(·) = 0 P⊗ Leb-a.s.
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The limiting object
We do have separation of types in the limit: The densities (µt(x), νt(x))t≥0
are singular.

The absolute continuity result for the limit measures (µt , νt) follows from
[Dawson et. al. 2002].

Unique characterization of the limit via a martingale problem.

The limit is not of the form (1l{x≤Yt} dx , 1l{x≥Yt} dx)t≥0 for any
semi-martingale (Yt)t≥0. So fundamentally different from the case % = −1

The restriction on % < − 1√
2

is due to the proof of tightness.

We would like to know:

if the limiting process has a ‘one-point’ interface, i.e. we get the picture:
t

x

n^2

B_t

n

an explicit characterization of the limiting object.

More speculation on the latter points at the end.
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Main Tool: Dual processes

Two Markov processes (Xt) and (Yt) are called dual with respect to a suitable
measurable function F , if

Ex0 [F (Xt , y0)] = Ey0 [F (x0,Yt)], t ≥ 0.

For the symbiotic branching model, at least two different dualities are known:

a moment duality with a system of coloured Brownian particles, involving
their respective collision local times ([Etheridge, Fleischmann 2004]),

an exponential self-duality useful for (weak) uniqueness-results ([Mytnik
1998]).

Structure of the proof of the scaling limit:

Tightness (using moment duality),

Uniqueness (using self-duality).

Marcel Ortgiese (WWU Münster) The Interface of the SBM 28 August 2014 12 / 1



Tightness via bounding fourth mixed moments
For the proof of tightness in C[0,∞) we need to get bounds on

E[ut(x)vt(x)ut(z)vt(z)]

that are integrable in x and z and uniform in t.

The dual process is a system of 4 (= number of moments) coloured Brownian
particles (red/blue)

starting with a red and blue particle at x and z each.

colours (c i
t) change dynamically: particles of the same colour flip into a pair

of mixed colours at a rate governed by their collision local time.

Then, if L=
t , L

6=
t is the total collision time of particles of the same (resp. 6=) colour,

E[ut(x)vt(x)ut(z)vt(z)] = E(x,x,z,z)

[ 4∏
i=1

Ic
i
t (B i

t) eγ(L
=
t +%L

6=
t )
]

where
Ired = 1l{x≤0} = u0(x) and Iblue = 1l{x≥0} = v0(x)
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Identifying the limit - One step back
Any solution (ut , vt)t≥0 of the symbiotic branching model

∂
∂t ut(x) = 1

2∆ut(x) +
√
γut(x)vt(x)Ẇ 1(t, x),

∂
∂t vt(x) = 1

2∆vt(x) +
√
γut(x)vt(x)Ẇ 2(t, x),

(1)

satisfies the following martingale problem:

Integrate against any suitable test function ϕ, then

M(ϕ)t := 〈ut , ϕ〉 − 〈u0, ϕ〉 − 1
2

∫ t

0

〈us ,∆ϕ〉 ds,

N(ϕ)t := 〈vt , ϕ〉 − 〈v0, ϕ〉 − 1
2

∫ t

0

〈vs ,∆ϕ〉 ds,

is a pair of continuous martingales. To guarantee uniqueness, we also need to
specify the correlation structure

〈〈M(ϕ)〉〉t = 〈〈N(ϕ)〉〉t = γ

∫ t

0

∫
us(x)vs(x)ϕ2(x) dx ds =: 〈Λt , ϕ

2〉,

〈〈M(ϕ),N(ϕ)〉〉t = % 〈Λt , ϕ
2〉,

here 〈〈M,N〉〉 is the quadratic (co-)variation of two martingales.
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The martingale problem after diffusive rescaling
Recall that we define

µ(n)

t (dx) := u(n)

t (x)dx = un2t(nx) dx ν (n)

t (dx) := v (n)(x)dx = vn2t(nx) dx ,

then the measure-valued processes (µ(n)

t , ν
(n)

t ) satisfy the same martingale problem:

M(ϕ)t := 〈µ(n)

t , ϕ〉 − 〈u0, ϕ〉 − 1
2

∫ t

0

〈µ(n)

s ,∆ϕ〉 ds,

N(ϕ)t := 〈ν (n)

t , ϕ〉 − 〈v0, ϕ〉 − 1
2

∫ t

0

〈ν (n)

s ,∆ϕ〉 ds,

are continuous martingales with correlation structure

〈〈M(ϕ)〉〉t = 〈〈N(ϕ)〉〉t = 〈Λ(n)

t , ϕ
2〉,

〈〈M(ϕ),N(ϕ)〉〉t = % 〈Λ(n)

t , ϕ
2〉,

where

Λ(n)

t (dx) = γn

∫ t

0

u(n)

t (x)v (n)

t (x) dx .

Problem: Not clear what Λ(n) converges to! (∞× 0?)
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Uniqueness via separation of types
Problem: Identification of the limit of

Λ(n)

t (dx) = γn

∫ t

0

u(n)

t (x)v (n)

t (x) dx

Solution: Make the measure Λ part of the martingale problem.

Martingale problem

The measure-valued process (µt , νt)t≥0 satisfies the limiting martingale problem if
there exists a (sufficiently nice) process (Λt)t≥0 such that

M(ϕ)t := 〈µt , ϕ〉 − 〈µ0, ϕ〉 − 1
2

∫ t

0
〈µs ,∆ϕ〉 ds,

N(ϕ)t := 〈νt , ϕ〉 − 〈ν0, ϕ〉 − 1
2

∫ t

0
〈νs ,∆ϕ〉 ds,

are continuous martingales with correlation structure

〈〈M(ϕ)〉〉t = 〈〈N(ϕ)〉〉t = 〈Λt , ϕ
2〉, 〈〈M(ϕ),N(ϕ)〉〉t = % 〈Λt , ϕ

2〉,

and moreover if (µt , νt) satisfies the ‘separation-of-types’ (for (St)t heat
semigroup):

Eµ0,ν0 [Sεµt(x) Sενt(x)]
ε↓0−−→ 0.

We call the solution of this martingale problem the infinite-rate continuous-space
symbiotic branching model .
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Main Idea for Proof of Uniqueness: Self-Duality
For uniqueness of the martingale problem use self-duality à la [Mytnik 1998].
Define the self-duality function:

F (µ, ν, ϕ, ψ) := exp
{
−
√

1− %〈u + v , ϕ+ ψ〉+ i
√

1 + %〈u − v , ϕ− ψ〉
}
.

Aim is to show that

Eu0,v0 [F (µt , νt , ũ0, ṽ0)] = Eũ0,ṽ0 [F (u0, v0, µ̃t , ν̃t)] , t ≥ 0, (2)

where

on the left: (µt , νt) limit point with (u0, v0) = (1lR− , 1lR+)
on the right (µ̃t , ν̃t) limit points with rapidly decreasing initial conditions.

Note that ũ0, ṽ0 play role of test functions ϕ,ψ.

If (??) holds for a sufficiently large class of (ũ0, ṽ0), then self-duality implies
uniqueness of one-dimensional marginals of (µt , νt).
This is the same self-duality as for the finite rate systems (i.e. no rescaling).
and also for the infinite rate discrete model, see [Klenke, Mytnik
2010-12], [Döring, Mytnik 2012].
Main problem: need to construct the dual process for a sufficiently large class
of initial conditions (ũ0, ṽ0). ; use weaker Meyer-Zhang topology .
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A corollary of the construction of the dual process

Fix absolutely continuous initial conditions with densities which are tempered or
rapidly decreasing functions (possibly overlapping).

For each γ > 0 denote by (µ[γ]

t , ν
[γ]

t )t≥0 the solution to the symbiotic branching
model with branching rate γ (considered as measure-valued processes).

Theorem 5

Fix % < 0. Then, as γ ↑ ∞, the sequence of processes (µ[γ]

t , ν
[γ]

t )t≥0 converges in
law with respect to the Meyer-Zheng topology to the unique solution of the
martingale problem satisfying ‘separation-of-types’:

Eµ0,ν0 [Sεµt(x) Sενt(x)]
ε↓0−−→ 0,

(where St denotes the heat semigroup).

Note that by using a weaker topology we can allow any (strictly) negative %.
Reason: we can work with a second moment instead of a fourth moment
condition.
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Speculation on a more explicit representation of the
solution

Case % = −1. (Credit to Florian Völlering).

Suppose we start with non-overlapping (bounded) initial conditions u0, v0 such
that supp u0 = (−∞, 0], supp v0 = [0,∞).

Observation: ut + vt solves the (deterministic) heat equation with initial
condition u0 + v0.

Define wt as the solution of the heat equation with initial condition u0 + v0.

Define It as the solution of

dIt = dBt − 2
w ′t (It)
wt(It)

dt,

for (Bt)t≥0 a standard Brownian motion.

Then,
µt(x) = wt(x)1l{x≤It} and νt(x) = wt(x)1l{x≥It},

solves the limiting (infinite rate) symbiotic branching model.
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Trying to identify the limit for % > −1

Identify the correlation Λ.

In analogy to [Dawson et al, 2003] on work on the 2-dimensional SBM,
we can identify Λ via ‘intersection local times’, i.e. a way of smoothing out at
the interface to measure overlap.

However, this approach does not help with an explicit identification (and also
does not help with proving uniqueness).

Rescaling of discrete infinite-rate model

Recall that [Klenke, Mytnik 2010,2012] and [Döring, Mytnik 2012]
give an explicit representation of the solution of the discrete-space infinite
rate SBM in terms of an infinite system of jump-type SDEs.

(Work in progress): For Heaviside initial conditions, we can show that this
system simplifies (only need 2 driving noises).

Goal: rescale the discrete system and obtain a solution of the continuous
space infinite-rate model.
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Outlook

Parameter range for %:
I So far we have convergence in C[0,∞) for % < − 1√

2
and in the weaker

Meyer-Zhang sense for % < 0. Is % = 0 critical?

Width of the interface
I [Mueller, Tribe 1997] show for % = −1 (stepping stone model) that the

width of the interface (even without rescaling) has a stationary distribution.
I For % > −1, we can recover an approximate version of that result. Aim:

extend to the exact interface.

Shape of the interface
I Microscopic description of the interface (e.g. for % = −1). Is there a “nice”

description of the stationary interface?
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