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Consider a continuous–time population model, where each individual
gives birth at rate λ, and dies at an exponential time with parameter
µ.

We superimpose a death rate due to interaction equal to f −(k) (resp.
a birth rate due to interaction equal to f +(k)) while the total
population size is k.

In fact since we want to couple the models for all possible initial
population sizes, we need to introduce a pecking order (e.g. from left
to right) on our ancestors at time 0, which is passed on to the
descendants, and so that any daughter is placed on the right of her
mother.

In all what follows, we assume that f ∈ C (R+;R), f (0) = 0 and for
some fixed a > 0, f (x + y)− f (x) ≤ ay , for all x , y ≥ 0.
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We want that the individual i interacts only with those individuals
who sit on her left. Let Li (t) denote the number of individuals alive
at time t who sit on the left of i .

Then we decide that i gives birth at rate
λ+ [f (Li (t))− f (Li (t)− 1)]+, and dies at rate
µ+ [f (Li (t))− f (Li (t)− 1)]−.

Summing up, we conclude that the size of the population Xm
t ,

starting from Xm
0 = m, jumps

from k to

{
k + 1, at rate λk +

∑k
`=1[f (`)− f (`− 1)]+

k − 1, at rate µk +
∑k

`=1[f (`)− f (`− 1)]−

Note that we have defined {Xm
t , t ≥ 0} jointly for all m ≥ 1, i.e. we

have defined the two–parameter process {Xm
t , t ≥ 0, m ≥ 1}.
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In case f linear, we have a branching process, and for each t > 0,
{Xm

t , m ≥ 1} has independent increments.
In the general case, we don’t expect that for fixed t, {Xm

t , m ≥ 1} is
a Markov chain.
However, {Xm

t , t ≥ 0}m≥1 is a path–valued Markov chain. We can
specify the transitions as follows.
For 1 ≤ m < n, the law of {X n

t − Xm
t , t ≥ 0}, given

{X `
t , t ≥ 0, 1 ≤ ` ≤ m} and given that Xm

t = x(t), t ≥ 0, is that of
the time–inhomogeneous jump Markov process whose rate matrix
{Qk,`(t), k , ` ∈ Z+} satisfies

Q0,` = 0, ∀` ≥ 1 and for any k ≥ 1,

Qk,k+1(t) = λk +
k∑
`=1

[f (x(t) + `)− f (x(t) + `− 1)]+

Qk,k−1(t) = µk +
k∑
`=1

[f (x(t) + `)− f (x(t) + `− 1)]−

Qk,` = 0, if ` 6∈ {k − 1, k , k + 1}.
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Exploration process of the forest of genealogical trees

D

B
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Call {Hm
s , s ≥ 0} the zigzag curve in the above picture (with slope

±2), and define the local time accumulated by Hm at level t up to
time s by

Lm
s (t) = lim

ε→0

1

ε

∫ s

0
1t≤Hm

r <t+εdr .

Hm is piecewise linear, with slopes ±2. While the slope is 2, the rate
of appearance of a maximum is

µ+ [f (bLm
s (Hm

s )c+ 1)− f (bLm
s (Hm

s )c)]− ,

and the rate of appearance of a minimum while the slope is −2 is

λ+ [f (bLm
s (Hm

s )c+ 1)− f (bLm
s (Hm

s )c)]+ .

Let Sm = inf{s > 0, Lm
s (0) ≥ m} the time needed for Hm

s to explore
the genealogical trees of m ancestors. If we assume that the
population goes extinct in finite time, we have the Ray–Knight type
result (see next figure)

{Xm
t , t ≥ 0, m ≥ 1} ≡ {Lm

Sm(t), t ≥ 0,m ≥ 1}.
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How to recover Xm from Hm ?
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Renormalization

Let N ≥ 1. Suppose that for some x > 0, m = bNxc, λ = 2N,

µ = 2N, replace f by fN = Nf (·/N). We define ZN,x
t = N−1X

bNxc
t .

We have

Theorem

As N →∞,

{ZN,x
t , t ≥ 0, x ≥ 0} ⇒ {Z x

t , t ≥ 0, x ≥ 0}

in D([0,∞); D([0,∞);R+)) equipped with the Skorohod topology of the
space of càlàg functions of x, with values in the Polish space
D([0,∞);R+), equipped with the adequate metric.

{Z x
t , t ≥ 0, x ≥ 0} solves for each x > 0 the Dawson–Li type SDE

Z x
t = x +

∫ t

0
f (Z x

s )ds + 2

∫ t

0

∫ Z x
s

0
W (ds, du),

where W (ds, du) is a space–time white noise.
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space of càlàg functions of x, with values in the Polish space
D([0,∞);R+), equipped with the adequate metric.

{Z x
t , t ≥ 0, x ≥ 0} solves for each x > 0 the Dawson–Li type SDE

Z x
t = x +

∫ t

0
f (Z x

s )ds + 2

∫ t

0

∫ Z x
s

0
W (ds, du),

where W (ds, du) is a space–time white noise.
Etienne Pardoux (Aix–Marseille Université) EURANDOM, 25 Aug 2014
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How to check tightness ?

Our assumptions on f are pretty minimal. In order to check tightness
for x fixed, we establish the two bounds

sup
N≥1

sup
0≤t≤T

E
(

ZN,x
t

)2
<∞, sup

N≥1
sup

0≤t≤T
E
(
−
∫ t

0
ZN,x
s f (ZN,x

s )ds

)
<∞,

and exploit Aldous’ criterion.

Concerning the tightness “in the x direction”, we establish the
following bound : for any 0 ≤ x < y < z with y − x ≤ 1, z − y ≤ 1,

E

[
sup

0≤t≤T
|ZN,y

t − ZN,x
t |2 × sup

0≤t≤T
|ZN,z

t − ZN,y
t |2

]
≤ C |z − x |2.
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Continuous population models
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For each fixed x > 0, there exists a standard BM Bt such that

Z x
t = x +

∫ t

0
f (Z x

s )ds + 2

∫ t

0

√
Z x
s dBs .

However, B depends upon x in a non obvious way, and the good way
of coupling the evolution of Z x for various x ’s, which is compatible
with the above coupling in the discrete case, is to use the Dawson–Li
formulation

Z x
t = x +

∫ t

0
f (Z x

s )ds + 2

∫ t

0

∫ Z x
s

0
W (ds, du), ∀t ≥ 0, x ≥ 0.

It is easily seen that {Z x
t , t ≥ 0}x≥0 is a path–valued Markov

process. More on this below.
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(Sub)criticality

We will say that Z x is (sub)critical if

T x
0 = inf{t > 0; Z x

t = 0} <∞ a.s.

Let Λ(f ) =

∫ ∞
1

exp

(
−1

2

∫ u

1

f (r)

r
dr

)
du.

For any x ≥ 0, Z x is (sub)critical iff Λ(f ) =∞.
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A generalized Ray–Knight theorem

We assume now that f ∈ C 1(R+;R), and there exists a > 0 such that
f ′(x) ≤ a, for all x ≥ 0. Suppose that we are in the (sub)critical case.
We consider the SDE

Hs = Bs +
1

2

∫ s

0
f ′(Lz

r (Hr ))dr +
1

2
Ls(0),

where Ls(0) denotes the local time accumulated by the process H at
level 0 up to time s. We define Sx = inf{s > 0, Ls(0) > x}.
We have

Theorem

The laws of the two random fields {LSx (t); t ≥ 0, x ≥ 0} and
{Z x

t ; t ≥ 0, x ≥ 0} coincide.

The proof exploits ideas from Norris, Rogers, Williams (1987) who
prove the other Ray–Knight theorem in a similar context.
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Effect of the competition on the height and length of the
forest of genealogical trees
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The finite population case

We assume again that f ∈ C (R+;R), f (0) = 0 and for some fixed
a > 0, f (x + y)− f (x) ≤ ay , for all x , y ≥ 0. We assume in addition
that for some b > 0, f (x) < 0 for all x ≥ b. Define

Hm = inf{t > 0, Xm
t = 0}, Lm =

∫ Hm

0 Xm
t dt.

We have

Theorem

1 If
∫∞
b
|f (x)|−1dx =∞, then supm Hm =∞ a.s.

2 If
∫∞
b
|f (x)|−1dx <∞, then supm E(ecHm

) <∞ for some c > 0.

We have

Theorem

Assume in addition that g(x) = f (x)/x satisfies g(x + y)− g(x) ≤ ay.

1 If
∫∞
b
|f (x)|−1xdx =∞, then supm Lm =∞ a.s.

2 If
∫∞
b
|f (x)|−1xdx <∞, then supm E(ecLm

) <∞ for some c > 0.
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joint work with Anton Wakolbinger (and also with Mamadou Ba, Vi Le) 18

/ 33



The case of continuous state space

Same assumptions as in the discrete case. We define
T x = inf{t > 0, Z x

t = 0}, Sx =
∫ T x

0 Z x
s ds.

We have

Theorem

1 If
∫∞
b
|f (x)|−1dx =∞, then supx>0 T x =∞ a.s.

2 If
∫∞
b
|f (x)|−1dx <∞, then supx>0 E(ecT x

) <∞ for some c > 0.

We have

Theorem

Assume in addition that g(x) = f (x)/x satisfies g(x + y)− g(x) ≤ ay.

1 If
∫∞
b
|f (x)|−1xdx =∞, then supx Sx =∞ a.s.

2 If
∫∞
b
|f (x)|−1xdx <∞, then supx E(ecSx

) <∞ for some c > 0.
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Intuitive idea

The reason why the above works is essentially because, if
g : R+ → R+ satifies ∫ ∞

0

1

g(x)
dx <∞

then the solution of the ODE

ẋ(t) = g(x), x(0) = x > 0

explodes in finite time.

Reversing time, we conclude that the ODE

ẋ(t) = −g(x), x(0) = +∞

has a solution which lives in C (R+;R+).

And the same is true for certain SDEs.
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joint work with Anton Wakolbinger (and also with Mamadou Ba, Vi Le) 20

/ 33



The path–valued Markov process
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Our assumptions

For the rest of this talk, we assume again that f is continuous,
f (0) = 0, f (x + y)− f (x) ≤ ay for some a > 0, all x , y ≥ 0, and
moreover

•(Sub)criticality:
∫∞

1 exp(−
∫ u

1 (2r)−1f (r)dr)du = +∞;
•(1/2–Hölder): For all M > 0, there exists CM

s.t.|f (x + y)− f (x)| ≤ CM
√

y , for all 0 ≤ x ≤ M,
0 ≤ y ≤ 1.

We define E to be the subset of C ([0,+∞); [0,+∞)) consisting of
those functions ϕ such that whenever ζ(ϕ) := inf{t > 0, ϕ(t) = 0} is
finite, then ϕ(t) = 0 for any t ≥ ζ(ϕ). E is equipped with the
topology of uniform convergence on compacts.
From now on, we choose a version of the solution of the SDE

Z x
t = x +

∫ t

0
f (Z x

s )ds + 2

∫ t

0

∫ Z x
s

0
W (ds, du)

s.t. the mapping x → Z x
· is right–continuous and increasing from

[0,∞) into E .
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Coupling with a Feller CSBP

Consider, with the same space–time white noise W , the two SDEs

Y x
t = x + a

∫ t

0
Y x
s ds + 2

∫ t

0

∫ Y x
s

0
W (ds, du),

Z x
t = x +

∫ t

0
f (Z x

s )ds + 2

∫ t

0

∫ Z x
s

0
W (ds, du).

It follows readily from a comparison theorem due to Dawson, Li that
Z x
t ≤ Y x

t a.s., for all x > 0 and t ≥ 0.
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A stronger coupling

We recall that for each t > 0, x > 0, the mapping ξ ∈ [0, x ] 7→ Y ξ
t

has a finite number of (positive) jumps, and is constant between
those jumps.

For each t > 0, x > 0, let

Dt = {ξ > 0; Y ξ
t > Y ξ−

t }, and

Ax
t (Z ) =

⋃
ξ≤x ,ξ∈Dt

(Y ξ−
t ,Y ξ−

t + Z ξ
t − Z ξ−

t ].

One can construct a random field {Z̃ x
t , x > 0, t ≥ 0} such that

t 7→ Z̃ x
t is continuous, x 7→ Z̃ x

t is right–continuous,
{Z̃ x

t , x > 0, t ≥ 0} has the same law as {Z x
t , x > 0, t ≥ 0},

{Z̃ x
t , x > 0, t ≥ 0} solves the SDE

Z̃ x
t = x +

∫ t

0
f (Z̃ x

s )ds + 2

∫ t

0

∫
Ax
s (Z̃)

W (ds, du),

Moreover P(Z̃ x+y
t − Z̃ x

t ≤ Y x+y
t − Y x

t , ∀t ≥ 0) = 1, for all x , y > 0.
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A corollary

It follows readily from the above coupling

Corollary

For any t > 0, x 7→ Z x
t has finitely many jumps on any compact interval,

and is constant between those jumps.

It is also not too hard to show that

Corollary

For any s > 0,

P

(⋃
t>s

{x , Z x
t 6= Z x−

t } ⊂ {x , Z x
s 6= Z x−

s } for all x > 0

)
= 1.
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The critical Feller diffusion as a sum of excursions

For the rest of the talk Y x
t denotes the critical Feller diffusion,

solution of

Y x
t = x + 2

∫ t

0

∫ Y x
s

0
W (ds, du).

We can write Y x as the solution of the SDE

Y x
· =

∫
[0,x]×E

uN(dy , du),

where N is a Poisson random measure on R+ × E with mean measure
dy ×Q(du), where Q is the excursion measure of the critical Feller
diffusion, in the sense of Pitman–Yor.
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Z x as a sum of excursion

The above Corollary implies that similarly x → Z x can be
decomposed as a sum of excursions. Call NZ (dy , du) the
corresponding point process, which is such that for all x > 0,

Z x =

∫
[0,x]×E

uNZ (dy , du).

We want to characterize the point process NZ . Let
F (x , y) = f (x + y)− f (x) and

L(Z , u) = exp

(
−1

4

∫ ζ(u)

0

F (Zs , us)

us
dus −

1

8

∫ ζ(u)

0

F 2(Zs , us)

us
ds

)
.
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Main result

Our main result says that the predictable intensity of NZ is

L(Z y , u)Q(du)dy .

This is equivalent to

Theorem

The path–valued process {Z x
· , x > 0} can be decomposed as

Z x =

∫
[0,x]×E

uL(Z ξ, u)Q(du)dξ + Mx ,

where Mx is an E–valued càdlàg Gx–martingale.

Here Gx = σ{Z ξ
t , 0 ≤ ξ ≤ x , t > 0}.
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Indication of proof 1

The last identity is proved as follows. We want to establish that for
any t > 0,

Z x
t =

∫
[0,x]×E

L(Z y , u)u(t)Q(du)dy + Mx(t).

Clearly if x is a dyadic number, then for n large enough

Z x
t =

x2n∑
k=1

2−nE
(

Z
xk+1
t − Z xk

t

∣∣∣Gxk)+ Mx
n (t).

Now

E
(

Z x+y
t − Z x

t

∣∣∣Gx) = E
(

L(Z x ,Uy )Uy
t

∣∣∣Gx) ,
where

Uy
t = y + 2

∫ t

0

√
UsdBs .
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Indication of proof 2

But
y−1E

(
L(Z x ,Uy )Uy

t

∣∣∣Gx) = EQy,t

(
L(Z x ,Uy )

∣∣∣Gx) ,
where under Qy ,t

Ur = y + 4t ∧ r + 2

∫ t

0

√
UsdBs .

Finally we can take the limit as y → 0 in the last identity, yielding

y−1E
(

L(Z x ,Uy )Uy
t

∣∣∣Gx)→ EQ0,t

(
L(Z x ,U)

∣∣∣Gx) .
It just remain to verify that

EQ0,t

(
L(Z x ,U)

∣∣∣Gx) =

∫
E

L(Z x , u)u(t)Q(du),

where Q is the above excursion measure.
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The infinitesimal generator

We deduce from the above statement

Corollary

For bounded g : R+ → R+ and z ∈ E , put Φg (z) := e−〈g ,z〉. Then, for
this class of functions,

AΦg (z) := Φg (z)

∫
E

(
e−〈g ,u〉 − 1

)
L(z , u)Q(du)

gives the generator of Z in the sense that for all g : R+ → R+,

Φg (Z x)− Φg (Z 0)−
∫

[0,x]×E
AΦg (Z ξ)dξ, x ≥ 0 is a Gx–martingale.
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joint work with Anton Wakolbinger (and also with Mamadou Ba, Vi Le) 32

/ 33



THANK YOU FOR
YOUR ATTENTION !

Etienne Pardoux (Aix–Marseille Université) EURANDOM, 25 Aug 2014
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