Random evolution of population subject to competition

Etienne Pardoux

Aix-Marseille Université
joint work with Anton Wakolbinger
(and also with Mamadou Ba, Vi Le)

Contents

(1) Finite population
(2) Continuous population models
(3) Effect of the competition on the height and length of the forest of genealogical trees
(4) The path-valued Markov process

Finite population

- Consider a continuous-time population model, where each individual gives birth at rate λ, and dies at an exponential time with parameter μ.

- Consider a continuous-time population model, where each individual gives birth at rate λ, and dies at an exponential time with parameter μ.
- We superimpose a death rate due to interaction equal to $f^{-}(k)$ (resp. a birth rate due to interaction equal to $\left.f^{+}(k)\right)$ while the total population size is k.
- Consider a continuous-time population model, where each individual gives birth at rate λ, and dies at an exponential time with parameter μ.
- We superimpose a death rate due to interaction equal to $f^{-}(k)$ (resp. a birth rate due to interaction equal to $\left.f^{+}(k)\right)$ while the total population size is k.
- In fact since we want to couple the models for all possible initial population sizes, we need to introduce a pecking order (e.g. from left to right) on our ancestors at time 0 , which is passed on to the descendants, and so that any daughter is placed on the right of her mother.
- Consider a continuous-time population model, where each individual gives birth at rate λ, and dies at an exponential time with parameter μ.
- We superimpose a death rate due to interaction equal to $f^{-}(k)$ (resp. a birth rate due to interaction equal to $\left.f^{+}(k)\right)$ while the total population size is k.
- In fact since we want to couple the models for all possible initial population sizes, we need to introduce a pecking order (e.g. from left to right) on our ancestors at time 0 , which is passed on to the descendants, and so that any daughter is placed on the right of her mother.
- In all what follows, we assume that $f \in C\left(\mathbb{R}_{+} ; \mathbb{R}\right), f(0)=0$ and for some fixed $a>0, f(x+y)-f(x) \leq a y$, for all $x, y \geq 0$.
- We want that the individual i interacts only with those individuals who sit on her left. Let $\mathcal{L}_{i}(t)$ denote the number of individuals alive at time t who sit on the left of i.
- We want that the individual i interacts only with those individuals who sit on her left. Let $\mathcal{L}_{i}(t)$ denote the number of individuals alive at time t who sit on the left of i.
- Then we decide that i gives birth at rate $\lambda+\left[f\left(\mathcal{L}_{i}(t)\right)-f\left(\mathcal{L}_{i}(t)-1\right)\right]^{+}$, and dies at rate $\mu+\left[f\left(\mathcal{L}_{i}(t)\right)-f\left(\mathcal{L}_{i}(t)-1\right)\right]^{-}$.
- We want that the individual i interacts only with those individuals who sit on her left. Let $\mathcal{L}_{i}(t)$ denote the number of individuals alive at time t who sit on the left of i.
- Then we decide that i gives birth at rate $\lambda+\left[f\left(\mathcal{L}_{i}(t)\right)-f\left(\mathcal{L}_{i}(t)-1\right)\right]^{+}$, and dies at rate $\mu+\left[f\left(\mathcal{L}_{i}(t)\right)-f\left(\mathcal{L}_{i}(t)-1\right)\right]^{-}$.
- Summing up, we conclude that the size of the population X_{t}^{m}, starting from $X_{0}^{m}=m$, jumps

$$
\text { from } k \text { to } \begin{cases}k+1, & \text { at rate } \lambda k+\sum_{\ell=1}^{k}[f(\ell)-f(\ell-1)]^{+} \\ k-1, & \text { at rate } \mu k+\sum_{\ell=1}^{k}[f(\ell)-f(\ell-1)]^{-}\end{cases}
$$

- We want that the individual i interacts only with those individuals who sit on her left. Let $\mathcal{L}_{i}(t)$ denote the number of individuals alive at time t who sit on the left of i.
- Then we decide that i gives birth at rate $\lambda+\left[f\left(\mathcal{L}_{i}(t)\right)-f\left(\mathcal{L}_{i}(t)-1\right)\right]^{+}$, and dies at rate $\mu+\left[f\left(\mathcal{L}_{i}(t)\right)-f\left(\mathcal{L}_{i}(t)-1\right)\right]^{-}$.
- Summing up, we conclude that the size of the population X_{t}^{m}, starting from $X_{0}^{m}=m$, jumps

$$
\text { from } k \text { to } \begin{cases}k+1, & \text { at rate } \lambda k+\sum_{\ell=1}^{k}[f(\ell)-f(\ell-1)]^{+} \\ k-1, & \text { at rate } \mu k+\sum_{\ell=1}^{k}[f(\ell)-f(\ell-1)]^{-}\end{cases}
$$

- Note that we have defined $\left\{X_{t}^{m}, t \geq 0\right\}$ jointly for all $m \geq 1$, i.e. we have defined the two-parameter process $\left\{X_{t}^{m}, t \geq 0, m \geq 1\right\}$.

- In case f linear, we have a branching process, and for each $t>0$, $\left\{X_{t}^{m}, m \geq 1\right\}$ has independent increments.
- In case f linear, we have a branching process, and for each $t>0$, $\left\{X_{t}^{m}, m \geq 1\right\}$ has independent increments.
- In the general case, we don't expect that for fixed $t,\left\{X_{t}^{m}, m \geq 1\right\}$ is a Markov chain.
- In case f linear, we have a branching process, and for each $t>0$, $\left\{X_{t}^{m}, m \geq 1\right\}$ has independent increments.
- In the general case, we don't expect that for fixed $t,\left\{X_{t}^{m}, m \geq 1\right\}$ is a Markov chain.
- However, $\left\{X_{t}^{m}, t \geq 0\right\}_{m \geq 1}$ is a path-valued Markov chain. We can specify the transitions as follows.
- In case f linear, we have a branching process, and for each $t>0$, $\left\{X_{t}^{m}, m \geq 1\right\}$ has independent increments.
- In the general case, we don't expect that for fixed $t,\left\{X_{t}^{m}, m \geq 1\right\}$ is a Markov chain.
- However, $\left\{X_{t}^{m}, t \geq 0\right\}_{m \geq 1}$ is a path-valued Markov chain. We can specify the transitions as follows.
- For $1 \leq m<n$, the law of $\left\{X_{t}^{n}-X_{t}^{m}, t \geq 0\right\}$, given $\left\{X_{t}^{\ell}, t \geq 0,1 \leq \ell \leq m\right\}$ and given that $X_{t}^{m}=x(t), t \geq 0$, is that of the time-inhomogeneous jump Markov process whose rate matrix $\left\{Q_{k, \ell}(t), k, \ell \in \mathbb{Z}_{+}\right\}$satisfies

$$
\begin{aligned}
Q_{0, \ell} & =0, \quad \forall \ell \geq 1 \text { and for any } k \geq 1 \\
Q_{k, k+1}(t) & =\lambda k+\sum_{\ell=1}^{k}[f(x(t)+\ell)-f(x(t)+\ell-1)]^{+} \\
Q_{k, k-1}(t) & =\mu k+\sum_{\ell=1}^{k}[f(x(t)+\ell)-f(x(t)+\ell-1)]^{-} \\
Q_{k, \ell} & =0, \quad \text { if } \ell \notin\{k-1, k, k+1\} .
\end{aligned}
$$

Exploration process of the forest of genealogical trees

- Call $\left\{H_{s}^{m}, s \geq 0\right\}$ the zigzag curve in the above picture (with slope ± 2), and define the local time accumulated by H^{m} at level t up to time s by

$$
L_{s}^{m}(t)=\lim _{\varepsilon \rightarrow 0} \frac{1}{\varepsilon} \int_{0}^{s} \mathbf{1}_{t \leq H_{r}^{m}<t+\varepsilon} d r .
$$

- Call $\left\{H_{s}^{m}, s \geq 0\right\}$ the zigzag curve in the above picture (with slope ± 2), and define the local time accumulated by H^{m} at level t up to time s by

$$
L_{s}^{m}(t)=\lim _{\varepsilon \rightarrow 0} \frac{1}{\varepsilon} \int_{0}^{s} \mathbf{1}_{t \leq H_{r}^{m}<t+\varepsilon} d r
$$

- H^{m} is piecewise linear, with slopes ± 2. While the slope is 2 , the rate of appearance of a maximum is

$$
\mu+\left[f\left(\left\lfloor L_{s}^{m}\left(H_{s}^{m}\right)\right\rfloor+1\right)-f\left(\left\lfloor L_{s}^{m}\left(H_{s}^{m}\right)\right\rfloor\right)\right]^{-},
$$

and the rate of appearance of a minimum while the slope is -2 is

$$
\lambda+\left[f\left(\left\lfloor L_{s}^{m}\left(H_{s}^{m}\right)\right\rfloor+1\right)-f\left(\left\lfloor L_{s}^{m}\left(H_{s}^{m}\right)\right\rfloor\right)\right]^{+} .
$$

- Call $\left\{H_{s}^{m}, s \geq 0\right\}$ the zigzag curve in the above picture (with slope ± 2), and define the local time accumulated by H^{m} at level t up to time s by

$$
L_{s}^{m}(t)=\lim _{\varepsilon \rightarrow 0} \frac{1}{\varepsilon} \int_{0}^{s} \mathbf{1}_{t \leq H_{r}^{m}<t+\varepsilon} d r
$$

- H^{m} is piecewise linear, with slopes ± 2. While the slope is 2 , the rate of appearance of a maximum is

$$
\mu+\left[f\left(\left\lfloor L_{s}^{m}\left(H_{s}^{m}\right)\right\rfloor+1\right)-f\left(\left\lfloor L_{s}^{m}\left(H_{s}^{m}\right)\right\rfloor\right)\right]^{-},
$$

and the rate of appearance of a minimum while the slope is -2 is

$$
\lambda+\left[f\left(\left\lfloor L_{s}^{m}\left(H_{s}^{m}\right)\right\rfloor+1\right)-f\left(\left\lfloor L_{s}^{m}\left(H_{s}^{m}\right)\right\rfloor\right)\right]^{+} .
$$

- Let $S^{m}=\inf \left\{s>0, L_{s}^{m}(0) \geq m\right\}$ the time needed for H_{s}^{m} to explore the genealogical trees of m ancestors. If we assume that the population goes extinct in finite time, we have the Ray-Knight type result (see next figure)

$$
\left\{X_{t}^{m}, t \geq 0, m \geq 1\right\} \equiv\left\{L_{S^{m}}^{m}(t), t \geq 0, m \geq 1\right\}
$$

How to recover X^{m} from H^{m} ?

Renormalization

- Let $N \geq 1$. Suppose that for some $x>0, m=\lfloor N x\rfloor, \lambda=2 N$, $\mu=2 N$, replace f by $f_{N}=N f(\cdot / N)$. We define $Z_{t}^{N, x}=N^{-1} X_{t}^{\lfloor N x\rfloor}$.

Renormalization

- Let $N \geq 1$. Suppose that for some $x>0, m=\lfloor N x\rfloor, \lambda=2 N$, $\mu=2 N$, replace f by $f_{N}=N f(\cdot / N)$. We define $Z_{t}^{N, x}=N^{-1} X_{t}^{\lfloor N x\rfloor}$.
- We have

Theorem

As $N \rightarrow \infty$,

$$
\left\{Z_{t}^{N, x}, t \geq 0, x \geq 0\right\} \Rightarrow\left\{Z_{t}^{x}, t \geq 0, x \geq 0\right\}
$$

in $D\left([0, \infty) ; D\left([0, \infty) ; \mathbb{R}_{+}\right)\right)$equipped with the Skorohod topology of the space of càlàg functions of x, with values in the Polish space $D\left([0, \infty) ; \mathbb{R}_{+}\right)$, equipped with the adequate metric.

Renormalization

- Let $N \geq 1$. Suppose that for some $x>0, m=\lfloor N x\rfloor, \lambda=2 N$, $\mu=2 N$, replace f by $f_{N}=N f(\cdot / N)$. We define $Z_{t}^{N, x}=N^{-1} X_{t}^{\lfloor N x\rfloor}$.
- We have

Theorem

As $N \rightarrow \infty$,

$$
\left\{Z_{t}^{N, x}, t \geq 0, x \geq 0\right\} \Rightarrow\left\{Z_{t}^{x}, t \geq 0, x \geq 0\right\}
$$

in $D\left([0, \infty) ; D\left([0, \infty) ; \mathbb{R}_{+}\right)\right)$equipped with the Skorohod topology of the space of càlàg functions of x, with values in the Polish space $D\left([0, \infty) ; \mathbb{R}_{+}\right)$, equipped with the adequate metric.

- $\left\{Z_{t}^{x}, t \geq 0, x \geq 0\right\}$ solves for each $x>0$ the Dawson-Li type SDE

$$
Z_{t}^{x}=x+\int_{0}^{t} f\left(Z_{s}^{x}\right) d s+2 \int_{0}^{t} \int_{0}^{Z_{s}^{x}} W(d s, d u)
$$

where $W(d s, d u)$ is a space-time white noise.

How to check tightness?

- Our assumptions on f are pretty minimal. In order to check tightness for x fixed, we establish the two bounds
$\sup _{N \geq 1} \sup _{0 \leq t \leq T} \mathbb{E}\left(Z_{t}^{N, x}\right)^{2}<\infty, \sup _{N \geq 1} \sup _{0 \leq t \leq T} \mathbb{E}\left(-\int_{0}^{t} Z_{s}^{N, x} f\left(Z_{s}^{N, x}\right) d s\right)<\infty$, and exploit Aldous' criterion.

Concerning the tightness "in the x direction", we establish the following bound

How to check tightness?

- Our assumptions on f are pretty minimal. In order to check tightness for x fixed, we establish the two bounds
$\sup _{N \geq 1} \sup _{0 \leq t \leq T} \mathbb{E}\left(Z_{t}^{N, x}\right)^{2}<\infty, \sup _{N \geq 1} \sup _{0 \leq t \leq T} \mathbb{E}\left(-\int_{0}^{t} Z_{s}^{N, x} f\left(Z_{s}^{N, x}\right) d s\right)<\infty$, and exploit Aldous' criterion.
- Concerning the tightness "in the x direction", we establish the following bound : for any $0 \leq x<y<z$ with $y-x \leq 1, z-y \leq 1$,

$$
\mathbb{E}\left[\sup _{0 \leq t \leq T}\left|Z_{t}^{N, y}-Z_{t}^{N, x}\right|^{2} \times \sup _{0 \leq t \leq T}\left|Z_{t}^{N, z}-Z_{t}^{N, y}\right|^{2}\right] \leq C|z-x|^{2}
$$

Continuous population models

- For each fixed $x>0$, there exists a standard $\mathrm{BM} B_{t}$ such that

$$
Z_{t}^{x}=x+\int_{0}^{t} f\left(Z_{s}^{x}\right) d s+2 \int_{0}^{t} \sqrt{Z_{s}^{\chi}} d B_{s}
$$

However, B depends upon x in a non obvious way, and the good way of coupling the evolution of Z^{x} for various x 's, which is compatible with the above coupling in the discrete case, is to use the Dawson-Li formulation

$$
Z_{t}^{x}=x+\int_{0}^{t} f\left(Z_{s}^{x}\right) d s+2 \int_{0}^{t} \int_{0}^{Z_{s}^{x}} W(d s, d u), \forall t \geq 0, x \geq 0
$$

- For each fixed $x>0$, there exists a standard $\mathrm{BM} B_{t}$ such that

$$
Z_{t}^{x}=x+\int_{0}^{t} f\left(Z_{s}^{x}\right) d s+2 \int_{0}^{t} \sqrt{Z_{s}^{\chi}} d B_{s}
$$

However, B depends upon x in a non obvious way, and the good way of coupling the evolution of Z^{x} for various x 's, which is compatible with the above coupling in the discrete case, is to use the Dawson-Li formulation

$$
Z_{t}^{x}=x+\int_{0}^{t} f\left(Z_{s}^{x}\right) d s+2 \int_{0}^{t} \int_{0}^{Z_{s}^{X}} W(d s, d u), \forall t \geq 0, x \geq 0
$$

- It is easily seen that $\left\{Z_{t}^{x}, t \geq 0\right\}_{x \geq 0}$ is a path-valued Markov process. More on this below.

(Sub)criticality

- We will say that Z^{x} is (sub)critical if

$$
\begin{gathered}
T_{0}^{x}=\inf \left\{t>0 ; Z_{t}^{x}=0\right\}<\infty \text { a.s. } \\
\text { Let } \Lambda(f)=\int_{1}^{\infty} \exp \left(-\frac{1}{2} \int_{1}^{u} \frac{f(r)}{r} d r\right) d u
\end{gathered}
$$

(Sub)criticality

- We will say that Z^{x} is (sub)critical if

$$
\begin{gathered}
T_{0}^{x}=\inf \left\{t>0 ; Z_{t}^{x}=0\right\}<\infty \text { a.s. } \\
\text { Let } \Lambda(f)=\int_{1}^{\infty} \exp \left(-\frac{1}{2} \int_{1}^{u} \frac{f(r)}{r} d r\right) d u
\end{gathered}
$$

- For any $x \geq 0, Z^{x}$ is (sub)critical iff $\Lambda(f)=\infty$.

A generalized Ray-Knight theorem

- We assume now that $f \in C^{1}\left(\mathbb{R}_{+} ; \mathbb{R}\right)$, and there exists $a>0$ such that $f^{\prime}(x) \leq a$, for all $x \geq 0$. Suppose that we are in the (sub)critical case. We consider the SDE

The proof exploits ideas from Norris, Rogers, Williams (1987) who
prove the other Ray-Knight theorem in a similar context

A generalized Ray-Knight theorem

- We assume now that $f \in C^{1}\left(\mathbb{R}_{+} ; \mathbb{R}\right)$, and there exists $a>0$ such that $f^{\prime}(x) \leq a$, for all $x \geq 0$. Suppose that we are in the (sub)critical case. We consider the SDE

$$
H_{s}=B_{s}+\frac{1}{2} \int_{0}^{s} f^{\prime}\left(L_{r}^{z}\left(H_{r}\right)\right) d r+\frac{1}{2} L_{s}(0)
$$

where $L_{s}(0)$ denotes the local time accumulated by the process H at level 0 up to time s. We define $S_{x}=\inf \left\{s>0, L_{s}(0)>x\right\}$.

A generalized Ray-Knight theorem

- We assume now that $f \in C^{1}\left(\mathbb{R}_{+} ; \mathbb{R}\right)$, and there exists $a>0$ such that $f^{\prime}(x) \leq a$, for all $x \geq 0$. Suppose that we are in the (sub)critical case. We consider the SDE

$$
H_{s}=B_{s}+\frac{1}{2} \int_{0}^{s} f^{\prime}\left(L_{r}^{z}\left(H_{r}\right)\right) d r+\frac{1}{2} L_{s}(0)
$$

where $L_{s}(0)$ denotes the local time accumulated by the process H at level 0 up to time s. We define $S_{x}=\inf \left\{s>0, L_{s}(0)>x\right\}$.

- We have

Theorem

The laws of the two random fields $\left\{L_{S_{x}}(t) ; t \geq 0, x \geq 0\right\}$ and $\left\{Z_{t}^{x} ; t \geq 0, x \geq 0\right\}$ coincide.

The proof exploits ideas from Norris, Rogers, Williams (1987) who prove the other Ray-Knight theorem in a similar context.

Effect of the competition on the height and length of the forest of genealogical trees

The finite population case

- We assume again that $f \in C\left(\mathbb{R}_{+} ; \mathbb{R}\right), f(0)=0$ and for some fixed $a>0, f(x+y)-f(x) \leq a y$, for all $x, y \geq 0$. We assume in addition that for some $b>0, f(x)<0$ for all $x \geq b$. Define $H^{m}=\inf \left\{t>0, X_{t}^{m}=0\right\}, L^{m}=\int_{0}^{H^{m}} X_{t}^{m} d t$.

The finite population case

- We assume again that $f \in C\left(\mathbb{R}_{+} ; \mathbb{R}\right), f(0)=0$ and for some fixed $a>0, f(x+y)-f(x) \leq a y$, for all $x, y \geq 0$. We assume in addition that for some $b>0, f(x)<0$ for all $x \geq b$. Define $H^{m}=\inf \left\{t>0, X_{t}^{m}=0\right\}, L^{m}=\int_{0}^{H^{m}} \overline{X_{t}^{m}} d t$.
- We have

Theorem

(1) If $\int_{b}^{\infty}|f(x)|^{-1} d x=\infty$, then $\sup _{m} H^{m}=\infty$ a.s.
(2) If $\int_{b}^{\infty}|f(x)|^{-1} d x<\infty$, then $\sup _{m} \mathbb{E}\left(e^{c H^{m}}\right)<\infty$ for some $c>0$.

The finite population case

- We assume again that $f \in C\left(\mathbb{R}_{+} ; \mathbb{R}\right), f(0)=0$ and for some fixed $a>0, f(x+y)-f(x) \leq a y$, for all $x, y \geq 0$. We assume in addition that for some $b>0, f(x)<0$ for all $x \geq b$. Define $H^{m}=\inf \left\{t>0, X_{t}^{m}=0\right\}, L^{m}=\int_{0}^{H^{m}} X_{t}^{m} d t$.
- We have

Theorem

(1) If $\int_{b}^{\infty}|f(x)|^{-1} d x=\infty$, then $\sup _{m} H^{m}=\infty$ a.s.
(2) If $\int_{b}^{\infty}|f(x)|^{-1} d x<\infty$, then $\sup _{m} \mathbb{E}\left(e^{c H^{m}}\right)<\infty$ for some $c>0$.

- We have

Theorem

Assume in addition that $g(x)=f(x) / x$ satisfies $g(x+y)-g(x) \leq$ ay.
(1) If $\int_{b}^{\infty}|f(x)|^{-1} x d x=\infty$, then $\sup _{m} L^{m}=\infty$ a.s.
(2) If $\int_{b}^{\infty}|f(x)|^{-1} x d x<\infty$, then $\sup _{m} \mathbb{E}\left(e^{c L^{m}}\right)<\infty$ for some $c>0$.

The case of continuous state space

- Same assumptions as in the discrete case. We define $T^{x}=\inf \left\{t>0, Z_{t}^{x}=0\right\}, S^{x}=\int_{0}^{T^{x}} Z_{s}^{x} d s$.

The case of continuous state space

- Same assumptions as in the discrete case. We define

$$
T^{x}=\inf \left\{t>0, Z_{t}^{x}=0\right\}, S^{x}=\int_{0}^{T^{x}} Z_{s}^{x} d s
$$

- We have

Theorem

(1) If $\int_{b}^{\infty}|f(x)|^{-1} d x=\infty$, then $\sup _{x>0} T^{x}=\infty$ a.s.
(2) If $\int_{b}^{\infty}|f(x)|^{-1} d x<\infty$, then $\sup _{x>0} \mathbb{E}\left(e^{c T^{x}}\right)<\infty$ for some $c>0$.

The case of continuous state space

- Same assumptions as in the discrete case. We define

$$
T^{x}=\inf \left\{t>0, Z_{t}^{x}=0\right\}, S^{x}=\int_{0}^{T^{x}} Z_{s}^{x} d s
$$

- We have

Theorem

(1) If $\int_{b}^{\infty}|f(x)|^{-1} d x=\infty$, then $\sup _{x>0} T^{x}=\infty$ a.s.
(2) If $\int_{b}^{\infty}|f(x)|^{-1} d x<\infty$, then $\sup _{x>0} \mathbb{E}\left(e^{c T^{x}}\right)<\infty$ for some $c>0$.

- We have

Theorem

Assume in addition that $g(x)=f(x) / x$ satisfies $g(x+y)-g(x) \leq$ ay.
(1) If $\int_{b}^{\infty}|f(x)|^{-1} x d x=\infty$, then $\sup _{x} S^{x}=\infty$ a.s.
(2) If $\int_{b}^{\infty}|f(x)|^{-1} x d x<\infty$, then $\sup _{x} \mathbb{E}\left(e^{c S^{x}}\right)<\infty$ for some $c>0$.

Intuitive idea

- The reason why the above works is essentially because, if $g: \mathbb{R}_{+} \rightarrow \mathbb{R}_{+}$satifies

$$
\int_{0}^{\infty} \frac{1}{g(x)} d x<\infty
$$

then the solution of the ODE

$$
\dot{x}(t)=g(x), \quad x(0)=x>0
$$

explodes in finite time.
Reversing time, we conclude that the ODE
has a solution which lives in $C\left(\mathbb{R}_{+} ; \mathbb{R}_{+}\right)$.

- And the same is true for certain SDEs.

Intuitive idea

- The reason why the above works is essentially because, if $g: \mathbb{R}_{+} \rightarrow \mathbb{R}_{+}$satifies

$$
\int_{0}^{\infty} \frac{1}{g(x)} d x<\infty
$$

then the solution of the ODE

$$
\dot{x}(t)=g(x), \quad x(0)=x>0
$$

explodes in finite time.

- Reversing time, we conclude that the ODE

$$
\dot{x}(t)=-g(x), \quad x(0)=+\infty
$$

has a solution which lives in $C\left(\mathbb{R}_{+} ; \mathbb{R}_{+}\right)$.

Intuitive idea

- The reason why the above works is essentially because, if $g: \mathbb{R}_{+} \rightarrow \mathbb{R}_{+}$satifies

$$
\int_{0}^{\infty} \frac{1}{g(x)} d x<\infty
$$

then the solution of the ODE

$$
\dot{x}(t)=g(x), \quad x(0)=x>0
$$

explodes in finite time.

- Reversing time, we conclude that the ODE

$$
\dot{x}(t)=-g(x), \quad x(0)=+\infty
$$

has a solution which lives in $C\left(\mathbb{R}_{+} ; \mathbb{R}_{+}\right)$.

- And the same is true for certain SDEs.

The path-valued Markov process

Our assumptions

- For the rest of this talk, we assume again that f is continuous, $f(0)=0, f(x+y)-f(x) \leq a y$ for some $a>0$, all $x, y \geq 0$, and moreover
-(Sub)criticality: $\int_{1}^{\infty} \exp \left(-\int_{1}^{u}(2 r)^{-1} f(r) d r\right) d u=+\infty$;
$\bullet(1 / 2-H o ̈ l d e r)$: For all $M>0$, there exists C_{M} s.t. $|f(x+y)-f(x)| \leq C_{M} \sqrt{y}$, for all $0 \leq x \leq M$, $0 \leq y \leq 1$.

Our assumptions

- For the rest of this talk, we assume again that f is continuous, $f(0)=0, f(x+y)-f(x) \leq$ ay for some $a>0$, all $x, y \geq 0$, and moreover
-(Sub)criticality: $\int_{1}^{\infty} \exp \left(-\int_{1}^{u}(2 r)^{-1} f(r) d r\right) d u=+\infty$;
$\bullet\left(1 / 2\right.$-Hölder): For all $M>0$, there exists C_{M}
s.t. $|f(x+y)-f(x)| \leq C_{M} \sqrt{y}$, for all $0 \leq x \leq M$,
$0 \leq y \leq 1$.
- We define E to be the subset of $C([0,+\infty) ;[0,+\infty))$ consisting of those functions φ such that whenever $\zeta(\varphi):=\inf \{t>0, \varphi(t)=0\}$ is finite, then $\varphi(t)=0$ for any $t \geq \zeta(\varphi)$. E is equipped with the topology of uniform convergence on compacts.

Our assumptions

- For the rest of this talk, we assume again that f is continuous, $f(0)=0, f(x+y)-f(x) \leq$ ay for some $a>0$, all $x, y \geq 0$, and moreover
-(Sub)criticality: $\int_{1}^{\infty} \exp \left(-\int_{1}^{u}(2 r)^{-1} f(r) d r\right) d u=+\infty$;
$\bullet\left(1 / 2\right.$-Hölder): For all $M>0$, there exists C_{M}
s.t. $|f(x+y)-f(x)| \leq C_{M} \sqrt{y}$, for all $0 \leq x \leq M$, $0 \leq y \leq 1$.
- We define E to be the subset of $C([0,+\infty) ;[0,+\infty))$ consisting of those functions φ such that whenever $\zeta(\varphi):=\inf \{t>0, \varphi(t)=0\}$ is finite, then $\varphi(t)=0$ for any $t \geq \zeta(\varphi)$. E is equipped with the topology of uniform convergence on compacts.
- From now on, we choose a version of the solution of the SDE

$$
Z_{t}^{x}=x+\int_{0}^{t} f\left(Z_{s}^{x}\right) d s+2 \int_{0}^{t} \int_{0}^{Z_{s}^{x}} W(d s, d u)
$$

s.t. the mapping $x \rightarrow Z^{x}$ is right-continuous and increasing from $[0, \infty)$ into E.

Coupling with a Feller CSBP

- Consider, with the same space-time white noise W, the two SDEs

$$
\begin{aligned}
& Y_{t}^{x}=x+a \int_{0}^{t} Y_{s}^{x} d s+2 \int_{0}^{t} \int_{0}^{Y_{s}^{x}} W(d s, d u) \\
& Z_{t}^{x}=x+\int_{0}^{t} f\left(Z_{s}^{x}\right) d s+2 \int_{0}^{t} \int_{0}^{Z_{s}^{x}} W(d s, d u)
\end{aligned}
$$

Coupling with a Feller CSBP

- Consider, with the same space-time white noise W, the two SDEs

$$
\begin{aligned}
& Y_{t}^{x}=x+a \int_{0}^{t} Y_{s}^{x} d s+2 \int_{0}^{t} \int_{0}^{Y_{s}^{x}} W(d s, d u) \\
& Z_{t}^{x}=x+\int_{0}^{t} f\left(Z_{s}^{x}\right) d s+2 \int_{0}^{t} \int_{0}^{Z_{s}^{x}} W(d s, d u)
\end{aligned}
$$

- It follows readily from a comparison theorem due to Dawson, Li that $Z_{t}^{x} \leq Y_{t}^{x}$ a.s., for all $x>0$ and $t \geq 0$.

A stronger coupling

- We recall that for each $t>0, x>0$, the mapping $\xi \in[0, x] \mapsto Y_{t}^{\xi}$ has a finite number of (positive) jumps, and is constant between those jumps.

A stronger coupling

- We recall that for each $t>0, x>0$, the mapping $\xi \in[0, x] \mapsto Y_{t}^{\xi}$ has a finite number of (positive) jumps, and is constant between those jumps.
- For each $t>0, x>0$, let

$$
\begin{aligned}
D_{t} & =\left\{\xi>0 ; Y_{t}^{\xi}>Y_{t}^{\xi-}\right\}, \text { and } \\
A_{t}^{x}(Z) & =\bigcup_{\xi \leq x, \xi \in D_{t}}\left(Y_{t}^{\xi-}, Y_{t}^{\xi-}+Z_{t}^{\xi}-Z_{t}^{\xi-}\right]
\end{aligned}
$$

- One can construct a random field $\left\{\tilde{Z}_{t}^{x}, x>0, t \geq 0\right\}$ such that $t \mapsto \tilde{Z}_{t}^{\times}$is continuous, $x \mapsto \tilde{Z}_{t}^{x}$ is right-continuous, $\left\{\tilde{Z}_{t}^{x}, x>0, t \geq 0\right\}$ has the same law as $\left\{Z_{t}^{x}, x>0, t \geq 0\right\}$, $\left\{\tilde{Z}_{t}^{x}, x>0, t \geq 0\right\}$ solves the SDE

$$
\tilde{Z}_{t}^{x}=x+\int_{0}^{t} f\left(\tilde{Z}_{s}^{x}\right) d s+2 \int_{0}^{t} \int_{A_{s}^{x}(\tilde{Z})} W(d s, d u)
$$

A stronger coupling

- We recall that for each $t>0, x>0$, the mapping $\xi \in[0, x] \mapsto Y_{t}^{\xi}$ has a finite number of (positive) jumps, and is constant between those jumps.
- For each $t>0, x>0$, let

$$
\begin{aligned}
D_{t} & =\left\{\xi>0 ; Y_{t}^{\xi}>Y_{t}^{\xi-}\right\}, \text { and } \\
A_{t}^{x}(Z) & =\bigcup_{\xi \leq x, \xi \in D_{t}}\left(Y_{t}^{\xi-}, Y_{t}^{\xi-}+Z_{t}^{\xi}-Z_{t}^{\xi-}\right]
\end{aligned}
$$

- One can construct a random field $\left\{\tilde{Z}_{t}^{x}, x>0, t \geq 0\right\}$ such that $t \mapsto \tilde{Z}_{t}^{\times}$is continuous, $x \mapsto \tilde{Z}_{t}^{\times}$is right-continuous, $\left\{\tilde{Z}_{t}^{x}, x>0, t \geq 0\right\}$ has the same law as $\left\{Z_{t}^{x}, x>0, t \geq 0\right\}$, $\left\{\tilde{Z}_{t}^{x}, x>0, t \geq 0\right\}$ solves the SDE

$$
\tilde{Z}_{t}^{x}=x+\int_{0}^{t} f\left(\tilde{Z}_{s}^{x}\right) d s+2 \int_{0}^{t} \int_{A_{s}^{x}(\tilde{Z})} W(d s, d u)
$$

- Moreover $\mathbb{P}\left(\tilde{Z}_{t}^{x+y}-\tilde{Z}_{t}^{x} \leq Y_{t}^{x+y}-Y_{t}^{x}, \forall t \geq 0\right)=1$, for all $x, y>0$.

A corollary

- It follows readily from the above coupling

Corollary

For any $t>0, x \mapsto Z_{t}^{\times}$has finitely many jumps on any compact interval, and is constant between those jumps.

A corollary

- It follows readily from the above coupling

Corollary

For any $t>0, x \mapsto Z_{t}^{x}$ has finitely many jumps on any compact interval, and is constant between those jumps.

- It is also not too hard to show that

Corollary

For any $s>0$,

$$
\mathbb{P}\left(\bigcup_{t>s}\left\{x, Z_{t}^{x} \neq Z_{t}^{x-}\right\} \subset\left\{x, Z_{s}^{x} \neq Z_{s}^{x-}\right\} \text { for all } x>0\right)=1
$$

The critical Feller diffusion as a sum of excursions

- For the rest of the talk Y_{t}^{x} denotes the critical Feller diffusion, solution of

$$
Y_{t}^{\times}=x+2 \int_{0}^{t} \int_{0}^{Y_{s}^{\times}} W(d s, d u)
$$

where N is a Poisson random measure on $\mathbb{R}_{+} \times E$ with mean measure $d y \times \mathbb{Q}(d u)$, where \mathbb{Q} is the excursion measure of the critical Feller diffusion, in the sense of Pitman-Yor.

The critical Feller diffusion as a sum of excursions

- For the rest of the talk Y_{t}^{x} denotes the critical Feller diffusion, solution of

$$
Y_{t}^{x}=x+2 \int_{0}^{t} \int_{0}^{Y_{s}^{x}} W(d s, d u)
$$

- We can write Y^{x} as the solution of the SDE

$$
Y_{+}^{x}=\int_{[0, x] \times E} u N(d y, d u)
$$

where N is a Poisson random measure on $\mathbb{R}_{+} \times E$ with mean measure $d y \times \mathbb{Q}(d u)$, where \mathbb{Q} is the excursion measure of the critical Feller diffusion, in the sense of Pitman-Yor.

Z^{x} as a sum of excursion

- The above Corollary implies that similarly $x \rightarrow Z^{x}$ can be decomposed as a sum of excursions. Call $N_{Z}(d y, d u)$ the corresponding point process, which is such that for all $x>0$,

$$
Z^{x}=\int_{[0, x] \times E} u N_{Z}(d y, d u)
$$

Z^{x} as a sum of excursion

- The above Corollary implies that similarly $x \rightarrow Z^{x}$ can be decomposed as a sum of excursions. Call $N_{Z}(d y, d u)$ the corresponding point process, which is such that for all $x>0$,

$$
Z^{x}=\int_{[0, x] \times E} u N_{Z}(d y, d u)
$$

- We want to characterize the point process N_{Z}. Let

$$
F(x, y)=f(x+y)-f(x) \text { and }
$$

$$
L(Z, u)=\exp \left(-\frac{1}{4} \int_{0}^{\zeta(u)} \frac{F\left(Z_{s}, u_{s}\right)}{u_{s}} d u_{s}-\frac{1}{8} \int_{0}^{\zeta(u)} \frac{F^{2}\left(Z_{s}, u_{s}\right)}{u_{s}} d s\right)
$$

Main result

- Our main result says that the predictable intensity of N_{Z} is

$$
L\left(Z^{y}, u\right) \mathbb{Q}(d u) d y
$$

Main result

- Our main result says that the predictable intensity of N_{Z} is

$$
L\left(Z^{y}, u\right) \mathbb{Q}(d u) d y
$$

- This is equivalent to

Theorem

The path-valued process $\left\{Z^{x}, x>0\right\}$ can be decomposed as

$$
Z^{x}=\int_{[0, x] \times E} u L\left(Z^{\xi}, u\right) \mathbb{Q}(d u) d \xi+M^{x}
$$

where M^{\times}is an E-valued càdlàg \mathcal{G}^{\times}-martingale.

Main result

- Our main result says that the predictable intensity of N_{Z} is

$$
L\left(Z^{y}, u\right) \mathbb{Q}(d u) d y
$$

- This is equivalent to

Theorem

The path-valued process $\left\{Z^{x}, x>0\right\}$ can be decomposed as

$$
Z^{x}=\int_{[0, x] \times E} u L\left(Z^{\xi}, u\right) \mathbb{Q}(d u) d \xi+M^{x}
$$

where M^{x} is an E-valued càdlàg \mathcal{G}^{x}-martingale.

- Here $\mathcal{G}^{\times}=\sigma\left\{Z_{t}^{\xi}, 0 \leq \xi \leq x, t>0\right\}$.

Indication of proof 1

- The last identity is proved as follows. We want to establish that for any $t>0$,

$$
Z_{t}^{x}=\int_{[0, x] \times E} L\left(Z^{y}, u\right) u(t) \mathbb{Q}(d u) d y+M^{x}(t)
$$

where

Indication of proof 1

- The last identity is proved as follows. We want to establish that for any $t>0$,

$$
Z_{t}^{x}=\int_{[0, x] \times E} L\left(Z^{y}, u\right) u(t) \mathbb{Q}(d u) d y+M^{x}(t)
$$

- Clearly if x is a dyadic number, then for n large enough

$$
Z_{t}^{x}=\sum_{k=1}^{x 2^{n}} 2^{-n} \mathbb{E}\left(Z_{t}^{x_{k+1}}-Z_{t}^{x_{k}} \mid \mathcal{G}^{x_{k}}\right)+M_{n}^{x}(t)
$$

Indication of proof 1

- The last identity is proved as follows. We want to establish that for any $t>0$,

$$
Z_{t}^{x}=\int_{[0, x] \times E} L\left(Z^{y}, u\right) u(t) \mathbb{Q}(d u) d y+M^{x}(t)
$$

- Clearly if x is a dyadic number, then for n large enough

$$
Z_{t}^{x}=\sum_{k=1}^{x 2^{n}} 2^{-n} \mathbb{E}\left(Z_{t}^{x_{k+1}}-Z_{t}^{x_{k}} \mid \mathcal{G}^{x_{k}}\right)+M_{n}^{x}(t)
$$

- Now

$$
\mathbb{E}\left(Z_{t}^{x+y}-Z_{t}^{x} \mid \mathcal{G}^{x}\right)=\mathbb{E}\left(L\left(Z^{x}, U^{y}\right) U_{t}^{y} \mid \mathcal{G}^{x}\right)
$$

where

$$
U_{t}^{y}=y+2 \int_{0}^{t} \sqrt{U_{s}} d B_{s}
$$

Indication of proof 2

- But

$$
y^{-1} \mathbb{E}\left(L\left(Z^{x}, U^{y}\right) U_{t}^{y} \mid \mathcal{G}^{x}\right)=\mathbb{E}_{\mathbb{Q}_{y, t}}\left(L\left(Z^{x}, U^{y}\right) \mid \mathcal{G}^{x}\right)
$$

where under $\mathbb{Q}_{y, t}$

$$
U_{r}=y+4 t \wedge r+2 \int_{0}^{t} \sqrt{U_{s}} d B_{s}
$$

It just remain to verify that
where \mathbb{Q} is the above excursion measure.

Indication of proof 2

- But

$$
y^{-1} \mathbb{E}\left(L\left(Z^{x}, U^{y}\right) U_{t}^{y} \mid \mathcal{G}^{x}\right)=\mathbb{E}_{\mathbb{Q}_{y, t}}\left(L\left(Z^{x}, U^{y}\right) \mid \mathcal{G}^{x}\right)
$$

where under $\mathbb{Q}_{y, t}$

$$
U_{r}=y+4 t \wedge r+2 \int_{0}^{t} \sqrt{U_{s}} d B_{s}
$$

- Finally we can take the limit as $y \rightarrow 0$ in the last identity, yielding

$$
y^{-1} \mathbb{E}\left(L\left(Z^{x}, U^{y}\right) U_{t}^{y} \mid \mathcal{G}^{x}\right) \rightarrow \mathbb{E}_{\mathbb{Q}_{0, t}}\left(L\left(Z^{x}, U\right) \mid \mathcal{G}^{x}\right)
$$

It just remain to verify that

$$
\mathbb{E}_{\mathbb{Q}_{0, t}}\left(L\left(Z^{x}, U\right) \mid \mathcal{G}^{\times}\right)=\int_{E} L\left(Z^{x}, u\right) u(t) \mathbb{Q}(d u)
$$

where \mathbb{Q} is the above excursion measure.

The infinitesimal generator

We deduce from the above statement

Corollary

For bounded $g: \mathbb{R}_{+} \rightarrow \mathbb{R}_{+}$and $z \in E$, put $\Phi_{g}(z):=e^{-\langle g, z\rangle}$. Then, for this class of functions,

$$
A \Phi_{g}(z):=\Phi_{g}(z) \int_{E}\left(e^{-\langle g, u\rangle}-1\right) L(z, u) \mathbb{Q}(d u)
$$

gives the generator of Z in the sense that for all $g: \mathbb{R}_{+} \rightarrow \mathbb{R}_{+}$, $\Phi_{g}\left(Z^{x}\right)-\Phi_{g}\left(Z^{0}\right)-\int_{[0, x] \times E} A \Phi_{g}\left(Z^{\xi}\right) d \xi, x \geq 0 \quad$ is a \mathcal{G}^{x}-martingale.

Bibliography

- M. Ba, E. Pardoux, Branching processes with competition and genralized Ray-Knight theorem, Ann. I.H.P., 2014, to appear.
- V. Le, E. Pardoux, A. Wakolbinger, Trees under attack : a Ray-Knight representation of Feller's branching diffusion with logistic growth, PTRF 155 583-619, 2013.
- V. Le, E. Pardoux, Height and the total mass of the forest of genealogical trees of a large population with general competition, ESAIM P \& S, 2014, to appear.
- J.R. Norris, L.C.G. Rogers, D. Williams, Self-avoiding random walks: a Brownian motion model with local time drift, PTRF 74, 1987.
- E. Pardoux, A. Wakolbinger, From Brownian motion with a local time drift to Feller's branching diffusion with logistic growth, ECP 2011.
- E. Pardoux, A. Wakolbinger, A path-valued Markov process indexed by the ancestral mass, submitted.
- J. Pitman, M. Yor, A decomposition of Bessel bridges, Z. für Wahrscheinlichkeitstheorie verw. Gebiete 59, 425-457, 1982.

THANK YOU FOR YOUR ATTENTION!

