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tree-like structures I

motivation: polygons

self-avoiding walks and polygons on Zd

SAW of length m:

nearest neighbour path (ω1, . . . , ωm+1), vertices pairwise disjoint

SAP of length (perimeter) m:

(ω1, . . . , ωm) SAW, ω1 and ωm nearest neighbours

equal exponential growth constants (Madras, Slade 92)

SAPs “easier” than SAWs
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tree-like structures I

motivation: polygons

planar SAPs are models for ...

the vesicle collapse transition in 2d

extended ↔ collapsed polygons (branched polymers, lattice trees)

two-dimensional vesicles (perimeter and area)
ring polymers (perimeter and number of contacts)

benzenoid hydrocarbons

hexagonal lattice SAPs counted by area
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tree-like structures I

motivation: polygons

SAPs are models for ...

biopolymers

thermal DNA denaturation

force-induced unfolding
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tree-like structures I

motivation: polygons

solvable subclasses of SAPs

partitions and compositions of natural numbers

3: 31+21+1+1

partitions ↔ Ferrers diagrams

3: 1+21+1+1 2+1 3

compositions ↔ bargraph polygons
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tree-like structures I

motivation: polygons

solvable subclasses of SAPs

directed polygon:
all points reachable from a root by ↑ or → steps

v-convex polygon:
sections with lines of slope v through points convex

column-convex: v =↑, row-convex: v =→, convex=rc ∩ cc
diagonally convex: v =↘
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tree-like structures I

motivation: polygons

solvable subclasses of SAPs

staircase

bargraph stack Ferrers diagram rectangle

convex
diagonally

directed
convex

diagonally

column convex

directed

column convex

SAP

convex

directed convex
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tree-like structures I

motivation: polygons

convex square lattice polygons

sections with vertical and horizontal lines convex
length equals perimeter of minimal bounding rectangle
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convex polygon directed convex polygon staircase polygon

Ferrers diagramstack polygon rectangle

closed expression for perimeter and area generating functions
(e.g. Bousquet-Mélou 96 for horizontally convex polygons)
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tree-like structures I

motivation: polygons

three-choice polygons

three-choice walks: Manna 84

three-choice polygons: Guttmann et al 93

either staircase polygon or imperfect staircase polygon

“solution” by Guttmann–Jensen 05
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tree-like structures I

motivation: polygons

prudent walks and polygons on Z2

if you aim to be self-avoiding, be prudent:

Never take a step towards an already occupied vertex!

fundamental property

each unit step ends on boundary of the current bounding box
(minimal bounding rectangle)

history

walks introduced by Prea 97, polygons by Guttmann 06
solution of walk subclasses by Duchi 05, Bousquet-Mélou 10
solution of polygon subclasses by Schwerdtfeger 10 12 / 46



tree-like structures I

motivation: polygons

prudent polygons on Z2

subclasses of prudent polygons

one-sided walks: every step ends on the top of the box

two-sided walks: every step ends on the top or right of the box

three-sided walks: every step ends on the top, right or left of the box
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tree-like structures I

combinatorial bijections

polygons, walks, and trees

staircase polygons:
Dyck path codes height and relative position of polygon columns
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tree-like structures I

combinatorial bijections

polygons, walks, and trees

ordered (plane) rooted trees:
Dyck path codes edge traversal of trees (contour process)
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tree-like structures I

combinatorial bijections

polygons, walks, and trees

These models allow for certain combinatorial decompositions.

A decompositon yields a recursion for counting parameters
associated to the model.

On the level of generating functions, this translates into a
functional equation for the generating function.

Sometimes the functional equation yields an explicit solution
for the generating function.

If an explicit solution is absent, manipulation of the functional
equation often yields detailed information about the model.

We will discuss this for models of walks and models of trees.
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tree-like structures I

decomposition of walks

Dyck paths and arches

Dyck paths of length 2n (n ∈ N0)

y : [0, 2n]→ R≥0 (height map)

y(0) = y(2n) = 0, |y(j)− y(j − 1)| = 1 (j ∈ N)

y(s) for non-integer s by linear extrapolation

arch of length 2n (n ∈ N)

Dyck path y where y(s) > 0 if s /∈ {0, 2n}
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tree-like structures I

decomposition of walks

combinatorial classes and generating functions

combinatorial classes

D set of Dyck paths

A set of arches

generating functions

weight wy (x) = xn of Dyck path y of length 2n

(formal) power series

D(x) =
∑
d∈D

wd(x), A(x) =
∑
a∈A

wa(x)
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tree-like structures I

decomposition of walks

combinatorial constructions: path lifting

Dyck path with additional bottom layer =̂ arch

relation between generating functions:

A(x) =
∑
d∈D

wd̄(x) =
∑
d∈D

xwd(x) = xD(x)
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tree-like structures I

decomposition of walks

combinatorial constructions: arch decomposition

Dyck path =̂ ordered sequence of arches

length additive w.r.t. sequence construction
relation between generating functions:

D(x) =
∑
k≥0

∑
(a1,...,ak )∈Ak

w(a1,...,ak )(x)

=
∑
k≥0

∑
(a1,...,ak )∈Ak

wa1 (x) · . . . · wak (x)

=
∑
k≥0

(∑
a∈A

wa(x)

)k

=
1

1− A(x)
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tree-like structures I

decomposition of walks

Dyck path generating function

quadratic equation with uniqe power series solution

D(x) =
1−
√

1− 4x

2x
=
∑
n≥0

Cnx
n

Catalan numbers

Cn =
1

n + 1

(
2n

n

)
1, 1, 2, 5, 14, 42, 132, . . .
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tree-like structures I

decomposition of walks

Dyck paths by length and area

(half) length and area generating functions

Dyck paths D(x , q) =
∑

d∈D wd(x , q)

arches A(x , q) =
∑

a∈A wa(x , q)

weight wy (x , q) = xnqm of path y of length 2n, area m

path lifting:

transformation of weights: q-shift
wd̄(x , q) = xn+1qm+2n+1 = xq(xq2)nqm = xqwd(xq2, q)

transformation of generating functions

A(x , q) = xqD(xq2, q)
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tree-like structures I

decomposition of walks

Dyck paths by length and area

arch decomposition:

D(x , q) =
1

1− A(x , q)

(length, area additive w.r.t. sequence construction)

q-quadratic functional equation

D(x , q) =
1

1− xqD(xq2, q)
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tree-like structures I

decomposition of walks

Dyck paths by length and area: explicit solution

D(x , q) =
1

1− xqD(xq2, q)

insert D(x , q) = A(x,q)
B(x,q)

and equate numerator and denominator

A(x , q) = B(xq2, q), B(x , q) = B(xq2, q)− xqA(xq2, q)

write B(x , q) =
∑∞

n=0 bn(q)x
n and identify

bn = q2nbn − q4n−1bn−1, b0 = 1

iterate this to get

B(x , q) =
∞∑
n=0

(−x)nq2n2+n

(q2)n
,

with q-product (q2)n = (1− q2) · . . . · (1− q2n)

q-deformed exponential since B(x(1− q2), q)→ e−z as q → 1
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tree-like structures I

decomposition of walks

from Dyck paths to random walks

Dyck path: non-negative RW starting and ending in y = 0

ordered sequence of Dyck paths with additional bottom layer

D(x , q) =
1

1− x2qD(qx , q)

counted by length and area (not half-length!)
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tree-like structures I

decomposition of walks

bilateral Dyck paths

bilateral Dyck path: RW starting and ending in y = 0

ordered sequence of positive or negative Dyck paths with
additional bottom layer

B(x , q) =
1

1− 2x2qD(qx , q)

counted by length and absolute area
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tree-like structures I

decomposition of walks

meanders

meander: non-negative RW starting in y = 0

Dyck path or (Dyck path followed by meander with additional
bottom layer)

M(x , q) = D(x , q)(1 + xqM(qx , q))
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tree-like structures I

decomposition of walks

random walks

bilateral Dyck path or (bilateral Dyck path followed by a
positive or negative meander with additional bottom layer)

functional equation

R(x , q) = B(x , q)(1 + 2xqM(qx , q))

counted by length and absolute area
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tree-like structures I

decomposition of walks

Dyck paths: moments of height (cf Duchon 99)

Dyck path y of length 2n

k-th moment of height (k ∈ {1, . . . ,M})

nk =
2n∑
i=0

yk(i)

k = 1 area, k = 2 moment of inertia

weight
wy (u) = u2n

0 un1
1 · . . . · u

nM
M

generating functions

D(u) =
∑
d∈D

wd(u), A(u) =
∑
a∈A

wa(u)
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tree-like structures I

decomposition of walks

Dyck paths: moments of height

path lifting:

A(u) = u0u1 · . . . · uMD(v(u)),

where v(u) = (v0(u), v1(u), . . . , vM(u)) is given by

v0(u) = u0u
2
1 · . . . · u2

M

vk(u) =
M∏
l=k

u
( l
k)

l (k = 1, . . . ,M)
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tree-like structures I

decomposition of walks

Dyck paths: moments of height

moments of height n` (1 ≤ ` ≤ M)

n` =
2n+2∑
i=0

y `(i) =
2n∑
i=0

(y(i) + 1)` =
2n∑
i=0

∑̀
k=0

(
`

k

)
y(i)k

= (2n + 1) +
∑̀
k=1

(
`

k

) 2n∑
i=0

y(i)k = (2n + 1) +
∑̀
k=1

(
`

k

)
n`

e.g. for M = 2 we obtain

wd(u0, u1, u2) = un+1
0 un1

1 un2
2 = un+1

0 u2n+1+n1
1 u2n+1+n1+n2

2

= u0u1u2(u0u
2
1u

2
2)n(u1u2)n1un2

2
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tree-like structures I

decomposition of walks

Dyck paths: moments of height

arch decomposition:

D(u) =
1

1− A(u)

(sequence construction: length, height moments additive)

q-quadratic functional equation

no explicit expression known
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tree-like structures I

decomposition of trees

ordered binary rooted trees

tree: finite connected graph without cycles

rooted: marked node, binary: internal nodes outdegree 2

decomposition: tree ∼= ordered pair of trees

counting parameter:

n(T ) # nodes of tree T

wT (x) = xn(T ) weight of T
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tree-like structures I

decomposition of trees

ordered binary rooted trees

decomposition:

parameter: n(T ) = n(T1) + n(T2) + 1

weight: wT (x) = xwT1(x)wT2(x)

quadratic equation for generating function

G (x) =
∑
T

wT (x) = x + x
∑
T1,T2

wT1(x)wT2(x) = x + xG 2(x)

general binary rooted trees: Flajolet–Sedgewick I.5.2
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tree-like structures I

decomposition of trees

simply generated trees (Meir, Moon 78)

n1=

n2=

n3=1

1

3

n=9

n0 =4

ordered (plane) rooted trees T

n(T ) number of nodes

nk(T ) number of nodes of outdegree k

weight wT (x) = xn(T )
∏

k≥0 ϕ
nk (T )
k
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tree-like structures I

decomposition of trees

simply generated trees

generating function of ϕk

Φ(t) =
∑
k≥0

ϕkt
k

generating function G (x) =
∑

T wT (x)

G (x) = x
∑
k≥0

ϕkG (x)k = xΦ(G (x))

can be realised as conditioned Galton-Watson trees with
offspring distribution P(X = k) = ϕkt

k/Φ(t)

general rooted trees: Flajolet–Sedgewick I.5.2
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tree-like structures I

decomposition of trees

phylogenetic trees

binary rooted trees with labelled leaves

1 2 1 2 3

1 3 2

12 3

n(T ) # leaves of T , nk(T ) # nodes of outdegree k

weight wT (x) = xn(T )
∏

k≥2 ϕ
nk (T )
k

functional equation for exponential generating function

G (x) =
∑
T∈T

wT (x)

n(T )!
= x +

x

2
G (x)2

general case: Flajolet–Sedgewick II.19
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tree-like structures I

decomposition of trees

additional counting parameters I

pathlength

m(T ) =
∑
v∈T

d(v , o)

d(v , o) distance from v to root
wT (x , q) = xn(T )qm(T ) weight of T

decomposition for binary trees:

parameter: m(T ) = (m(T1) + n(T1)) + (m(T2) + n(T2))

weight: wT (x , q) = xwT1(qx , q)wT2(qx , q)

simply generated trees:

G (x , q) = xΦ(G (qx , q))
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tree-like structures I

decomposition of trees

additional counting parameters II

generalised pathlength

mk(T ) :=
∑
v∈T

d(v , o)k k ∈ {0, . . . ,M}

weight wT (u) of T as

wT (u) := u
n(T )
0 u

m1(T )
1 · . . . · umM(T )

M

∏
k≥0

ϕ
nk (T )
k .

generating function G (u) =
∑

T wT (u)

q-functional equation

G (u) = u0Φ(G (v(u))), vk(u) =
M∏
l=k

u
( l
k)

l (k = 0, . . . ,M)
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tree-like structures I

decomposition of trees

non-linear parameters: Wiener index (Janson 03)

W (T ) =
1

2

∑
v ,w∈T

d(v ,w)

appears in chemistry of acyclic molecules

analyse the simpler quantity

Q(T ) =
∑

v ,w∈T
d(v ∧ w , o) = n(T )m(T )−W (T )

v ∧w last common ancestor, n(T ) # nodes, m(T ) pathlength

this follows from

d(v ,w) = d(v , v ∧ w) + d(v ∧ w ,w)

= d(v , o)− d(v ∧ w , o) + d(w , o)− d(v ∧ w , o)
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tree-like structures I

decomposition of trees

non-linear parameters: Wiener index (Janson 03)

decomposition for binary trees:

this implies for the counting parameters

m(T ) = (m(T1) + n(T1)) + (m(T2) + n(T2))

Q(T ) = (Q(T1) + n(T1)2) + (Q(T2) + n(T2)2)

modified generating function approach possible! (Wagner 12)
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tree-like structures I

beyond unit edge lenghts

discrete meanders with bounded steps (Banderier–Flajolet 02)

discrete meanders

walks with unit steps in x-direction

steps in y -direction from S ⊆ {−c ,−c + 1, . . . , d − 1, d} ⊂ Z
c , d positive, −c , d ∈ S
meanders require non-negative height

generating functions

step polynomial S(u) =
∑

si∈S siu
i with step weights si > 0

F (z , u) perimeter and final height gf
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tree-like structures I

beyond unit edge lenghts

discrete meanders with bounded steps

decomposition of meanders

either empty path or

meander path with added step, but ...

correct for steps which fall below y = 0

this translates into the functional equation

F (z , u) = 1 + zS(u)F (z , u)− z{u<0}S(u)F (z , u)

= 1 + zS(u)F (z , u)− z
c−1∑
i=0

ri (u)Gi (z)

where ri (u) =
(
s−cu

−c + . . .+ s−(i+1)u
−(i+1)

)
ui and Gi (z) = [ui ]F (z , u)

remarks

single equation with (c + 1) unknowns F (z , u), G0(z), . . . ,Gc−1(z)

area by q-shift 43 / 46



tree-like structures I

beyond unit edge lenghts

discrete meanders: kernel method

F (z , u)(1− zS(u)) = 1− z
c−1∑
i=0

ri (u)Gi (z)

solve kernel equation 1− zS(u) = 0

c small branches u1(z), . . . , uc(z): ui (z) ∼ ciz
1
c as z → 0

d large branches v1(z), . . . , vd(z): vi (z) ∼ diz
− 1

d as z → 0

kernel method: consider N(z , u) = uc · rhs(z , u)

N(z , u) polynomial in u of deg c with roots u1(z), . . . , uc(z)

leading coefficient comparison gives N(z , u) =
∏c

j=1(u − uj(z))

we get the (formal) power series solution

F (z , u) =
N(z , u)

uc(1− zS(u))
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tree-like structures I

beyond unit edge lenghts

prudent polygons by perimeter (Schwerdtfeger 10)

two-sided polygons (bar-graph polygons)

functional equation solvable by kernel method

P2(x , u) =
1− x − u(1 + x)x −

√
x2(1− x)2u2 − 2x(1− x2)u + (1− x)2

2xu

three-sided polygons

functional equation solvable by kernel method

P3(x) =
∑
k≥0

L((xq2)k )

k−1∏
j=0

K((xq2)j ), q =
x2 + 1−

√
1− 4x + 2x2 + x4

2x

K(w) =
(1− x)q − 1− ((1− x + x2)q − 1)(P2(x , qw) + x)w

1− x(1 + x)q − (x(1− x − x3)q + x2)(P2(x , qw) + x)w

L(w) =
(1 + x2 − (1− 2x + 2x2 + x4)q)(P2(x , qw) + x)w

1− x(1 + x)q − (x(1− x − x3)q + x2)(P2(x , qw) + x)w

general prudent polygons

functional equation unsolved (three auxiliary variables)
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tree-like structures I

beyond unit edge lenghts

three-choice polygons (Guttmann–Jensen 05)

exact enumeration data for half-perimeter gf P(x) suggests

8∑
k=0

pk(x)
dk

dxk
P(x) = 0,

with

p8(x) = x3(1− 4x)4(1 + 4x)(1 + 4x2)(1 + x + 7x2)q8(x)

p7(x) = x2(1− 4x)3q7(x), p6(x) = x(1− 4x)q6(x)

p5(x) = (1− 4x)q5(x), p4(x) = q4(x)

p3(x) = q3(x), p2(x) = x(1− 2x)q2(x)

p1(x) = (1− 4x)q1(x), p0(x) = q0(x)

q8(x), q7(x), . . . , q0(x) known polynomials of degree
25, 31, 32, 33, 33, 32, 29, 29, 29, which do not factorise

206 terms are needed for this equation, 260 terms checked
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