Combinatorial aspects of tree-like structures II. Asymptotic analysis

Christoph Richard
Universität Erlangen-Nürnberg
Population Genetics and Statistical Physics in Synergy EURANDOM, 27. 08. 2014

plan:

singularity analysis of q-functional equations

- universal asymptotic behaviour
- corrections to asymptotic behaviour
- DE for Laplace transform of area limit law generating function
combinatorical framework analogues of
- CLTs
- Edgeworth expansions
- Feynman-Kac formulae
relation to scaling functions from statistical physics
first a trivial but instructive example...

area limit law of rectangles: direct approach

setup and notation

- $p_{m, n}$ number of rectangles of half-perimeter m, area n
- uniform fixed perimeter ensemble
- \widetilde{X}_{m} random variable of area

$$
\mathbb{P}\left(\widetilde{X}_{m}=n\right)=\frac{p_{m, n}}{\sum_{n} p_{m, n}}
$$

moment method

$$
\begin{aligned}
& \mathbb{E}\left[\widetilde{X}_{m}^{k}\right]=\frac{1}{m-1} \sum_{l=1}^{m-1}(I(m-l))^{k} \sim m^{2 k} \int_{0}^{1}(x(1-x))^{k} \mathrm{~d} x=\frac{(k!)^{2}}{(2 k+1)!} m^{2 k} \\
& \square \mu_{m}=\mathbb{E}\left[\widetilde{X}_{m}\right] \sim m^{2} / 6 \\
& \square \sigma_{m}^{2}=\mathbb{V}\left[\widetilde{X}_{m}\right] \sim m^{4} / 180 \\
& \square \text { no concentration, i.e. } \lim _{m \rightarrow \infty} \sigma_{m} / \mu_{m} \neq 0
\end{aligned}
$$

area limit law of rectangles: direct approach

normalised area variable

$$
X_{m}=\frac{2}{3} \frac{\widetilde{X}_{m}}{\mu_{m}}=4 \frac{\widetilde{X}_{m}}{m^{2}}
$$

- $M_{k}:=\lim _{m \rightarrow \infty} \mathbb{E}\left[X_{m}^{k}\right]$ obey Carleman condition $\sum_{k} M_{2 k}^{-\frac{1}{2 k}}=\infty$
- uniquely define law with moments M_{k} for random variable X
- moment generating function

$$
M(t)=\mathbb{E}\left[e^{-t X}\right]=\sum_{k=0}^{\infty} \frac{\mathbb{E}\left[X^{k}\right]}{k!}(-t)^{k}=\frac{1}{2} \sqrt{\frac{\pi}{t}} e^{t} \operatorname{erf}(\sqrt{t})
$$

- density by inverse Laplace transform

$$
p(x)=\frac{1}{2 \sqrt{1-x}} \cdot 1_{(0,1)}(x)
$$

- $\beta_{1,1 / 2}$ distribution

limit law via generating functions

- half-perimeter and area generating function

$$
P(x, q)=\sum_{m, n} p_{m, n} x^{m} q^{n}
$$

- factorial area moments

$$
\mathbb{E}\left[\left(\widetilde{X}_{m}\right)_{k}\right]=\frac{\sum_{n}(n)_{k} p_{m, n}}{\sum_{n} p_{m, n}}=\frac{\left.\left[x^{m}\right] \frac{\partial^{k}}{\partial q^{k}} P(x, q)\right|_{q=1}}{\left[x^{m}\right] P(x, 1)}
$$

lower factorial $(a)_{k}=a \cdot(a-1) \cdot \ldots \cdot(a-k+1)$

limit law via generating functions

- decomposition induces linear q-difference equation

$$
P(x, q)=\frac{x^{2} q}{1-q x}+\frac{x^{3} q^{2}}{1-q x}+x^{2} q P(q x, q)
$$

- extract area moment generating functions

$$
g_{k}(x)=\left.\frac{1}{k!} \frac{\partial^{k}}{\partial q^{k}} P(x, q)\right|_{q=1}
$$

- "moment pumping" (Flajolet 97)
compute $g_{k}(x)$ recursively from functional equation, by repeated differentiation w.r.t. q and then setting $q=1$

limit law via generating functions

- the first few area moment gf's

$$
\begin{aligned}
& g_{0}(x)=\frac{x^{2}}{(1-x)^{2}}, \quad g_{1}(x)=\frac{x^{2}}{(1-x)^{4}}, \\
& g_{2}(x)=\frac{2 x^{3}}{(1-x)^{6}}, \quad g_{3}(x)=\frac{6 x^{4}}{(1-x)^{8}}, \\
& g_{4}(x)=\frac{x^{4}\left(1+22 x+x^{2}\right)}{(1-x)^{10}}, \quad g_{5}(x)=\frac{12 x^{5}\left(1+8 x+x^{2}\right)}{(1-x)^{12}}
\end{aligned}
$$

- asymptotic behaviour

$$
g_{k}(x) \sim \frac{k!}{(1-x)^{2 k+2}} \quad(x \rightarrow 1)
$$

- asymptotic behaviour of area moments

$$
\frac{\mathbb{E}\left[\left(X_{m}\right)_{k}\right]}{k!} \sim\left[x^{m}\right] \frac{k!}{(1-x)^{2 k+2}}=\frac{k!}{(2 k+1)!} \sim \frac{\mathbb{E}\left[\left(X_{m}\right)^{k}\right]}{k!}
$$

an observation

For X with law $\beta_{1,1 / 2}$ consider the double Laplace transform

$$
F(s):=\int_{0}^{\infty} e^{-s t} \mathbb{E}\left[e^{-t^{2} x}\right] t \mathrm{~d} t
$$

- with $\operatorname{Ei}(z)=\int_{1}^{\infty} e^{-t z} / t \mathrm{~d} t$ the exponential integral, we have

$$
F(s)=\operatorname{Ei}\left(s^{2}\right) e^{s^{2}}
$$

- asymptotic expansion

$$
F(s) \sim \sum_{k \geq 0}(-1)^{k} k!s^{-(2 k+2)} \quad(s \rightarrow \infty)
$$

- coefficents k ! are amplitudes of $g_{k}(x)$ at singularity
- $F(s)$ analytic for $\Re(s) \geq s_{0}$ uniquely determined by its asymptotic behaviour

strategy

Feynman-Kac type approach

- reconstruct limit law X from double Laplace transform $F(s)$
- obtain $F(s)$ from amplitudes of $g_{k}(x)$ at singularity
- functional equation induces differential equation for $F(s)$

Edgeworth type expansions

- subleading corrections X_{ℓ} via double Laplace transforms $F_{\ell}(s)$
- differential equations for $F_{\ell}(s)$
statistical physics terminology:
- $F(s)$ scaling function, $F_{\ell}(s)$ correction-to-scaling functions
- scaling ansatz ("method of dominant balance")

scaling ansatz

area moment generating functions

$$
g_{k}(x)=\sum_{\ell \geq 0} \frac{f_{k, \ell}}{(1-x)^{2 k+2-\ell}}
$$

generating functions for amplitudes $f_{k, \ell}$

- $F(s)$ generating function of $\left(f_{k, 0}\right)_{k}$
- $F_{\ell}(s)$ generating function of $\left(f_{k, \ell}\right)_{k}$
- compute these from functional equation

scaling ansatz

formal manipulation:

$$
\begin{aligned}
P(x, q) & =\sum_{k}(-1)^{k} g_{k}(x) \cdot(1-q)^{k} \\
& =\sum_{k}(-1)^{k} \sum_{\ell} \frac{f_{k, \ell}}{(1-x)^{2 k+2-\ell}} \cdot(1-q)^{k} \\
& =\frac{1}{1-q} \sum_{\ell} \sum_{k}(-1)^{k} \frac{f_{k, \ell}}{\left(\frac{1-x}{\sqrt{1-q}}\right)^{2 k+2-\ell}}(\sqrt{1-q})^{\ell} \\
& =\frac{1}{1-q} F\left(\frac{1-x}{\sqrt{1-q}}, \sqrt{1-q}\right)
\end{aligned}
$$

with $F(s, \epsilon)=\sum_{\ell} F_{\ell}(s) \epsilon^{\ell}$ and

$$
F_{\ell}(s)=\sum_{k}(-1)^{k} \frac{f_{k, \ell}}{s^{2 k+2-\ell}}
$$

scaling ansatz

- introduce $F(s, \epsilon)$ into functional equation via

$$
P(x, q)=\frac{1}{1-q} F\left(\frac{1-x}{(1-q)^{1 / 2}},(1-q)^{1 / 2}\right)
$$

- introduce variables s, ϵ via $x=1-s \epsilon$ and $q=1-\epsilon^{2}$
- expand functional equation in powers of ϵ
- order ϵ^{0} yields first order differential equation

$$
s F_{0}^{\prime}(s)+2-2 s^{2} F_{0}(s)=0
$$

- order ϵ^{ℓ} yields DE for $F_{\ell}(s)$

remarks

limit distributions for rectangles

- rigorous method, since all $g_{k}(x)$ are rational
- differential equations can be mechanically obtained
- corrections-to-scaling to arbitrary order
method applies to more general q-functional equations:
- e.g. for algebraic perimeter generating function $P(x, 1)$ and area moment generating functions $g_{k}(x)$
- Newton-Puiseaux expansion of $g_{k}(x)$ about dominant singularity
- limit law via asymptotic expansion of $F(s)$, transfer theorem and inverse Laplace trafo
- alternatively via double inverse Laplace trafo

transfer theorem

Theorem (Flajolet-Odlyzko 90)

For $\alpha \in \mathbb{C} \backslash\{0,-1,-2, \ldots\}$ let $f(z)$ be analytic in the open indented disc

$$
D(\rho, \sigma, \phi)=\{z \in \mathbb{C}| | z|<\sigma,|\arg (z-\rho)|<\phi\}
$$

where $0<\rho<\sigma$ and $0<\phi<\pi / 2$. If in the intersection of a small neighborhood of ρ with $D(\rho, \sigma, \phi)$ we have

$$
f(z) \sim(1-z / \rho)^{-\alpha} \quad(z \rightarrow \rho)
$$

then $\left[z^{n}\right] f(z) \sim \rho^{-n \frac{n^{\alpha-1}}{\Gamma(\alpha)}}$ for $n \rightarrow \infty$.
similar results for logarithmic singularities (see Flajolet 09)

examples

area limit law determined by singularity of perimeter generating function

- double pole: $\beta_{1,1 / 2}$
- simple pole: concentrated
- square root: area under Brownian excursion
- inverse square root: area under Brownian meander

square-root-singularity: staircase polygons

decomposition of staircase polygons

quadratic q-difference equation

$$
P(x, q)=\frac{q x^{2}}{1-(2 q x+P(q x, q))}
$$

area random variable in uniform fixed perimeter ensemble

$$
\mu_{m} \sim \frac{\sqrt{\pi}}{4} m^{3 / 2} \quad \sigma_{m}^{2} \sim \frac{10-3 \pi}{48} m^{3}
$$

square-root singularity: staircase polygons

Theorem (cf Duchon 99, Takács 91)

The area random variables X_{m} of staircase polygons satisfy

$$
\frac{X_{m}}{\mu_{m}} \xrightarrow{d} \frac{X}{\sqrt{\pi}} \quad(m \rightarrow \infty)
$$

where X is Airy distributed, i.e.

$$
\frac{\mathbb{E}\left[X^{k}\right]}{k!}=\frac{\Gamma\left(\gamma_{0}\right)}{\Gamma\left(\gamma_{k}\right)} \frac{\phi_{k}}{\phi_{0}},
$$

where $\gamma_{k}=(3 k-1) / 2$, and ϕ_{k} satisfies the quadratic recurrence

$$
\gamma_{k-1} \phi_{k-1}+\frac{1}{2} \sum_{I=0}^{k} \phi_{I} \phi_{k-I}=0, \quad \phi_{0}=-1
$$

same result for path length in simply generated trees, discrete Bernoulli excursion area, construction cost for hash table, ...

q-difference equations and universality

Theorem (Takács 91, Duchon 99, R 05)

Airy limit law appears for solutions of

$$
P(x, q)=x F(x, q, P(q x, q))
$$

under sufficient assumptions on $F(x, q, y)$, e.g.

- F polynomial, at least quadratic in y
- F has no negative coefficients
interpretation
- thus square-root singularity generic
- similar statements for other types of singularity

inverse square-root singularity

Theorem (R 07, cf Takács 95)

The area random variables X_{m} of directed convex polygons satisfy

$$
\frac{X_{m}}{\mu_{m}} \xrightarrow{d} \frac{Z}{\mathbb{E}[Z]} \quad(m \rightarrow \infty),
$$

with Z the area random variable of the Brownian meander, i.e.,

$$
\frac{\mathbb{E}\left[Z^{k}\right]}{k!}=\frac{\Gamma\left(\alpha_{0}\right)}{\Gamma\left(\alpha_{k}\right)} \frac{\omega_{k}}{\omega_{0}} \frac{1}{2^{k / 2}},
$$

where $\alpha_{k}=(3 k+1) / 2$, and ω_{k} satisfies the linear recurrence

$$
\alpha_{k-1} \omega_{k-1}+\sum_{l=0}^{k} \phi_{l} 2^{-l} \omega_{k-l}=0, \quad \omega_{0}=1
$$

higher rank parameters for models of Bernoulli walks

- Bernoulli random walks, meanders, bilateral Dyck paths, Dyck paths
- discrete counterparts of Brownian motion, meanders, excursions and bridges (Kaigh 76, Aldous 92, Drmota-Marckert 05)
- higher rank parameters can be treated
- correspond to k-th area moments of Brownian motion, meanders, excursion, and bridges
- recursions for moments of joint distribution can be mechanically derived

higher rank parameters for models of walks

Bernoulli random walk b

- $n(b)$ number of steps
- k-th moment of absolute height

$$
n_{k}(b)=\sum_{s \in b}|h(s)|^{k}
$$

$h(s)$ height of walk at s, with $s=0,1, \ldots, n(b)$

- weight $w_{b}(\mathbf{u})$ of b

$$
w_{b}(\mathbf{u})=u_{0}^{n(b)} \cdot u_{1}^{n_{1}(b)} \cdot \ldots \cdot u_{M}^{n_{M}(b)}
$$

- generating function $G^{(r)}(\mathbf{u})=\sum_{b} w_{b}(\mathbf{u})$

higher rank parameters for models of walks

Theorem (Nguyễn Thé 03)

Let $G^{(d)}(\mathbf{u}), G^{(b)}(\mathbf{u}), G^{(m)}(\mathbf{u})$ and $G^{(r)}(\mathbf{u})$ denote the generating functions of Dyck paths, bilateral Dyck paths, meanders, and Bernoulli random walks. Then

$$
\begin{aligned}
G^{(d)}(\mathbf{u}) & =\frac{1}{1-u_{0}^{2} u_{1} \cdot \ldots \cdot u_{M} G^{(d)}(\mathbf{v}(\mathbf{u}))} \\
G^{(b)}(\mathbf{u}) & =\frac{1}{1-2 u_{0}^{2} u_{1} \cdot \ldots \cdot u_{M} G^{(d)}(\mathbf{v}(\mathbf{u}))} \\
G^{(m)}(\mathbf{u}) & =G^{(d)}(\mathbf{u})\left(1+u_{0} \cdot \ldots \cdot u_{M} G^{(m)}(\mathbf{v}(\mathbf{u}))\right. \\
G^{(r)}(\mathbf{u}) & =G^{(b)}(\mathbf{u})\left(1+2 u_{0} \cdot \ldots \cdot u_{M} G^{(m)}(\mathbf{v}(\mathbf{u}))\right.
\end{aligned}
$$

with $v_{k}(\mathbf{u})$ given by

$$
v_{k}(\mathbf{u})=\prod_{l=k}^{M} u_{l}^{(l)} k \quad(k=0,1, \ldots, M)
$$

factorial moment generating functions

$$
g_{\mathbf{k}}\left(u_{0}\right):=\left.\frac{1}{\mathbf{k}!} \frac{\partial^{k_{1}}}{\partial u_{1}^{k_{1}}} \cdots \frac{\partial^{k_{M}}}{\partial u_{M}^{k_{M}}} G(\mathbf{u})\right|_{\mathbf{u}=\mathbf{u}_{0}}
$$

$\square \mathbf{k}=\left(k_{1}, \ldots, k_{M}\right) \in \mathbb{N}_{0}^{M}, \mathbf{u}_{0}=\left(u_{0}, 1, \ldots, 1\right)$
■ multi-index notation: $\mathbf{k}!=k_{1}!\cdot \ldots \cdot k_{M}!,|\mathbf{k}|=k_{1}+\ldots+k_{M}$
$\square \mathbf{k} \leq \mathbf{I}$ if $k_{i} \leq I_{i}$ for $i=1, \ldots, M$.

- unit vectors \mathbf{e}_{k}, where $\left(\mathbf{e}_{k}\right)_{i}=\delta_{i, k}$ for $i=1, \ldots, M$

Theorem (R 05)

All generating functions $g_{k}^{(\cdot)}\left(u_{0}\right)$ are algebraic, where $(\cdot) \in\{(d),(b),(m),(r)\}$. They are analytic for $\left|u_{0}\right| \leq u_{c}=1 / 2$, except at $u_{0}= \pm u_{c}$, with Puiseux expansions about $u_{0}=u_{c}$ of the form

$$
g_{\mathbf{k}}^{(\cdot)}\left(u_{0}\right)=\sum_{l=0}^{\infty} f_{\mathbf{k}, l}^{(\cdot)}\left(u_{c}-u_{0}\right)^{l / 2-\gamma_{\mathbf{k}}^{(\cdot)}}
$$

-examples (dominant balance)

Theorem (R 05, ctnd)

The exponents $\gamma_{\mathbf{k}}^{(\cdot)}$ are given by

$$
\gamma_{\mathbf{k}}^{(d)}=-\frac{1}{2}+\sum_{i=1}^{M}\left(1+\frac{i}{2}\right) k_{i}, \quad \gamma_{\mathbf{k}}^{(b)}=\gamma_{\mathbf{k}}^{(m)}=\gamma_{\mathbf{k}}^{(d)}+1, \quad \gamma_{\mathbf{k}}^{(r)}=\gamma_{\mathbf{k}}^{(d)}+\frac{3}{2}
$$

The leading coefficients $f_{\mathbf{k}, 0}^{(\cdot)}=f_{\mathbf{k}}^{(\cdot)}$ satisfy, for $\mathbf{k} \neq \mathbf{0}$, the recursions

$$
\begin{aligned}
& \gamma_{\mathbf{k}-\mathbf{e}_{1}}^{(d)} f_{\mathbf{k}-\mathbf{e}_{1}}^{(d)}+2 \sum_{i=1}^{M-1}(i+1)\left(k_{i}+1\right) f_{\mathbf{k}-\mathbf{e}_{i+1}+\mathbf{e}_{i}}^{(d)}+\sum_{0 \leq \mathbf{I} \leq \mathbf{k}} f_{\mathbf{l}}^{(d)} f_{\mathbf{k}-\mathbf{I}}^{(d)}=0, \\
& \gamma_{\mathbf{k}-\mathbf{e}_{1}}^{(b)} f_{\mathbf{k}-\mathbf{e}_{1}}^{(b)}+2 \sum_{i=1}^{M-1}(i+1)\left(k_{i}+1\right) f_{\mathbf{k}-\mathbf{e}_{i+1}+\mathbf{e}_{i}}^{(b)}-8 \sum_{0 \leq \mathbf{I} \leq \mathbf{k}} f_{\mathbf{l}}^{(b)} f_{\mathbf{k}-\mathbf{l}}^{(b)}=0, \\
& \gamma_{\mathbf{k}-\mathbf{e}_{1}}^{(m)} f_{\mathbf{k}-\mathbf{e}_{1}}^{(m)}+2 \sum_{i=1}^{M-1}(i+1)\left(k_{i}+1\right) f_{\mathbf{k}-\mathbf{e}_{i+1}+\mathbf{e}_{i}}^{(m)}+\sum_{\mathbf{0} \leq \mathbf{I} \leq \mathbf{k}} f_{\mathbf{l}}^{(m)} f_{\mathbf{k}-\mathbf{l}}^{(d)}=0, \\
& f_{\mathbf{k}}^{(r)}=\sum_{\mathbf{0 \leq \mathbf { I } \leq \mathbf { k }}} f_{\mathbf{l}}^{(b)} f_{\mathbf{k}-\mathbf{l}}^{(m)},
\end{aligned}
$$

with boundary conditions $f_{0}^{(d)}=-4, f_{0}^{(b)}=1 / 2, f_{0}^{(m)}=1, f_{0}^{(r)}=1 / 2$, and $f_{k}^{(\cdot)}=0$ if $k_{j}<0$ for some $1 \leq j \leq M$. The coefficients $f_{\mathbf{k}}^{(\cdot)}$ are strictly positive for $\mathbf{k} \neq \mathbf{0}$.

area of discrete meanders with bounded step set

discrete meanders

- step set $\mathcal{S} \subseteq\{-c,-c+1, \ldots, d-1, d\} \subset \mathbb{Z}$
- c, d positive, $-c, d \in \mathcal{S}$
generating functions
- step polynomial $S(u)=\sum_{s_{i} \in \mathcal{S}} s_{i} u^{i}$ with weights $s_{i}>0$
- aperiodic: $u^{c} S(u)=H\left(u^{p}\right)$ for polynomial H only for $p=1$
- $F(z, q, u)$ perimeter, area, and final height gf
q-shift of length and final height functional equation

$$
\begin{array}{r}
F(z, q, u)=1+z S(u q) F(z, q, u q)-z \sum_{i=0}^{c-1} r_{i}(u q) G_{i}(z, q) \\
r_{i}(u)=u^{i}\left(s_{-c} u^{-c}+\ldots+s_{-(i+1)} u^{-(i+1)}\right), G_{i}(z, q)=\left[u^{i}\right] F(z, q, u)
\end{array}
$$

asymptotic analysis via moment pumping and kernel method possible!

area of discrete meanders with bounded step set

Theorem (Schwerdtfeger 14)

Fix drift $\gamma=S^{\prime}(1) / S(1)$ and consider the area random variables Z_{m} for meanders of length m. After proper rescaling:

- negative drift: convergence to Brownian excursion area
- zero drift: convergence to Brownian meander area
- positive drift: concentration
remarks
- $\gamma=0$ also via FCLT (Iglehardt 74)
- $\gamma>0$ with Gaussian CLL (Iglehardt 74)
- $\gamma<0$ for non-lattice step sets (Kao 78, Durrett 80)

Wiener index for simply generated trees (Janson 03)

simply generated trees

- realised as conditioned Galton-Watson trees of size n defined by offspring distribution X
- Wiener index

$$
W(T)=\frac{1}{2} \sum_{v, w \in T} d(v, w)
$$

- simpler quantity

$$
Q(T)=\sum_{v, w \in T} d(v \wedge w, o)=n(T) m(T)-W(T)
$$

$v \wedge w$ last common ancestor, $n(T) \#$ nodes, $m(T)$ pathlength

Theorem (Janson 03)

Assume $\mathbb{E}[X]=1$ and $0<\sigma^{2}:=\mathbb{V}[X]<\infty$. With e(u) the standard Brownian excursion, we have

$$
\left(\frac{m\left(T_{n}\right)}{n^{3 / 2} / \sigma}, \frac{Q\left(T_{n}\right)}{n^{5 / 2} / \sigma}\right) \xrightarrow{d}\left(2 \int_{0}^{1} e(t) \mathrm{d} t, 4 \iint_{0<s<t<1} \min (e(u)) \mathrm{d} s \mathrm{~d} t\right)
$$

The joint moments of the rhs (ξ, η) are given by

$$
\mathbb{E}\left[\xi^{k} \eta^{\ell}\right]=\frac{k!\ell!\sqrt{\pi}}{2^{(5 k+7 \ell-4) / 2} \Gamma((3 k+5 \ell-1) / 2)} a_{k \ell},
$$

where the numbers $a_{k \ell}$ with $a_{10}=a_{01}=1$ satisfy

$$
\begin{gathered}
a_{k, \ell}=2(3 k+5 \ell-4) a_{k-1, \ell}+2(3 k+5 \ell-6)(3 k+5 \ell-4) a_{k, \ell-1} \\
+\frac{1}{2} \sum \sum_{0<i+j<k+\ell} a_{i, j} a_{k-i, \ell-j},
\end{gathered}
$$

with $a_{k \ell}=0$ if $k<0$ or $\ell<0$.

singularities of q-functional equations

- q-functional equation for polynomial F

$$
F(x, q, P(x, q), P(q x, q))=0
$$

- typical case: algebraic equation for $P(x, 1)$

$$
F(x, 1, P(x, 1), P(x, 1))=0
$$

- degenerate case: algebraic differential equation for $P(x, 1)$

$$
G\left(x, P(x, 1), P^{\prime}(x, 1)\right)=0
$$

(note $\left.(f(q x)-f(x)) /(q-1) \rightarrow f^{\prime}(x)\right)$

- singularities of D-finite functions (linear DE with polynomial coefficients) have been classified
- prudent polygons satisfy q-functional equation and have non- D-finite perimeter generating function

singularities of prudent polygons

three-sided prudent polygons (Schwerdtfeger 10)

- $P_{3}(x)$ radius of convergence $\sigma=\tau^{2}$ with square root singularity $1 / 2$

$$
\sigma=0.24412 \ldots, \text { where } \tau^{5}+2 \tau^{2}+3 \tau-2=0
$$

- meromorphic in slit disc $\{|x|<\rho\} \backslash[\sigma, \rho\}$

$$
\rho=0.29559 \ldots, \text { where } 1-3 \rho-\rho^{2}-\rho^{3}=0
$$

- infinitely many singularities in $[\sigma, \rho)$ accumulating in ρ
prudent polygons
- numerical analysis (Guttmann et al 11)
- 500 terms from functional equation
- radius of convergence $x_{c} \approx 0.22647 \ldots$, exponent $\approx 5 / 2$

singularities of three-choice polygons

- $P(x)$ half-perimeter generating function
- analysis of $8^{\text {th }}$ order ODE (Guttmann, Jensen 05)
- dominant singularity $x_{c}=1 / 4$ with
$P(x) \sim A(1-4 x)^{-1 / 2}+B(1-4 x)^{-1 / 2} \log (1-4 x) \quad\left(x \rightarrow 1 / 4^{-}\right)$

phase diagrams

behaviour of SAP area for weights $p_{m, n} q^{n}$, fixed large perimeter m ?

- radius of convergence $x_{c}(q)$ of $x \mapsto P(x, q)$
- type of singularity does not change on critical line $q<1$ resp. $q=1$
- $q<1$ deflated phase (branched polymers)
- $q>1$ inflated phase (ball-shaped ring polymers)
- extended phase $q=1$ (collapse phase transition)
- concentration for $q \neq 1$

phase diagrams

polygon models

- proved/provable for solvable models (q-functional equation)
- partly proved for SAPs
similarly for
- solvable models of walks and trees
- behaviour of perimeter for weights $p_{m, n} x^{m}$, fixed large area n

singular behaviour of staircase polygons (Prellberg 95)

singular behaviour of $P(x, q)$ in domain \mathcal{D} about $(x, q)=\left(x_{c}, 1\right)$

$$
P(x, q)-\frac{1}{4} \sim(1-q)^{1 / 3} F\left(\frac{1-\frac{x}{x_{c}}}{(1-q)^{2 / 3}}\right) \quad(x, q) \rightarrow\left(x_{c}, 1\right)
$$

- $F:\left(4^{-1 / 3} a_{0}, \infty\right) \rightarrow \mathbb{R}$ scaling function $F(s)=\frac{1}{4} \frac{\mathrm{~d}}{\mathrm{~d} s} \log \mathrm{Ai}\left(4^{1 / 3} s\right)$
- $a_{0}=-2.338 \ldots$ location of Airy function zero of smallest modulus
- proof with explicit expression for $P(x, q)$ by delicate saddle point analysis

scaling function for staircase polygons

$$
P(x, q)-\frac{1}{4} \sim(1-q)^{1 / 3} F\left(\frac{1-\frac{x}{x_{c}}}{(1-q)^{2 / 3}}\right) \quad(x, q) \rightarrow\left(x_{c}, 1\right) \text { in } \mathcal{D}!!
$$

- scaling function at 0 determines agf at criticality

$$
P^{(\text {sing })}\left(x_{c}, q\right) \sim(1-q)^{\frac{1}{3}} F(0) \quad(q \rightarrow 1)
$$

- scaling function at ∞ determines pgf at criticality

$$
\begin{aligned}
P^{(\text {sing })}(x, 1) & \sim(1-q)^{\frac{1}{3}} F\left(\frac{1-\frac{x}{x_{c}}}{(1-q)^{2 / 3}}\right) \quad(x, q) \rightarrow\left(x_{c}, 1\right) \\
& \sim(1-q)^{\frac{1}{3}} f_{0}\left(\frac{1-\frac{x}{x_{c}}}{(1-q)^{2 / 3}}\right)^{1 / 2} \quad(x, q) \rightarrow\left(x_{c}, 1\right) \\
& \sim f_{0}\left(1-\frac{x}{x_{c}}\right)^{1 / 2} \quad\left(x \rightarrow x_{c}\right)
\end{aligned}
$$

scaling function for staircase polygons

scaling relation for $P(x, q)$ remains valid under arbitrary differentiation!

- area limit law from asymptotic expansion about $s=\infty$

$$
F(s) \sim \sum_{k \geq 0}(-1)^{k} \frac{\phi_{k}}{2^{2 k+1}} s^{-\gamma_{k}} \quad(s \rightarrow \infty)
$$

- critical perimeter limit law from Taylor expansion about $s=0$

$$
F(s)=\sum_{k \geq 0} \frac{b_{k}}{4^{k / 3+1}} s^{k}
$$

- scaling function describes "crossover from extended to deflated phase"

self-avoiding polygons: area limit law

Conjecture (cf R Guttmann Jensen 01)

X_{m} area $R V$ for SAPs in uniform fixed perimeter ensemble

$$
\mathbb{P}\left(X_{m}=n\right)=\frac{p_{m, n}}{\sum_{n} p_{m, n}}
$$

$p_{m, n} \#$ square lattice SAPs of half-perimeter m, area n

$$
\frac{X_{m}}{\mathbb{E}\left[X_{m}\right]} \xrightarrow{d} \frac{X}{\sqrt{\pi}},
$$

where X is Airy distributed.

self-avoiding polygons: critical perimeter limit law

Conjecture (cf R Guttmann Jensen 04)

Y_{n} perimeter $R V$ for SAPs in non-uniform fixed area ensemble

$$
\mathbb{P}\left[Y_{n}=m\right]=\frac{p_{m, n} x_{c}^{m}}{\sum_{m} p_{m, n} x_{c}^{m}}
$$

Then $Y_{n} / n^{2 / 3} \xrightarrow{d} Y$, where for some constant $C>0$

$$
\frac{\mathbb{E}\left[Y^{k}\right]}{k!}=\frac{\Gamma\left(\beta_{0}\right)}{\Gamma\left(\beta_{k}\right)} \frac{b_{k}}{b_{0}} C^{k}, \quad \beta_{k}=(2 k-1) / 3
$$

The numbers b_{k} are given by $F(s)=-\frac{d}{d s} \log A i(s)=\sum_{k \geq 0} b_{k} s^{k}$.

self-avoiding polygons: perimeter limit laws

Conjecture

Y_{n} perimeter $R V$ for SAPs in uniform fixed area ensemble

$$
\mathbb{P}\left(Y_{n}=m\right)=\frac{p_{m, n}}{\sum_{m} p_{m, n}}
$$

$p_{m, n} \#$ square lattice SAPs of half-perimeter m, area n
The standardised perimeter RV is asymptotically normal,

$$
\frac{Y_{n}-\mathbb{E}\left[Y_{n}\right]}{\sqrt{\mathbb{V}\left[Y_{n}\right]}} \xrightarrow{d} \mathcal{N}(0,1)
$$

scaling function: definition

- assumptions on coefficients $p_{m, n}$
- $p_{m, n}$ non-negative, positive only if $A m \leq n \leq B m^{2}$
- radius of convergence x_{c} of $P(x, 1)$ satisfies $0<x_{c} \leq 1$
- domain of scaling function approximation $\left(s_{0}<0, \varphi>0\right)$

$$
\mathcal{D}\left(s_{0}\right)=\left\{(x, q) \in(0, \infty) \times(0,1): s_{0}<\frac{1-x / x_{c}}{(1-q)^{\varphi}}\right\}
$$

$\square:\left(s_{0}, \infty\right) \rightarrow \mathbb{R}$ and $c>0, \theta>0$ s.t. for $P^{(s g)}(x, q)=P(x, q)-c$

$$
P^{(s g)}(x, q) \sim(1-q)^{\theta} F\left(\frac{1-x / x_{c}}{(1-q)^{\varphi}}\right) \quad(x, q) \rightarrow\left(x_{c}^{-}, 1^{-}\right) \text {in } \mathcal{D}\left(s_{0}\right)
$$

- then F is called scaling function, φ, θ critical exponents

scaling function and one-variable generating functions

The scaling function determines the leading singular behaviour of the perimeter generating function and of the critical area generating function.

Proposition (Eisner 10)

- Assume $F(s) \sim f_{0} s^{-\gamma_{0}}$ as $s \rightarrow \infty$ and $\frac{\partial^{r}}{\partial x^{r}} P(x, 1) \rightarrow \infty$ as $x \rightarrow x_{c}^{-}$ for some $r \in \mathbb{N}_{0}$. Then $\gamma_{0}=-\theta / \varphi$ and

$$
P^{(s g)}(x, 1) \sim f_{0}\left(1-x / x_{c}\right)^{-\gamma_{0}} \quad\left(x \rightarrow x_{c}^{-}\right)
$$

- Assume $F(s) \sim h_{0} s^{\alpha_{0}}$ as $s \rightarrow 0$ and $\frac{\partial^{r}}{\partial q^{r}} P\left(x_{c}, q\right) \rightarrow \infty$ as $q \rightarrow 1^{-}$ for some $r \in \mathbb{N}_{0}$. Then $\alpha_{0}=0$ and

$$
P^{(s g)}\left(x_{c}, q\right) \sim h_{0}(1-q)^{\theta} \quad\left(q \rightarrow 1^{-}\right)
$$

scaling functions: differentiability

asymptotic expansions integrable, but generally not differentiable:

- $f(x)=x+\sin (x), f^{\prime}(x)=1+\cos (x)$
- $f(x) \sim x$ as $x \rightarrow \infty$ and $f^{\prime}(x)=1+O(1)$, but $f^{\prime}(x) \nsim 1$
monotonicity assumptions:

Theorem (Olver 74)

Let $f: \mathbb{R} \rightarrow \mathbb{R}$ be continously differentiable with $f^{\prime}(x)$ eventually monotonically increasing. Assume that there is $p \geq 1$ such that

$$
f(x) \sim x^{p} \quad(x \rightarrow \infty)
$$

Then we have

$$
f^{\prime}(x) \sim p x^{p-1} \quad(x \rightarrow \infty)
$$

combinatorial generating functions are monotonic!

scaling functions: differentiability

Theorem (Eisner 10)

Let $F(s)$ be analytic in some domain containing $\left(s_{0}, \infty\right)$ with

$$
F(s) \sim \sum_{k \geq 0}(-1)^{k} f_{k} s^{-\gamma_{k}} \quad(s \rightarrow \infty)
$$

Fix $k \in \mathbb{N}_{0}$ and assume $F^{(k+1)}$ decreasing for even $k+1$, resp. increasing for odd $k+1$. Assume that for some $r \in \mathbb{N}_{0}$

$$
\frac{\partial^{r}}{\partial x^{r}} P(x, 1) \rightarrow \infty \quad\left(x \rightarrow x_{c}^{-}\right), \quad \frac{\partial}{\partial q} P\left(x_{c}, q\right) \rightarrow \infty \quad\left(q \rightarrow 1^{-}\right)
$$

Then $\gamma_{k}=(k-\theta) / \varphi$ and

$$
\left.\frac{1}{k!} \frac{\partial^{k}}{\partial q^{k}} P^{(s g)}(x, q)\right|_{q=1} \sim \frac{f_{k}}{\left(1-\frac{x}{x_{c}}\right)^{\gamma_{k}}} \quad\left(x \rightarrow x_{c}^{-}\right)
$$

analogous result for perimeter moment series

limit distributions and scaling functions

two-parameter tree-like structures: recipe for scaling functions

- $P(x, q)$ generating function (e.g. perimeter and area)
- phase diagram has critical point $\left(x_{c}, 1\right)$
- extract critical exponents φ, θ as $x \rightarrow x_{c}^{-}$

$$
P^{(s g)}(x, 1) \sim f_{0}\left(1-\frac{x}{x_{c}}\right)^{\frac{\theta}{\varphi}},\left.\quad \frac{\partial}{\partial q} P^{(s g)}(x, q)\right|_{q=1} \sim f_{1}\left(1-\frac{x}{x_{c}}\right)^{\frac{\theta-1}{\varphi}}
$$

- extract limit distribution X of area
- candidate for scaling function: double Laplace trafo of X

$$
F(s)=\int_{0}^{\infty} e^{-s t} \mathbb{E}\left[e^{-t^{\frac{1}{\varphi}}} x\right] \frac{1}{t^{1+\frac{\theta}{\varphi}}} \mathrm{d} t
$$

(here $\theta<0$, similarly for $\theta>0$)

- check continuity assumptions (!)

