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Tree-like structures II

plan:

singularity analysis of q-functional equations

universal asymptotic behaviour

corrections to asymptotic behaviour

DE for Laplace transform of area limit law generating function

combinatorical framework analogues of

CLTs

Edgeworth expansions

Feynman-Kac formulae

relation to scaling functions from statistical physics

first a trivial but instructive example...
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Tree-like structures II

rectangles

area limit law of rectangles: direct approach

setup and notation

pm,n number of rectangles of half-perimeter m, area n
uniform fixed perimeter ensemble
X̃m random variable of area

P(X̃m = n) =
pm,n∑
n pm,n

moment method

E[X̃ k
m] =

1

m − 1

m−1∑
l=1

(l(m− l))k ∼ m2k

∫ 1

0

(x(1− x))kdx =
(k!)2

(2k + 1)!
m2k

µm = E[X̃m] ∼ m2/6
σ2

m = V[X̃m] ∼ m4/180
no concentration, i.e. limm→∞ σm/µm 6= 0
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Tree-like structures II

rectangles

area limit law of rectangles: direct approach

normalised area variable

Xm =
2

3

X̃m

µm
= 4

X̃m

m2

Mk := limm→∞ E[X k
m] obey Carleman condition

∑
k M
− 1

2k

2k =∞
uniquely define law with moments Mk for random variable X
moment generating function

M(t) = E[e−tX ] =
∞∑

k=0

E[X k ]

k!
(−t)k =

1

2

√
π

t
eterf

(√
t
)

density by inverse Laplace transform

p(x) =
1

2
√

1− x
· 1(0,1)(x)

β1,1/2 distribution
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Tree-like structures II

rectangles

limit law via generating functions

half-perimeter and area generating function

P(x , q) =
∑
m,n

pm,nxmqn

factorial area moments

E[(X̃m)k ] =

∑
n(n)k pm,n∑

n pm,n
=

[xm] ∂k

∂qk P(x , q)
∣∣∣
q=1

[xm]P(x , 1)

lower factorial (a)k = a · (a− 1) · . . . · (a− k + 1)
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rectangles

limit law via generating functions

��
��
��
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��
����
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��
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��
��

��
��
��

++

decomposition induces linear q-difference equation

P(x , q) =
x2q

1− qx
+

x3q2

1− qx
+ x2qP(qx , q)

extract area moment generating functions

gk (x) =
1

k!

∂k

∂qk
P(x , q)

∣∣∣∣
q=1

“moment pumping” (Flajolet 97)
compute gk (x) recursively from functional equation, by
repeated differentiation w.r.t. q and then setting q=1
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Tree-like structures II

rectangles

limit law via generating functions

the first few area moment gf’s

g0(x) =
x2

(1− x)2
, g1(x) =

x2

(1− x)4
,

g2(x) =
2x3

(1− x)6
, g3(x) =

6x4

(1− x)8
,

g4(x) =
x4(1 + 22x + x2)

(1− x)10
, g5(x) =

12x5(1 + 8x + x2)

(1− x)12

asymptotic behaviour

gk (x) ∼ k!

(1− x)2k+2
(x → 1)

asymptotic behaviour of area moments

E[(Xm)k ]

k!
∼ [xm]

k!

(1− x)2k+2
=

k!

(2k + 1)!
∼ E[(Xm)k ]

k!
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Tree-like structures II

rectangles

an observation

For X with law β1,1/2 consider the double Laplace transform

F (s) :=

∫ ∞
0

e−stE[e−t2X ]t dt

with Ei(z) =
∫∞

1 e−tz/t dt the exponential integral, we have

F (s) = Ei(s2)es2

asymptotic expansion

F (s) ∼
∑
k≥0

(−1)k k!s−(2k+2) (s →∞)

coefficents k! are amplitudes of gk (x) at singularity

F (s) analytic for <(s) ≥ s0 uniquely determined by its
asymptotic behaviour
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Tree-like structures II

rectangles

strategy

Feynman-Kac type approach

reconstruct limit law X from double Laplace transform F (s)

obtain F (s) from amplitudes of gk (x) at singularity

functional equation induces differential equation for F (s)

Edgeworth type expansions

subleading corrections X` via double Laplace transforms F`(s)

differential equations for F`(s)

statistical physics terminology:

F (s) scaling function, F`(s) correction-to-scaling functions

scaling ansatz (“method of dominant balance”)
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Tree-like structures II

rectangles

scaling ansatz

area moment generating functions

gk (x) =
∑
`≥0

fk,`

(1− x)2k+2−`

generating functions for amplitudes fk,`

F (s) generating function of (fk,0)k

F`(s) generating function of (fk,`)k

compute these from functional equation
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Tree-like structures II

rectangles

scaling ansatz

formal manipulation:

P(x , q) =
∑

k

(−1)k gk (x) · (1− q)k

=
∑

k

(−1)k
∑
`

fk,`

(1− x)2k+2−` · (1− q)k

=
1

1− q

∑
`

∑
k

(−1)k fk,`(
1−x√
1−q

)2k+2−`

(√
1− q

)`

=
1

1− q
F

(
1− x√
1− q

,
√

1− q

)

with F (s, ε) =
∑

` F`(s)ε` and

F`(s) =
∑

k

(−1)k fk,`

s2k+2−`
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Tree-like structures II

rectangles

scaling ansatz

introduce F (s, ε) into functional equation via

P(x , q) =
1

1− q
F

(
1− x

(1− q)1/2
, (1− q)1/2

)
introduce variables s, ε via x = 1− sε and q = 1− ε2

expand functional equation in powers of ε

order ε0 yields first order differential equation

sF ′0(s) + 2− 2s2F0(s) = 0

order ε` yields DE for F`(s)
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Tree-like structures II

rectangles

remarks

limit distributions for rectangles

rigorous method, since all gk (x) are rational

differential equations can be mechanically obtained

corrections-to-scaling to arbitrary order

method applies to more general q-functional equations:

e.g. for algebraic perimeter generating function P(x , 1) and
area moment generating functions gk (x)

Newton-Puiseaux expansion of gk (x) about dominant
singularity

limit law via asymptotic expansion of F (s), transfer theorem
and inverse Laplace trafo

alternatively via double inverse Laplace trafo
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rectangles

transfer theorem

Theorem (Flajolet–Odlyzko 90)

For α ∈ C \ {0,−1,−2, . . .} let f (z) be analytic in the open
indented disc

D(ρ, σ, φ) = {z ∈ C | |z | < σ, | arg(z − ρ)| < φ},

where 0 < ρ < σ and 0 < φ < π/2. If in the intersection of a small
neighborhood of ρ with D(ρ, σ, φ) we have

f (z) ∼ (1− z/ρ)−α (z → ρ),

then [zn]f (z) ∼ ρ−n nα−1

Γ(α) for n→∞.

similar results for logarithmic singularities (see Flajolet 09)
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Tree-like structures II

examples (dominant balance)

examples

area limit law determined by singularity of perimeter generating
function

double pole: β1,1/2

simple pole: concentrated

square root: area under Brownian excursion

inverse square root: area under Brownian meander
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Tree-like structures II

examples (dominant balance)

square-root-singularity: staircase polygons

decomposition of staircase polygons

quadratic q-difference equation

P(x , q) =
qx2

1− (2qx + P(qx , q))

area random variable in uniform fixed perimeter ensemble

µm ∼
√
π

4
m3/2 σ2

m ∼
10− 3π

48
m3
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Tree-like structures II

examples (dominant balance)

square-root singularity: staircase polygons

Theorem (cf Duchon 99, Takács 91)

The area random variables Xm of staircase polygons satisfy

Xm

µm

d−→ X√
π

(m→∞)

where X is Airy distributed, i.e.

E[X k ]

k!
=

Γ(γ0)

Γ(γk )

φk

φ0
,

where γk = (3k − 1)/2, and φk satisfies the quadratic recurrence

γk−1φk−1 +
1

2

k∑
l=0

φlφk−l = 0, φ0 = −1.

same result for path length in simply generated trees, discrete Bernoulli

excursion area, construction cost for hash table, . . .
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Tree-like structures II

examples (dominant balance)

q-difference equations and universality

Theorem (Takács 91, Duchon 99, R 05)

Airy limit law appears for solutions of

P(x , q) = xF (x , q,P(qx , q))

under sufficient assumptions on F (x , q, y), e.g.

F polynomial, at least quadratic in y

F has no negative coefficients

interpretation

thus square-root singularity generic

similar statements for other types of singularity

18 / 44



Tree-like structures II

examples (dominant balance)

inverse square-root singularity

Theorem (R 07, cf Takács 95)

The area random variables Xm of directed convex polygons satisfy

Xm

µm

d−→ Z

E[Z ]
(m→∞),

with Z the area random variable of the Brownian meander, i.e.,

E[Z k ]

k!
=

Γ(α0)

Γ(αk )

ωk

ω0

1

2k/2
,

where αk = (3k + 1)/2, and ωk satisfies the linear recurrence

αk−1ωk−1 +
k∑

l=0

φl 2
−lωk−l = 0, ω0 = 1.
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examples (dominant balance)

higher rank parameters for models of Bernoulli walks

Bernoulli random walks, meanders, bilateral Dyck paths, Dyck paths

discrete counterparts of Brownian motion, meanders, excursions and
bridges (Kaigh 76, Aldous 92, Drmota–Marckert 05)

higher rank parameters can be treated

correspond to k-th area moments of Brownian motion, meanders,
excursion, and bridges

recursions for moments of joint distribution can be mechanically
derived
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examples (dominant balance)

higher rank parameters for models of walks

Bernoulli random walk b

n(b) number of steps

k-th moment of absolute height

nk (b) =
∑
s∈b

|h(s)|k

h(s) height of walk at s, with s = 0, 1, . . . , n(b)

weight wb(u) of b

wb(u) = u
n(b)
0 · un1(b)

1 · . . . · unM (b)
M

generating function G (r)(u) =
∑

b wb(u)
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Tree-like structures II

examples (dominant balance)

higher rank parameters for models of walks

Theorem (Nguy˜̂en Th´̂e 03)

Let G (d)(u), G (b)(u), G (m)(u) and G (r)(u) denote the generating
functions of Dyck paths, bilateral Dyck paths, meanders, and Bernoulli
random walks. Then

G (d)(u) =
1

1− u2
0u1 · . . . · uM G (d)(v(u))

G (b)(u) =
1

1− 2u2
0u1 · . . . · uM G (d)(v(u))

G (m)(u) = G (d)(u)(1 + u0 · . . . · uM G (m)(v(u))

G (r)(u) = G (b)(u)(1 + 2u0 · . . . · uM G (m)(v(u))

with vk (u) given by

vk (u) =
M∏

l=k

u
( l

k)
l (k = 0, 1, . . . ,M)
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Tree-like structures II

examples (dominant balance)

factorial moment generating functions

gk(u0) :=
1

k!

∂k1

∂uk1
1

· · · ∂
kM

∂ukM

M

G (u)

∣∣∣∣∣
u=u0

k = (k1, . . . , kM ) ∈ NM
0 , u0 = (u0, 1, . . . , 1)

multi-index notation: k! = k1! · . . . · kM !, |k| = k1 + . . .+ kM

k ≤ l if ki ≤ li for i = 1, . . . ,M.

unit vectors ek , where (ek )i = δi,k for i = 1, . . . ,M

Theorem (R 05)

All generating functions g
(·)
k (u0) are algebraic, where

(·) ∈ {(d), (b), (m), (r)}. They are analytic for |u0| ≤ uc = 1/2, except
at u0 = ±uc , with Puiseux expansions about u0 = uc of the form

g
(·)
k (u0) =

∞∑
l=0

f
(·)
k,l (uc − u0)l/2−γ(·)

k

23 / 44



Tree-like structures II

examples (dominant balance)

Theorem (R 05, ctnd)

The exponents γ
(·)
k are given by

γ
(d)
k = −

1

2
+

M∑
i=1

(
1 +

i

2

)
ki , γ

(b)
k = γ

(m)
k = γ

(d)
k + 1, γ

(r)
k = γ

(d)
k +

3

2
.

The leading coefficients f
(·)
k,0 = f

(·)
k satisfy, for k 6= 0, the recursions

γ
(d)
k−e1

f
(d)
k−e1

+ 2

M−1∑
i=1

(i + 1)(ki + 1)f
(d)
k−ei+1+ei

+
∑

0≤l≤k

f
(d)
l f

(d)
k−l = 0,

γ
(b)
k−e1

f
(b)
k−e1

+ 2

M−1∑
i=1

(i + 1)(ki + 1)f
(b)
k−ei+1+ei

− 8
∑

0≤l≤k

f
(b)
l f

(b)
k−l = 0,

γ
(m)
k−e1

f
(m)
k−e1

+ 2

M−1∑
i=1

(i + 1)(ki + 1)f
(m)
k−ei+1+ei

+
∑

0≤l≤k

f
(m)
l f

(d)
k−l = 0,

f
(r)
k =

∑
0≤l≤k

f
(b)
l f

(m)
k−l ,

with boundary conditions f
(d)
0 = −4, f

(b)
0 = 1/2, f

(m)
0 = 1, f

(r)
0 = 1/2, and f

(·)
k = 0 if kj < 0 for some

1 ≤ j ≤ M. The coefficients f
(·)
k are strictly positive for k 6= 0.
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Tree-like structures II

examples (moment pumping)

area of discrete meanders with bounded step set

discrete meanders

step set S ⊆ {−c ,−c + 1, . . . , d − 1, d} ⊂ Z
c , d positive, −c, d ∈ S

generating functions

step polynomial S(u) =
∑

si∈S si u
i with weights si > 0

aperiodic: uc S(u) = H(up) for polynomial H only for p = 1

F (z , q, u) perimeter, area, and final height gf

q-shift of length and final height functional equation

F (z , q, u) = 1 + zS(uq)F (z , q, uq)− z
c−1∑
i=0

ri (uq)Gi (z , q)

ri (u) = ui
(
s−c u−c + . . .+ s−(i+1)u−(i+1)

)
, Gi (z, q) = [ui ]F (z, q, u)

asymptotic analysis via moment pumping and kernel method possible! 25 / 44



Tree-like structures II

examples (moment pumping)

area of discrete meanders with bounded step set

Theorem (Schwerdtfeger 14)

Fix drift γ = S ′(1)/S(1) and consider the area random variables Zm for
meanders of length m. After proper rescaling:

negative drift: convergence to Brownian excursion area

zero drift: convergence to Brownian meander area

positive drift: concentration

remarks

γ = 0 also via FCLT (Iglehardt 74)

γ > 0 with Gaussian CLL (Iglehardt 74)

γ < 0 for non-lattice step sets (Kao 78, Durrett 80)

26 / 44



Tree-like structures II

examples (moment pumping)

Wiener index for simply generated trees (Janson 03)

simply generated trees

realised as conditioned Galton-Watson trees of size n defined
by offspring distribution X

Wiener index

W (T ) =
1

2

∑
v ,w∈T

d(v ,w)

simpler quantity

Q(T ) =
∑

v ,w∈T

d(v ∧ w , o) = n(T )m(T )−W (T )

v ∧w last common ancestor, n(T ) # nodes, m(T ) pathlength
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examples (moment pumping)

Theorem (Janson 03)

Assume E[X ] = 1 and 0 < σ2 := V[X ] <∞. With e(u) the standard
Brownian excursion, we have(

m(Tn)

n3/2/σ
,

Q(Tn)

n5/2/σ

)
d→
(

2

∫ 1

0

e(t)dt, 4

∫ ∫
0<s<t<1

min(e(u)) dsdt

)
The joint moments of the rhs (ξ, η) are given by

E[ξkη`] =
k!`!
√
π

2(5k+7`−4)/2Γ((3k + 5`− 1)/2)
ak`,

where the numbers ak` with a10 = a01 = 1 satisfy

ak,` = 2(3k + 5`− 4)ak−1,` + 2(3k + 5`− 6)(3k + 5`− 4)ak,`−1

+
1

2

∑∑
0<i+j<k+`

ai,j ak−i,`−j ,

with ak` = 0 if k < 0 or ` < 0.
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beyong algebraic singularities

singularities of q-functional equations

q-functional equation for polynomial F

F (x , q,P(x , q),P(qx , q)) = 0

typical case: algebraic equation for P(x , 1)

F (x , 1,P(x , 1),P(x , 1)) = 0

degenerate case: algebraic differential equation for P(x , 1)

G (x ,P(x , 1),P ′(x , 1)) = 0

(note (f (qx)− f (x))/(q − 1)→ f ′(x))

singularities of D-finite functions (linear DE with polynomial
coefficients) have been classified

prudent polygons satisfy q-functional equation and have
non-D-finite perimeter generating function
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beyong algebraic singularities

singularities of prudent polygons

three-sided prudent polygons (Schwerdtfeger 10)

P3(x) radius of convergence σ = τ2 with square root
singularity 1/2

σ = 0.24412 . . . , where τ5 + 2τ2 + 3τ − 2 = 0

meromorphic in slit disc {|x | < ρ} \ [σ, ρ}

ρ = 0.29559 . . . , where 1− 3ρ− ρ2 − ρ3 = 0

infinitely many singularities in [σ, ρ) accumulating in ρ

prudent polygons

numerical analysis (Guttmann et al 11)

500 terms from functional equation

radius of convergence xc ≈ 0.22647 . . ., exponent ≈ 5/2
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beyong algebraic singularities

singularities of three-choice polygons

P(x) half-perimeter generating function

analysis of 8th order ODE (Guttmann, Jensen 05)

dominant singularity xc = 1/4 with

P(x) ∼ A(1−4x)−1/2+B(1−4x)−1/2 log(1−4x) (x → 1/4−)
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phase diagrams and phase transitions

phase diagrams

behaviour of SAP area for weights pm,nqn, fixed large perimeter m?

x

10

0

x

q

c

radius of convergence xc (q) of x 7→ P(x , q)

type of singularity does not change on critical line q < 1 resp. q = 1

q < 1 deflated phase (branched polymers)

q > 1 inflated phase (ball-shaped ring polymers)

extended phase q = 1 (collapse phase transition)

concentration for q 6= 1
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phase diagrams and phase transitions

phase diagrams

polygon models

proved/provable for solvable models (q-functional equation)

partly proved for SAPs

similarly for

solvable models of walks and trees

behaviour of perimeter for weights pm,nxm, fixed large area n
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phase diagrams and phase transitions

singular behaviour of staircase polygons (Prellberg 95)

singular behaviour of P(x , q) in domain D about (x , q) = (xc , 1)

x

10

0

x

q

c

P(x , q)− 1
4 ∼ (1− q)1/3F

(
1− x

xc

(1−q)2/3

)
(x , q)→ (xc , 1)

F : (4−1/3a0,∞)→ R scaling function F (s) = 1
4

d
ds log Ai(41/3s)

a0 = −2.338 . . . location of Airy function zero of smallest modulus

proof with explicit expression for P(x , q) by delicate saddle point
analysis
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phase diagrams and phase transitions

scaling function for staircase polygons

P(x , q)− 1

4
∼ (1− q)1/3F

(
1− x

xc

(1− q)2/3

)
(x , q)→ (xc , 1) in D!!

scaling function at 0 determines agf at criticality

P(sing)(xc , q) ∼ (1− q)
1
3 F (0) (q → 1)

scaling function at ∞ determines pgf at criticality

P(sing)(x , 1) ∼ (1− q)
1
3 F

(
1− x

xc

(1− q)2/3

)
(x , q)→ (xc , 1)

∼ (1− q)
1
3 f0

(
1− x

xc

(1− q)2/3

)1/2

(x , q)→ (xc , 1)

∼ f0

(
1− x

xc

)1/2

(x → xc )
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Tree-like structures II

phase diagrams and phase transitions

scaling function for staircase polygons

scaling relation for P(x , q) remains valid under arbitrary differentiation!

area limit law from asymptotic expansion about s =∞

F (s) ∼
∑
k≥0

(−1)k φk

22k+1
s−γk (s →∞)

critical perimeter limit law from Taylor expansion about s = 0

F (s) =
∑
k≥0

bk

4k/3+1
sk

scaling function describes “crossover from extended to deflated
phase”
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phase diagrams and phase transitions

self-avoiding polygons: area limit law

Conjecture (cf R Guttmann Jensen 01)

Xm area RV for SAPs in uniform fixed perimeter ensemble

P(Xm = n) =
pm,n∑
n pm,n

pm,n # square lattice SAPs of half-perimeter m, area n

Xm

E[Xm]
d−→ X√

π
,

where X is Airy distributed.
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phase diagrams and phase transitions

self-avoiding polygons: critical perimeter limit law

Conjecture (cf R Guttmann Jensen 04)

Yn perimeter RV for SAPs in non-uniform fixed area ensemble

P[Yn = m] =
pm,nxm

c∑
m pm,nxm

c

Then Yn/n2/3 d−→ Y , where for some constant C > 0

E[Y k ]

k!
=

Γ(β0)

Γ(βk )

bk

b0
C k , βk = (2k − 1)/3

The numbers bk are given by F (s) = − d
ds log Ai(s) =

∑
k≥0 bk sk .
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phase diagrams and phase transitions

self-avoiding polygons: perimeter limit laws

Conjecture

Yn perimeter RV for SAPs in uniform fixed area ensemble

P(Yn = m) =
pm,n∑
m pm,n

pm,n # square lattice SAPs of half-perimeter m, area n

The standardised perimeter RV is asymptotically normal,

Yn − E[Yn]√
V[Yn]

d−→ N (0, 1)
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scaling functions

scaling function: definition

assumptions on coefficients pm,n

pm,n non-negative, positive only if Am ≤ n ≤ Bm2

radius of convergence xc of P(x , 1) satisfies 0 < xc ≤ 1

domain of scaling function approximation (s0 < 0, ϕ > 0)

D(s0) =

{
(x , q) ∈ (0,∞)× (0, 1) : s0 <

1− x/xc

(1− q)ϕ

}
F : (s0,∞)→ R and c > 0, θ > 0 s.t. for P(sg)(x , q) = P(x , q)− c

P(sg)(x , q) ∼ (1−q)θF

(
1− x/xc

(1− q)ϕ

)
(x , q)→ (x−c , 1

−) in D(s0)

then F is called scaling function, ϕ, θ critical exponents
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scaling functions

scaling function and one-variable generating functions

The scaling function determines the leading singular behaviour of the
perimeter generating function and of the critical area generating function.

Proposition (Eisner 10)

Assume F (s) ∼ f0s−γ0 as s →∞ and ∂r

∂x r P(x , 1)→∞ as x → x−c
for some r ∈ N0. Then γ0 = −θ/ϕ and

P(sg)(x , 1) ∼ f0(1− x/xc )−γ0 (x → x−c )

Assume F (s) ∼ h0sα0 as s → 0 and ∂r

∂qr P(xc , q)→∞ as q → 1−

for some r ∈ N0. Then α0 = 0 and

P(sg)(xc , q) ∼ h0(1− q)θ (q → 1−)
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Tree-like structures II

scaling functions

scaling functions: differentiability

asymptotic expansions integrable, but generally not differentiable:

f (x) = x + sin(x), f ′(x) = 1 + cos(x)

f (x) ∼ x as x →∞ and f ′(x) = 1 + O(1), but f ′(x) 6∼ 1

monotonicity assumptions:

Theorem (Olver 74)

Let f : R→ R be continously differentiable with f ′(x) eventually
monotonically increasing. Assume that there is p ≥ 1 such that

f (x) ∼ xp (x →∞)

Then we have
f ′(x) ∼ pxp−1 (x →∞)

combinatorial generating functions are monotonic!
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Tree-like structures II

scaling functions

scaling functions: differentiability

Theorem (Eisner 10)

Let F (s) be analytic in some domain containing (s0,∞) with

F (s) ∼
∑
k≥0

(−1)k fk s−γk (s →∞)

Fix k ∈ N0 and assume F (k+1) decreasing for even k + 1, resp. increasing for
odd k + 1. Assume that for some r ∈ N0

∂r

∂x r
P(x , 1)→∞ (x → x−c ),

∂

∂q
P(xc , q)→∞ (q → 1−)

Then γk = (k − θ)/ϕ and

1

k!

∂k

∂qk
P(sg)(x , q)

∣∣∣∣
q=1

∼ fk(
1− x

xc

)γk
(x → x−c )

analogous result for perimeter moment series
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Tree-like structures II

scaling functions

limit distributions and scaling functions

two-parameter tree-like structures: recipe for scaling functions

P(x , q) generating function (e.g. perimeter and area)

phase diagram has critical point (xc , 1)

extract critical exponents ϕ, θ as x → x−c

P(sg)(x , 1) ∼ f0

(
1− x

xc

) θ
ϕ

,
∂

∂q
P(sg)(x , q)

∣∣∣∣
q=1

∼ f1

(
1− x

xc

) θ−1
ϕ

extract limit distribution X of area

candidate for scaling function: double Laplace trafo of X

F (s) =

∫ ∞
0

e−stE[e−t
1
ϕ X ]

1

t1+ θ
ϕ

dt

(here θ < 0, similarly for θ > 0)

check continuity assumptions (!)
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