Combinatorial aspects of tree-like structures II. Asymptotic analysis

Christoph Richard Universität Erlangen-Nürnberg Population Genetics and Statistical Physics in Synergy EURANDOM, 27. 08. 2014

plan:

singularity analysis of q-functional equations

- universal asymptotic behaviour
- corrections to asymptotic behaviour
- DE for Laplace transform of area limit law generating function

combinatorical framework analogues of

- CLTs
- Edgeworth expansions
- Feynman-Kac formulae

relation to scaling functions from statistical physics

first a trivial but instructive example...

Tree-like structures Ⅱ ∟_{rectangles}

area limit law of rectangles: direct approach

setup and notation

- $p_{m,n}$ number of rectangles of half-perimeter m, area n
- uniform fixed perimeter ensemble
- \overrightarrow{X}_m random variable of area

$$\mathbb{P}(\widetilde{X}_m = n) = \frac{p_{m,n}}{\sum_n p_{m,n}}$$

moment method

$$\mathbb{E}[\widetilde{X}_m^k] = \frac{1}{m-1} \sum_{l=1}^{m-1} (l(m-l))^k \sim m^{2k} \int_0^1 (x(1-x))^k \mathrm{d}x = \frac{(k!)^2}{(2k+1)!} m^{2k}$$

$$\begin{array}{l} \mu_m = \mathbb{E}[\widetilde{X}_m] \sim m^2/6 \\ \sigma_m^2 = \mathbb{V}[\widetilde{X}_m] \sim m^4/180 \\ \end{array} \\ \begin{array}{l} \text{no concentration, i.e. } \lim_{m \to \infty} \sigma_m / \mu_m \neq 0 \end{array}$$

area limit law of rectangles: direct approach

normalised area variable

$$X_m = \frac{2}{3} \frac{\widetilde{X}_m}{\mu_m} = 4 \frac{\widetilde{X}_m}{m^2}$$

M_k := lim_{*m*→∞} 𝔼[*X^k_m*] obey Carleman condition ∑_k *M*_{2k}<sup>-¹/_{2k} = ∞
 uniquely define law with moments *M_k* for random variable *X* moment generating function
</sup>

$$M(t) = \mathbb{E}[e^{-tX}] = \sum_{k=0}^{\infty} \frac{\mathbb{E}[X^k]}{k!} (-t)^k = \frac{1}{2} \sqrt{\frac{\pi}{t}} e^t \operatorname{erf}\left(\sqrt{t}\right)$$

density by inverse Laplace transform

$$p(x) = \frac{1}{2\sqrt{1-x}} \cdot 1_{(0,1)}(x)$$

 \blacksquare $\beta_{1,1/2}$ distribution

limit law via generating functions

half-perimeter and area generating function

$$P(x,q) = \sum_{m,n} p_{m,n} x^m q^n$$

factorial area moments

$$\mathbb{E}[(\widetilde{X}_m)_k] = \frac{\sum_n (n)_k p_{m,n}}{\sum_n p_{m,n}} = \frac{[x^m] \frac{\partial^k}{\partial q^k} P(x,q) \Big|_{q=1}}{[x^m] P(x,1)}$$

lower factorial $(a)_k = a \cdot (a-1) \cdot \ldots \cdot (a-k+1)$

limit law via generating functions

decomposition induces linear q-difference equation

$$P(x,q) = \frac{x^2q}{1-qx} + \frac{x^3q^2}{1-qx} + x^2qP(qx,q)$$

extract area moment generating functions

$$g_k(x) = \frac{1}{k!} \left. \frac{\partial^k}{\partial q^k} P(x,q) \right|_{q=1}$$

"moment pumping" (Flajolet 97)
 compute g_k(x) recursively from functional equation, by repeated differentiation w.r.t. q and then setting q=1

Tree-like structures II

limit law via generating functions

the first few area moment gf's

$$g_0(x) = \frac{x^2}{(1-x)^2}, \qquad g_1(x) = \frac{x^2}{(1-x)^4},$$

$$g_2(x) = \frac{2x^3}{(1-x)^6}, \qquad g_3(x) = \frac{6x^4}{(1-x)^8},$$

$$g_4(x) = \frac{x^4(1+22x+x^2)}{(1-x)^{10}}, \qquad g_5(x) = \frac{12x^5(1+8x+x^2)}{(1-x)^{12}}$$

asymptotic behaviour

$$g_k(x) \sim \frac{k!}{(1-x)^{2k+2}}$$
 (x o 1)

asymptotic behaviour of area moments

$$\frac{\mathbb{E}[(X_m)_k]}{k!} \sim [x^m] \frac{k!}{(1-x)^{2k+2}} = \frac{k!}{(2k+1)!} \sim \frac{\mathbb{E}[(X_m)^k]}{k!}$$

an observation

For X with law $\beta_{1,1/2}$ consider the double Laplace transform

$$F(s) := \int_0^\infty e^{-st} \mathbb{E}[e^{-t^2X}] t \, \mathrm{d}t$$

• with $\operatorname{Ei}(z) = \int_1^\infty e^{-tz} / t \, \mathrm{d}t$ the exponential integral, we have

$$F(s) = \mathrm{Ei}(s^2)e^{s^2}$$

asymptotic expansion

$${\sf F}(s)\sim \sum_{k\geq 0}(-1)^kk!s^{-(2k+2)}\qquad (s o\infty)$$

- coefficients k! are amplitudes of $g_k(x)$ at singularity
- F(s) analytic for $\Re(s) \ge s_0$ uniquely determined by its asymptotic behaviour

strategy

Feynman-Kac type approach

- reconstruct limit law X from double Laplace transform F(s)
- obtain F(s) from amplitudes of $g_k(x)$ at singularity
- functional equation induces differential equation for F(s)

Edgeworth type expansions

- subleading corrections X_{ℓ} via double Laplace transforms $F_{\ell}(s)$
- differential equations for $F_{\ell}(s)$

statistical physics terminology:

- F(s) scaling function, $F_{\ell}(s)$ correction-to-scaling functions
- scaling ansatz ("method of dominant balance")

scaling ansatz

area moment generating functions

$$g_k(x) = \sum_{\ell \ge 0} \frac{f_{k,\ell}}{(1-x)^{2k+2-\ell}}$$

generating functions for amplitudes $f_{k,\ell}$

- F(s) generating function of $(f_{k,0})_k$
- $F_{\ell}(s)$ generating function of $(f_{k,\ell})_k$
- compute these from functional equation

Tree-like structures II - rectangles

scaling ansatz

formal manipulation:

$$P(x,q) = \sum_{k} (-1)^{k} g_{k}(x) \cdot (1-q)^{k}$$

= $\sum_{k} (-1)^{k} \sum_{\ell} \frac{f_{k,\ell}}{(1-x)^{2k+2-\ell}} \cdot (1-q)^{k}$
= $\frac{1}{1-q} \sum_{\ell} \sum_{k} (-1)^{k} \frac{f_{k,\ell}}{\left(\frac{1-x}{\sqrt{1-q}}\right)^{2k+2-\ell}} \left(\sqrt{1-q}\right)^{\ell}$
= $\frac{1}{1-q} F\left(\frac{1-x}{\sqrt{1-q}}, \sqrt{1-q}\right)$

with $F(s,\epsilon) = \sum_{\ell} F_{\ell}(s)\epsilon^{\ell}$ and $F_{\ell}(s) = \sum_{k} (-1)^k \frac{f_{k,\ell}}{s^{2k+2-\ell}}$

scaling ansatz

introduce $F(s, \epsilon)$ into functional equation via

$$P(x,q) = rac{1}{1-q} F\left(rac{1-x}{(1-q)^{1/2}}, (1-q)^{1/2}
ight)$$

introduce variables s, ϵ via $x = 1 - s\epsilon$ and $q = 1 - \epsilon^2$

- \blacksquare expand functional equation in powers of ϵ
- order ϵ^0 yields first order differential equation

$$sF_0'(s) + 2 - 2s^2F_0(s) = 0$$

• order ϵ^{ℓ} yields DE for $F_{\ell}(s)$

remarks

limit distributions for rectangles

- rigorous method, since all $g_k(x)$ are rational
- differential equations can be mechanically obtained
- corrections-to-scaling to arbitrary order

method applies to more general q-functional equations:

- e.g. for *algebraic* perimeter generating function P(x, 1) and area moment generating functions $g_k(x)$
- Newton-Puiseaux expansion of g_k(x) about dominant singularity
- limit law via asymptotic expansion of F(s), transfer theorem and inverse Laplace trafo
- alternatively via double inverse Laplace trafo

transfer theorem

Theorem (Flajolet–Odlyzko 90)

For $\alpha \in \mathbb{C} \setminus \{0, -1, -2, \ldots\}$ let f(z) be analytic in the open indented disc

$$\mathcal{D}(
ho,\sigma,\phi)=\{z\in\mathbb{C}\,|\,|z|<\sigma,|rg(z-
ho)|<\phi\},$$

where $0 < \rho < \sigma$ and $0 < \phi < \pi/2$. If in the intersection of a small neighborhood of ρ with $D(\rho, \sigma, \phi)$ we have

$$f(z) \sim (1 - z/\rho)^{-lpha} \qquad (z o
ho),$$

then $[z^n]f(z) \sim \rho^{-n} \frac{n^{\alpha-1}}{\Gamma(\alpha)}$ for $n \to \infty$.

similar results for logarithmic singularities (see Flajolet 09)

examples

area limit law determined by singularity of perimeter generating function

- double pole: $\beta_{1,1/2}$
- simple pole: concentrated
- square root: area under Brownian excursion
- inverse square root: area under Brownian meander

square-root-singularity: staircase polygons

decomposition of staircase polygons

quadratic q-difference equation

$$P(x,q) = rac{qx^2}{1 - (2qx + P(qx,q))}$$

area random variable in uniform fixed perimeter ensemble

$$\mu_m \sim \frac{\sqrt{\pi}}{4} m^{3/2} \qquad \sigma_m^2 \sim \frac{10 - 3\pi}{48} m^3$$

square-root singularity: staircase polygons

Theorem (cf Duchon 99, Takács 91)

The area random variables X_m of staircase polygons satisfy

$$rac{X_m}{\mu_m} \stackrel{d}{\longrightarrow} rac{X}{\sqrt{\pi}} \qquad (m o \infty)$$

where X is Airy distributed, i.e.

$$\frac{\mathbb{E}[X^k]}{k!} = \frac{\Gamma(\gamma_0)}{\Gamma(\gamma_k)} \frac{\phi_k}{\phi_0},$$

where $\gamma_k = (3k - 1)/2$, and ϕ_k satisfies the quadratic recurrence

$$\gamma_{k-1}\phi_{k-1} + \frac{1}{2}\sum_{l=0}^{k}\phi_{l}\phi_{k-l} = 0, \qquad \phi_{0} = -1.$$

same result for path length in simply generated trees, discrete Bernoulli excursion area, construction cost for hash table, ...

q-difference equations and universality

Theorem (Takács 91, Duchon 99, R 05)

Airy limit law appears for solutions of

P(x,q) = xF(x,q,P(qx,q))

under sufficient assumptions on F(x, q, y), e.g.

- F polynomial, at least quadratic in y
- F has no negative coefficients

interpretation

- thus square-root singularity generic
- similar statements for other types of singularity

inverse square-root singularity

Theorem (R 07, cf Takács 95)

The area random variables X_m of directed convex polygons satisfy

$$\frac{X_m}{\mu_m} \xrightarrow{d} \frac{Z}{\mathbb{E}[Z]} \qquad (m \to \infty),$$

with Z the area random variable of the Brownian meander, i.e.,

$$\frac{\mathbb{E}[Z^k]}{k!} = \frac{\Gamma(\alpha_0)}{\Gamma(\alpha_k)} \frac{\omega_k}{\omega_0} \frac{1}{2^{k/2}},$$

where $\alpha_k = (3k + 1)/2$, and ω_k satisfies the linear recurrence

$$\alpha_{k-1}\omega_{k-1} + \sum_{l=0}^{k} \phi_l 2^{-l} \omega_{k-l} = 0, \qquad \omega_0 = 1.$$

higher rank parameters for models of Bernoulli walks

- Bernoulli random walks, meanders, bilateral Dyck paths, Dyck paths
- discrete counterparts of Brownian motion, meanders, excursions and bridges (Kaigh 76, Aldous 92, Drmota–Marckert 05)
- higher rank parameters can be treated
- correspond to k-th area moments of Brownian motion, meanders, excursion, and bridges
- recursions for moments of joint distribution can be mechanically derived

higher rank parameters for models of walks

Bernoulli random walk b

- n(b) number of steps
- k-th moment of absolute height

$$n_k(b) = \sum_{s \in b} |h(s)|^k$$

h(s) height of walk at s, with $s = 0, 1, \ldots, n(b)$

• weight $w_b(\mathbf{u})$ of b

$$w_b(\mathbf{u}) = u_0^{n(b)} \cdot u_1^{n_1(b)} \cdot \ldots \cdot u_M^{n_M(b)}$$

• generating function $G^{(r)}(\mathbf{u}) = \sum_b w_b(\mathbf{u})$

higher rank parameters for models of walks

Theorem (Nguyễn Thế 03)

Let $G^{(d)}(\mathbf{u})$, $G^{(b)}(\mathbf{u})$, $G^{(m)}(\mathbf{u})$ and $G^{(r)}(\mathbf{u})$ denote the generating functions of Dyck paths, bilateral Dyck paths, meanders, and Bernoulli random walks. Then

$$G^{(d)}(\mathbf{u}) = \frac{1}{1 - u_0^2 u_1 \cdot \ldots \cdot u_M G^{(d)}(\mathbf{v}(\mathbf{u}))}$$

$$G^{(b)}(\mathbf{u}) = \frac{1}{1 - 2u_0^2 u_1 \cdot \ldots \cdot u_M G^{(d)}(\mathbf{v}(\mathbf{u}))}$$

$$G^{(m)}(\mathbf{u}) = G^{(d)}(\mathbf{u})(1 + u_0 \cdot \ldots \cdot u_M G^{(m)}(\mathbf{v}(\mathbf{u})))$$

$$G^{(r)}(\mathbf{u}) = G^{(b)}(\mathbf{u})(1 + 2u_0 \cdot \ldots \cdot u_M G^{(m)}(\mathbf{v}(\mathbf{u})))$$

with $v_k(\mathbf{u})$ given by

$$V_{k}(\mathbf{u}) = \prod_{l=k}^{M} u_{l}^{\binom{l}{k}} \qquad (k = 0, 1, \dots, M)$$

factorial moment generating functions

$$g_{\mathbf{k}}(u_0) := \left. \frac{1}{\mathbf{k}!} \frac{\partial^{k_1}}{\partial u_1^{k_1}} \cdots \frac{\partial^{k_M}}{\partial u_M^{k_M}} G(\mathbf{u}) \right|_{\mathbf{u}=\mathbf{u}_0}$$

k =
$$(k_1, \ldots, k_M) \in \mathbb{N}_0^M$$
, **u**₀ = $(u_0, 1, \ldots, 1)$

• multi-index notation: $\mathbf{k}! = k_1! \cdots k_M!$, $|\mathbf{k}| = k_1 + \cdots + k_M$

k
$$\leq$$
 l if $k_i \leq l_i$ for $i = 1, \ldots, M$.

• unit vectors \mathbf{e}_k , where $(\mathbf{e}_k)_i = \delta_{i,k}$ for $i = 1, \dots, M$

Theorem (R 05)

All generating functions $g_{\mathbf{k}}^{(\cdot)}(u_0)$ are algebraic, where $(\cdot) \in \{(d), (b), (m), (r)\}$. They are analytic for $|u_0| \le u_c = 1/2$, except at $u_0 = \pm u_c$, with Puiseux expansions about $u_0 = u_c$ of the form

$$g_{\mathbf{k}}^{(\cdot)}(u_0) = \sum_{l=0}^{\infty} f_{\mathbf{k},l}^{(\cdot)} (u_c - u_0)^{l/2 - \gamma_{\mathbf{k}}^{(\cdot)}}$$

Theorem (R 05, ctnd)

The exponents $\gamma_{\mathbf{k}}^{(\cdot)}$ are given by

$$\gamma_{\bf k}^{(d)} = -\frac{1}{2} + \sum_{i=1}^{M} \left(1 + \frac{i}{2}\right) k_i, \qquad \gamma_{\bf k}^{(b)} = \gamma_{\bf k}^{(m)} = \gamma_{\bf k}^{(d)} + 1, \qquad \gamma_{\bf k}^{(r)} = \gamma_{\bf k}^{(d)} + \frac{3}{2}.$$

The leading coefficients $f_{k,0}^{(\cdot)}=f_k^{(\cdot)}$ satisfy, for $k\neq 0,$ the recursions

$$\begin{split} \gamma_{\mathbf{k}-\mathbf{e}_{1}}^{(d)} f_{\mathbf{k}-\mathbf{e}_{1}}^{(d)} + 2 \sum_{i=1}^{M-1} (i+1)(k_{i}+1) f_{\mathbf{k}-\mathbf{e}_{i+1}+\mathbf{e}_{i}}^{(d)} + \sum_{\mathbf{0} \leq \mathbf{l} \leq \mathbf{k}} f_{\mathbf{l}}^{(d)} f_{\mathbf{k}-\mathbf{l}}^{(d)} = 0, \\ \gamma_{\mathbf{k}-\mathbf{e}_{1}}^{(b)} f_{\mathbf{k}-\mathbf{e}_{1}}^{(b)} + 2 \sum_{i=1}^{M-1} (i+1)(k_{i}+1) f_{\mathbf{k}-\mathbf{e}_{i+1}+\mathbf{e}_{i}}^{(b)} - 8 \sum_{\mathbf{0} \leq \mathbf{l} \leq \mathbf{k}} f_{\mathbf{l}}^{(b)} f_{\mathbf{k}-\mathbf{l}}^{(b)} = 0 \\ \gamma_{\mathbf{k}-\mathbf{e}_{1}}^{(m)} f_{\mathbf{k}-\mathbf{e}_{1}}^{(m)} + 2 \sum_{i=1}^{M-1} (i+1)(k_{i}+1) f_{\mathbf{k}-\mathbf{e}_{i+1}+\mathbf{e}_{i}}^{(m)} + \sum_{\mathbf{0} \leq \mathbf{l} \leq \mathbf{k}} f_{\mathbf{l}}^{(m)} f_{\mathbf{k}-\mathbf{l}}^{(d)} = 0, \\ f_{\mathbf{k}}^{(r)} = \sum_{\mathbf{0} \leq \mathbf{l} \leq \mathbf{k}} f_{\mathbf{l}}^{(b)} f_{\mathbf{k}-\mathbf{l}}^{(m)}, \end{split}$$

with boundary conditions $f_0^{(d)} = -4$, $f_0^{(b)} = 1/2$, $f_0^{(m)} = 1$, $f_0^{(r)} = 1/2$, and $f_k^{(\cdot)} = 0$ if $k_j < 0$ for some $1 \le j \le M$. The coefficients $f_k^{(\cdot)}$ are strictly positive for $k \ne 0$.

area of discrete meanders with bounded step set

discrete meanders

- step set $\mathcal{S} \subseteq \{-c, -c+1, \dots, d-1, d\} \subset \mathbb{Z}$
- c, d positive, $-c, d \in S$

generating functions

- step polynomial $S(u) = \sum_{s_i \in S} s_i u^i$ with weights $s_i > 0$
- aperiodic: $u^{c}S(u) = H(u^{p})$ for polynomial H only for p = 1
- F(z, q, u) perimeter, area, and final height gf

q-shift of length and final height functional equation

$$F(z, q, u) = 1 + zS(uq)F(z, q, uq) - z\sum_{i=0}^{c-1} r_i(uq)G_i(z, q)$$

$$r_i(u) = u^i (s_{-c}u^{-c} + \ldots + s_{-(i+1)}u^{-(i+1)}), G_i(z, q) = [u^i]F(z, q, u)$$

asymptotic analysis via moment pumping and kernel method possible! 25/44

area of discrete meanders with bounded step set

Theorem (Schwerdtfeger 14)

Fix drift $\gamma = S'(1)/S(1)$ and consider the area random variables Z_m for meanders of length m. After proper rescaling:

- negative drift: convergence to Brownian excursion area
- zero drift: convergence to Brownian meander area
- positive drift: concentration

remarks

- $\gamma = 0$ also via FCLT (lglehardt 74)
- $\gamma > 0$ with Gaussian CLL (Iglehardt 74)
- $\gamma < 0$ for *non-lattice* step sets (Kao 78, Durrett 80)

Wiener index for simply generated trees (Janson 03)

simply generated trees

- realised as conditioned Galton-Watson trees of size *n* defined by offspring distribution *X*
- Wiener index

$$W(T) = \frac{1}{2} \sum_{v,w \in T} d(v,w)$$

simpler quantity

$$Q(T) = \sum_{v,w\in T} d(v \wedge w, o) = n(T)m(T) - W(T)$$

 $v \wedge w$ last common ancestor, n(T) # nodes, m(T) pathlength

Theorem (Janson 03)

Assume $\mathbb{E}[X] = 1$ and $0 < \sigma^2 := \mathbb{V}[X] < \infty$. With e(u) the standard Brownian excursion, we have

$$\left(\frac{m(T_n)}{n^{3/2}/\sigma},\frac{Q(T_n)}{n^{5/2}/\sigma}\right) \xrightarrow{d} \left(2\int_0^1 e(t)\mathrm{d}t,4\int \int_{0< s< t<1} \min(e(u)) \,\mathrm{d}s\mathrm{d}t\right)$$

The joint moments of the rhs (ξ, η) are given by

$$\mathbb{E}[\xi^k \eta^\ell] = \frac{k!\ell! \sqrt{\pi}}{2^{(5k+7\ell-4)/2} \Gamma((3k+5\ell-1)/2)} a_{k\ell},$$

where the numbers $a_{k\ell}$ with $a_{10} = a_{01} = 1$ satisfy

$$egin{aligned} & a_{k,\ell} = 2(3k+5\ell-4)a_{k-1,\ell} + 2(3k+5\ell-6)(3k+5\ell-4)a_{k,\ell-1} \ & + rac{1}{2}{\sum}{\sum}_{0 < i+j < k+\ell}a_{i,j}a_{k-i,\ell-j}, \end{aligned}$$

with $a_{k\ell} = 0$ if k < 0 or $\ell < 0$.

singularities of q-functional equations

q-functional equation for polynomial F

F(x,q,P(x,q),P(qx,q))=0

• typical case: algebraic equation for P(x, 1)

F(x, 1, P(x, 1), P(x, 1)) = 0

• degenerate case: algebraic differential equation for P(x, 1)

G(x, P(x, 1), P'(x, 1)) = 0

 $(\text{note } (f(qx) - f(x))/(q-1) \rightarrow f'(x))$

- singularities of *D*-finite functions (linear DE with polynomial coefficients) have been classified
- prudent polygons satisfy *q*-functional equation and have non-*D*-finite perimeter generating function

singularities of prudent polygons

three-sided prudent polygons (Schwerdtfeger 10)

P₃(x) radius of convergence σ = τ² with square root singularity 1/2

 $\sigma = 0.24412\ldots, \text{ where } \tau^5 + 2\tau^2 + 3\tau - 2 = 0$

• meromorphic in slit disc $\{|x| < \rho\} \setminus [\sigma, \rho\}$

$$ho = 0.29559\ldots, \,\,$$
 where $1 - 3
ho -
ho^2 -
ho^3 = 0$

infinitely many singularities in $[\sigma, \rho)$ accumulating in ρ

prudent polygons

- numerical analysis (Guttmann et al 11)
- 500 terms from functional equation
- radius of convergence $x_c \approx 0.22647...$, exponent $\approx 5/2$

singularities of three-choice polygons

- P(x) half-perimeter generating function
- analysis of 8th order ODE (Guttmann, Jensen 05)
- dominant singularity $x_c = 1/4$ with

$$P(x) \sim A(1-4x)^{-1/2} + B(1-4x)^{-1/2} \log(1-4x)$$
 $(x o 1/4^-)$

phase diagrams

behaviour of SAP area for weights $p_{m,n}q^n$, fixed large perimeter m?

- radius of convergence $x_c(q)$ of $x \mapsto P(x,q)$
- type of singularity does not change on critical line q < 1 resp. q = 1
- *q* < 1 deflated phase (branched polymers)
- q > 1 inflated phase (ball-shaped ring polymers)
- extended phase q = 1 (collapse phase transition)
- concentration for $q \neq 1$

phase diagrams

polygon models

- proved/provable for solvable models (q-functional equation)
- partly proved for SAPs

similarly for

- solvable models of walks and trees
- behaviour of perimeter for weights $p_{m,n}x^m$, fixed large area n

singular behaviour of staircase polygons (Prellberg 95)

singular behaviour of P(x, q) in domain \mathcal{D} about $(x, q) = (x_c, 1)$

• $F: (4^{-1/3}a_0, \infty) \to \mathbb{R}$ scaling function $F(s) = \frac{1}{4} \frac{\mathrm{d}}{\mathrm{d}s} \log \operatorname{Ai}(4^{1/3}s)$

• $a_0 = -2.338...$ location of Airy function zero of smallest modulus

• proof with explicit expression for P(x, q) by delicate saddle point analysis

scaling function for staircase polygons

$$P(x,q) - rac{1}{4} \sim (1-q)^{1/3} F\left(rac{1-rac{x}{x_c}}{(1-q)^{2/3}}
ight) \quad (x,q) o (x_c,1) ext{ in } \mathcal{D}!!$$

scaling function at 0 determines agf at criticality

$$P^{(sing)}(x_c,q) \sim (1-q)^{rac{1}{3}}F(0) \qquad (q o 1)$$

 \blacksquare scaling function at ∞ determines pgf at criticality

$$\begin{split} \mathcal{P}^{(sing)}(x,1) &\sim (1-q)^{\frac{1}{3}} F\left(\frac{1-\frac{x}{x_c}}{(1-q)^{2/3}}\right) & (x,q) \to (x_c,1) \\ &\sim (1-q)^{\frac{1}{3}} f_0 \left(\frac{1-\frac{x}{x_c}}{(1-q)^{2/3}}\right)^{1/2} & (x,q) \to (x_c,1) \\ &\sim f_0 \left(1-\frac{x}{x_c}\right)^{1/2} & (x \to x_c) \end{split}$$

scaling function for staircase polygons

scaling relation for P(x, q) remains valid under arbitrary differentiation!

area limit law from asymptotic expansion about $s = \infty$

$${\sf F}(s)\sim \sum_{k\geq 0}(-1)^krac{\phi_k}{2^{2k+1}}s^{-\gamma_k}\qquad (s o\infty)$$

critical perimeter limit law from Taylor expansion about s = 0

$$F(s) = \sum_{k\geq 0} \frac{b_k}{4^{k/3+1}} s^k$$

 scaling function describes "crossover from extended to deflated phase"

self-avoiding polygons: area limit law

Conjecture (cf R Guttmann Jensen 01)

X_m area RV for SAPs in uniform fixed perimeter ensemble

$$\mathbb{P}(X_m = n) = \frac{p_{m,n}}{\sum_n p_{m,n}}$$

 $p_{m,n} \#$ square lattice SAPs of half-perimeter m, area n

$$\frac{X_m}{\mathbb{E}[X_m]} \stackrel{d}{\longrightarrow} \frac{X}{\sqrt{\pi}},$$

where X is Airy distributed.

self-avoiding polygons: critical perimeter limit law

Conjecture (cf R Guttmann Jensen 04)

Y_n perimeter RV for SAPs in non-uniform fixed area ensemble

$$\mathbb{P}[Y_n = m] = \frac{p_{m,n} x_c^m}{\sum_m p_{m,n} x_c^m}$$

Then $Y_n/n^{2/3} \stackrel{d}{\longrightarrow} Y$, where for some constant C > 0

$$\frac{\mathbb{E}[Y^k]}{k!} = \frac{\Gamma(\beta_0)}{\Gamma(\beta_k)} \frac{b_k}{b_0} C^k, \qquad \beta_k = (2k-1)/3$$

The numbers b_k are given by $F(s) = -\frac{d}{ds} \log Ai(s) = \sum_{k \ge 0} b_k s^k$.

self-avoiding polygons: perimeter limit laws

Conjecture

Y_n perimeter RV for SAPs in uniform fixed area ensemble

$$\mathbb{P}(Y_n = m) = \frac{p_{m,n}}{\sum_m p_{m,n}}$$

 $p_{m,n} \#$ square lattice SAPs of half-perimeter m, area n The standardised perimeter RV is asymptotically normal,

$$\frac{Y_n - \mathbb{E}[Y_n]}{\sqrt{\mathbb{V}[Y_n]}} \stackrel{d}{\longrightarrow} \mathcal{N}(0, 1)$$

scaling function: definition

- assumptions on coefficients p_{m,n}
 - $p_{m,n}$ non-negative, positive only if $Am \le n \le Bm^2$
 - radius of convergence x_c of P(x, 1) satisfies $0 < x_c \le 1$
- domain of scaling function approximation ($s_0 < 0, \varphi > 0$)

$$\mathcal{D}(s_0) = \left\{ (x,q) \in (0,\infty) imes (0,1) : s_0 < rac{1-x/x_c}{(1-q)^{arphi}}
ight\}$$

• $F: (s_0,\infty) \to \mathbb{R}$ and c > 0, $\theta > 0$ s.t. for $P^{(sg)}(x,q) = P(x,q) - c$

$$\mathcal{P}^{(\mathrm{sg})}(x,q) \sim (1-q)^{ heta} \mathcal{F}\left(rac{1-x/x_c}{(1-q)^{arphi}}
ight) \qquad (x,q)
ightarrow (x_c^-,1^-) ext{ in } \mathcal{D}(s_0)$$

• then F is called scaling function, φ, θ critical exponents

scaling function and one-variable generating functions

The scaling function determines the leading singular behaviour of the perimeter generating function and of the critical area generating function.

Proposition (Eisner 10)

Assume F(s) ~ f₀s^{-γ₀} as s → ∞ and ∂^r/∂x^r P(x, 1) → ∞ as x → x⁻_c for some r ∈ ℕ₀. Then γ₀ = −θ/φ and

$$P^{(sg)}(x,1) \sim f_0(1-x/x_c)^{-\gamma_0} \qquad (x \to x_c^-)$$

• Assume $F(s) \sim h_0 s^{\alpha_0}$ as $s \to 0$ and $\frac{\partial^r}{\partial q^r} P(x_c, q) \to \infty$ as $q \to 1^-$ for some $r \in \mathbb{N}_0$. Then $\alpha_0 = 0$ and

$$P^{(sg)}(x_c,q)\sim h_0(1-q)^ heta \qquad (q
ightarrow 1^-)$$

scaling functions: differentiability

asymptotic expansions integrable, but generally not differentiable:

monotonicity assumptions:

Theorem (Olver 74)

Let $f : \mathbb{R} \to \mathbb{R}$ be continously differentiable with f'(x) eventually monotonically increasing. Assume that there is $p \ge 1$ such that

$$f(x) \sim x^p \qquad (x \to \infty)$$

Then we have

$$f'(x) \sim p x^{p-1} \qquad (x \to \infty)$$

combinatorial generating functions are monotonic!

scaling functions: differentiability

Theorem (Eisner 10)

Let F(s) be analytic in some domain containing (s_0,∞) with

$$F(s)\sim \sum_{k\geq 0}(-1)^k f_k s^{-\gamma_k} \qquad (s o\infty)^k$$

Fix $k \in \mathbb{N}_0$ and assume $F^{(k+1)}$ decreasing for even k + 1, resp. increasing for odd k + 1. Assume that for some $r \in \mathbb{N}_0$

$$rac{\partial^r}{\partial x^r} P(x,1) o \infty \qquad (x o x_c^-), \qquad rac{\partial}{\partial q} P(x_c,q) o \infty \qquad (q o 1^-)$$

Then $\gamma_k = (k - \theta)/\varphi$ and $\frac{1}{k!} \frac{\partial^k}{\partial q^k} P^{(sg)}(x, q) \Big|_{q=1} \sim \frac{f_k}{\left(1 - \frac{x}{x_c}\right)^{\gamma_k}} \qquad (x \to x_c^-)$

analogous result for perimeter moment series

Tree-like structures II

limit distributions and scaling functions

two-parameter tree-like structures: recipe for scaling functions

- P(x, q) generating function (e.g. perimeter and area)
- phase diagram has critical point $(x_c, 1)$
- extract critical exponents φ , θ as $x \to x_c^-$

$$P^{(\mathrm{sg})}(x,1) \sim f_0\left(1-rac{x}{x_c}
ight)^{rac{\partial}{arphi}}, \qquad rac{\partial}{\partial q}P^{(\mathrm{sg})}(x,q)\Big|_{q=1} \sim f_1\left(1-rac{x}{x_c}
ight)^{rac{\partial-1}{arphi}}$$

- extract limit distribution X of area
- candidate for scaling function: double Laplace trafo of X

$$F(s) = \int_0^\infty e^{-st} \mathbb{E}[e^{-t^{\frac{1}{\varphi}}X}] \frac{1}{t^{1+\frac{\theta}{\varphi}}} \mathrm{d}t$$

(here $\theta < 0$, similarly for $\theta > 0$)

check continuity assumptions (!)