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The Neuhauser-Pacala model

Denote a point in Zd by i = (i1, . . . , id).

Def neighborhood of a site Ni := {j ∈ Zd : 0 < ‖i − j‖∞ ≤ R}.

(Here R = 1, d = 2).
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The Neuhauser-Pacala model

Def local frequency fτ (i) := |Ni |−1|{j ∈ Ni : x(j) = τ}|.

1 0 1 1 0 0

1 1 0 1 1 1

1 1 0 0 1 1

0 0 1 1 1 0

1 0 1 1 1 0

Here f0(i) = 3/8, f1(i) = 5/8.
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The Neuhauser-Pacala model

Fix rates α01, α10 ≥ 0.

1 0 1 1 0 0

1 1 0 1 1 1

1 1 0 1 1

0 0 1 1 1 0

1 0 1 1 1 0

†

With rate f0 + α01f1 an organism of type 0 dies. . .
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The Neuhauser-Pacala model

1 0 1 1 0 0

1 1 0 1 1 1

1 1 1 0 1 1

0 0 1 1 1 0

1 0 1 1 1 0

. . . and is replaced by a random type from the neighborhood.
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The Neuhauser-Pacala model

Neuhauser & Pacala (1999): Markov process in the space

{0, 1}Zd
of spin configurations x = (x(i))i∈Zd , where spin x(i) flips:

0 7→ 1 with rate f1(f0 + α01f1),

1 7→ 0 with rate f0(f1 + α10f0),

with

fτ (i) :=
|{j ∈ Ni : x(j) = τ}|

|Ni |
Ni := {j : 0 < ‖i − j‖∞ ≤ R}.

the local frequency of type τ = 0, 1.

Interpretation: Interspecific competition rates α01, α10. Organism
of type 0 dies with rate f0 + α01f1 and is replaced by type sampled
at random from distance ≤ R.
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The Neuhauser-Pacala model

Parameter α01 measures the strength of competition felt by type 0
from type 1 (compared to strength 1 from its own type).
If α01 < 1, then type 0 dies less often due to competition from type
1 than from competition with its own type: balancing selection.
If α01 > 1, then type 0 dies more often due to competition from
type 1 than from competition with its own type, i.e., type 1 is an
agressive species.

By definition, type 0 survives if starting from a single organism of
type 0 and all other organisms of type 1, there is a positive
probability that the organisms of type 0 never die out.

By definition, one has coexistence if there exists an invariant law
concentrated on states where both types are present.
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Mean field model

In the mean field model, the lattice Zd is replaced by a complete
graph with N vertices. In this case, the neighborhood Ni of a
vertex i is simply all sites except i .

In the limit N →∞, the frequencies Fτ (t) of type τ = 0, 1 satisfy
a differential equation:

∂
∂t F1(t) = F1(t)

(
F0(t) + α01F1(t)

)
F0(t)

−F0(t)
(
F1(t) + α10F0(t)

)
F1(t).

with F0 = 1− F1.
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Mean field model

∂
∂t F1

F1
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Balancing selection (α01 = 0.6, α10 = 0.4).
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Mean field model

∂
∂t F1

F1
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0.2 α01 > 1, α10 < 1

Type 1 is an agressive species (α01 = 1.7, α10 = 0.4).
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Mean field model

∂
∂t F1

F1
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Type 0 is an agressive species (α01 = 0.6, α10 = 1.4).
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Mean field model

∂
∂t F1

F1
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Both types are agressive species (α01 = 1.7, α10 = 1.4).
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Mean field model
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Dimension d ≥ 3
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Dimension d = 2
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Dimension d = 1, range R ≥ 2
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Dimension d = 1, range R = 1

0’s survive
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Rigorous results

α01

α10

1

1

Thm 1

Con
j 1

Thm 4

Thm 4

Thm 4

Thm 4

Neuhauser & Pacala (1999) have proved that in the spatial model,
the regions of coexistence and founder control are reduced. Except
when d = 1 = R, coexistence is possible for α01 = α10 = α small
enough. They conjectured that this is true for all α < 1.
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Rigorous results

α01

α10

1

1

Cox & Perkins (2007) have proved coexistence in a cone near
(1, 1) for dimensions d ≥ 3. Cox, Merle & Perkins (2010) have an
analogue result for d = 2. The statement is believed to be false in
dimension d = 1.
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Voter model perturbations

For (α01, α10) = (1, 1) we have a classical voter model.

In dimensions d ≥ 2, Cox, Merle and Perkins prove that it is
possible to send α01, α10 → 1 through a cone (d ≥ 3) or cusp
(d = 2) such that rescaled sparse models converge to supercritical
super Brownian motion.

Using this, for (α01, α10) very close to (1, 1), they can set up a
comparison with oriented percolation and prove survival of the
ones. By symmetry, the same holds for the zeros and one can
conclude coexistence.
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Special models

α01

α10

1

1 pure voter model

cancellative system
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Cancellative systems

Equip {0, 1} with the usual product and with addition modulo 2,

denoted as ⊕. Then {0, 1} is a finite field. We may view {0, 1}Zd

(equipped with ⊕) as a linear space over {0, 1}.

Let (A(i , j))i ,j∈Zd be a matrix with 0, 1-valued entries, such that
A(i , j) = 1 for finitely many i , j and A(i , j) = 0 otherwise. Then we
define

Ax(i) :=
⊕
j∈Zd

A(i , j)x(j).

A cancellative system X = (Xt)t≥0 is a linear system w.r.t. to the
finite field {0, 1}. For certain A there is a nonnegative rate r(A)
such that the system makes the transition

x 7→ x ⊕ Ax

at Poisson times with rate r(A).
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Graphical representation

Draw an arrow i → j whenever
A(j , i) = 1.

A =


0 1 0 0
1 0 1 0
1 0 0 0
0 0 0 1

.
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Cancellative systems duality

For x , y ∈ {0, 1}Zd
, define

〈x , y〉 :=
∑
i

x(i)y(i) and 〈〈x , y〉〉 :=
⊕
i

x(i)y(i).

Then 〈x , y〉 is the number of sites i with x(i) = 1 = y(i) and

〈〈x , y〉〉 = 1{〈x , y〉 is odd}.

For any A,
〈〈x ,Ay〉〉 = 〈〈A†x , y〉〉,

where A†(i , j) := A(j , i) is the adjoint of A.
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Cancellative systems duality

Let X and Y be cancellative systems with rates satisfying

rX (A) = rY (A†).

time

A1

A2

A3

A4

X0

Xt

time

A†1

A†2
A†3

A†4

Yt

Y0

For each t > 0, we can couple such that for each 0 < u < t, the
processes (Xs)0≤s≤u and (Ys)0≤s≤t−u are independent, and

〈〈Xt ,Y0〉〉 = 〈〈Xu,Yt−u〉〉 = 〈〈X0,Yt〉〉 (0 ≤ u ≤ t).
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Cancellative systems duality

Once again, if X and Y satisfy

rX (A) = rY (A†).

Then X and Y are pathwise dual in the sense that for each t > 0
there exists a coupling such that

〈〈Xt ,Y0〉〉 = 〈〈X0,Yt〉〉 a.s.

In particular, they are dual in the sense that

P
[
〈Xt ,Y0〉 is odd

]
= P

[
〈X0,Yt〉 is odd

]
(t ≥ 0).

This formula holds also for random X0 and Y0 when we let Xt be
independent of Y0 and X0 independent of Yt .
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Type symmetry and parity preservation

Def A cancellative system X is type symmetric if the transition
x 7→ x ′ has the same rate as (1− x) 7→ (1− x ′).

Def A cancellative system X is parity preserving if a.s. |Xt | is odd
iff |X0| is odd (t ≥ 0).

I X type symmetric iff only jumps that involve A such that each
row contains an even number of ones. (Even number of
incoming arrows at each site.)

I X parity preserving iff only jumps that involve A such that
each column contains an even number of ones. (Even number
of outgoing arrows at each site.)

Consequence X type symmetric ⇔ dual Y is parity preserving.
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Interfaces

In the one-dimensional case, we have an extra tool available.

Let Z + 1
2 := {k + 1

2 : k ∈ Z} and let I = Z or = Z + 1
2 .

Define a gradient operator ∇ : {0, 1}I → {0, 1}I+
1
2 by

∇x(i) := x(i − 1
2)⊕ x(i + 1

2).

If (Xt)t≥0 is type symmetric, then (∇Xt)t≥0 is a Markov process:
the interface model of X .

0

1

1

0

1

0

1

1

0

0

0

1

1

1

0X

∇X

Interface models are always parity preserving.
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Interfaces and duality

[S. ’13] The interface model of a type symmetric cancellative spin
system is a parity preserving cancellative spin system. Conversely,
every parity preserving cancellative spin system is the interface
model of a unique type symmetric cancellative spin system.
Moreover, the following commutative diagram holds:

Y X ′

X Y ′
interface

interface

dual dual

Here X ,X ′ are type symmetric and Y ,Y ′ are parity preserving.
X and X ′ are dual with the non-local duality function 〈〈X ,∇X ′〉〉.
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Interfaces and duality

Proof (sketch) Recall the duality function

〈〈x , y〉〉 =
⊕
i

x(i)y(i).

Then

〈〈x ,∇y〉〉 = 〈〈∇x , y〉〉 (x ∈ {0, 1}I, y ∈ {0, 1}I+
1
2 ).

If A is type symmetric, then A† is the dual action and ∇A∇−1 is
the corresponding action on interfaces. Now

(∇A∇−1)† = ∇−1A†∇

correspond to the dual of the interface model resp. the model
whose interface model is the dual.

(Some care is needed to define ∇−1 but this is the basic idea.)

Jan M. Swart On rebellious voter models



The symmetric Neuhauser-Pacala model

Claim The symmetric Neuhauser-Pacala model with
α := α01 = α10 ≤ 1 is cancellative.

Proof For each i :

I With rate α, choose uniform j ∈ Ni and
jump x(i) 7→ x(i)⊕ x(i)⊕ x(j) (voter dynamics).

I With rate 1− α, choose uniform, independent j , k ∈ Ni and
jump x(i) 7→ x(i)⊕ x(j)⊕ x(k) (rebellious dynamics).

Check that this yields the desired flip rates.
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Dual of the Neuhauser-Pacala model

The dual Y of the symmetric Neuhauser-Pacala model is a parity
preserving system of branching and annihilating random walks.
Interpret Yt(i) = 1 as a particle. For each i :

I With rate α, choose uniform j ∈ Ni and jump
x(i) 7→ x(i)⊕ x(i) and x(j) 7→ x(j)⊕ x(i). If there is a
particle at i , then it jumps to j. If there already is a particle
at j , then the two particles annihilate.

I With rate 1− α, choose uniform, independent j , k ∈ Ni and
jump x(j) 7→ x(j)⊕ x(i) and x(k) 7→ x(k)⊕ x(i). If there is a
particle at i , then it produces particles at j and k that
annihilate with any particles that may already be present.
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Classification of behavior

Let Y be parity preserving.

Def Y persists if there exists an invariant law that is concentrated
on states other than 0 (all zero).

Def Y survives if Py [Yt 6= 0 ∀t ≥ 0] > 0 for some even initial
state y .

If |Y0| is finite and odd, then let lt := inf{i ∈ Z + 1
2 : Yt(i) = 1}

denote the left-most one and let

Ŷt(i) := Y (lt + i) (t ≥ 0, i ∈ N)

denote the process Y viewed from the left-most one.

Def Y is stable if Ŷ is positively recurrent.

Def Y is strongly stable if Ŷ is stable and E
[
|Ŷ∞|

]
<∞ in

equilibrium.
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Classification of behavior

Let X be type symmetric.

Def X exhibits coexistence if there exists an invariant law that is
concentrated on states other than 0 and 1.

Def X survives if Px [Xt 6= 0 ∀t ≥ 0] > 0 for some finite initial
state x .

Def X exhibits (strong) interface tightness if its interface model is
(strongly) stable.

Interface tightness introduced for the contact process by Cox &
Durrett (1995) and studied by Belhaouari, Mountford & Valle
(2007) and & Sturm & S. (2008).
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Abstract results

Y X ′

X Y ′
interface

interface

dual dual

Claim
interface model Y ′ persists ⇔ X coexists ⇔ dual Y survives.

Proof of second claim
Start X in product measure with intensity 1/2. Then
P
[
Xt(i) 6= Xt(j)

]
= P

[
〈Xt , δi + δj〉 is odd

]
=

Pδi+δj
[
〈X0,Yt〉 is odd

]
= 1

2P
δi+δj

[
Yt 6= 0

]
−→
t→∞

1
2P

δi+δj
[
Yt 6= 0 ∀t ≥ 0

]
. Odd upper invariant law.

Claim X survives ⇔ dual Y persists. (Similar.)

Thm [S. ’13] Strong interface tightness implies noncoexistence.
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Strong interface tightness implies noncoexistence

Lemma Assume that strong interface tightness holds for X . Let
Ŷ∞ + i denote the configuration Ŷ∞ shifted by i . Then

h(x) :=
∑

i∈Z+ 1
2

E
[
〈〈x , Ŷ∞ + i〉〉

]
is a harmonic function for the process X ′ (dual of interface model
of X ). Moreover, there exist constants 0 < c ≤ C <∞ s.t.

c |x | ≤ h(x) ≤ C |x |.

Proof of Thm (sketch) By martingale convergence, h(X ′t)
converges a.s., which implies that X ′ dies out a.s. The same holds
for its interface model Y which is dual to X , so by duality X
exhibits noncoexistence.
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The rebellious voter model

The rebellious voter model is very similar to the one-dimensional
symmetric Neuhauser-Pacala model.
For each i :

I With rate α, choose j = i − 1 or j = i + 1 with probab. 1
2

each and jump x(i) 7→ x(i)⊕ x(i)⊕ x(j) (voter dynamics).

I With rate 1− α, choose either {j , k} = {i − 2, i − 1} or
{j , k} = {i + 1, i + 2} with probab. 1

2 each and jump
x(i) 7→ x(i)⊕ x(j)⊕ x(k) (rebellious dynamics).

The dual is a system of branching and annihilating
nearest-neighbour random walks that always place offspring on the
two sites immediately to their left or right.

Jan M. Swart On rebellious voter models



The rebellious voter model

The rebellious voter model is self-dual in the sense that it is equal
to the dual of its interface model, or more simply:

Y

X

dual interface

Consequence Survival equivalent to coexistence.
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The disagreement voter model

The d = 1 Neuhauser-Pacala model X with range R = 1 is up to
reparametrization equal to the disagreement voter model, where
for each i :

I With rate α, choose j = i − 1 or j = i + 1 with probab. 1
2

each and jump x(i) 7→ x(i)⊕ x(i)⊕ x(j) (voter dynamics).

I With rate 1− α, jump x(i) 7→ x(i)⊕ x(i − 1)⊕ x(i + 1)
(disagreement dynamics).

In the dual model Y , a particle places offspring on the sites
immediately to its left and right.

The interface model Y ′ is a mixture of annihilating random walk
and exclusion dynamics.

Clearly Y ′ dies out for all α > 0 hence X exhibits noncoexistence.
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The exclusion process

Recall that in the symmetric, nearest-neighbor exclusion process,
pairs of neighboring 0’s and 1’s make the transitions 01↔ 10 at
rate one. This model is both type symmetric and parity preserving.
It is part of a commutative diagram where:
X = pure disagreement dynamics
Y = exclusion process
Z = double branching annihilating process

Z Y X

X Y Z

interfaceinterface

interface interface

dualdualdual
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Ergodic results

[Sturm & S. ’08] A symmetric Neuhauser-Pacala or rebellious
voter model have at most one spatially homogeneous coexisting
invariant law. If moreover α > 0 and the dual model Y is not
stable, then this is the long-time limit law started from any
spatially homogeneous coexisting initial law.

[Sturm & S. ’08] For the rebellious voter model with α
sufficiently close to zero, there is a unique coexisting invariant law
ν and one has complete convergence

P[Xt ∈ · ] =⇒
t→∞

ρ0δ0 + ρ1δ1 + (1− ρ0 − ρ1)ν,

where ρτ := P[Xt = τ for some t ≥ 0].

[Cox & Perkins ’14] There exists some α′ < 1 such that the
symmetric Neuhauser-Pacala model in dimensions d ≥ 2 exhibits
complete convergence for α ∈ (α′, 1).
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Ergodic results

Idea of proof Recall that if law of X0 is product measure with
intensity 1/2, then

P
[
〈Xt , y〉 is odd

]
= Py

[
〈X0,Yt〉 is odd

]
= 1

2P
y
[
Yt 6= 0

]
.

As a consequence, P[Xt ∈ · ] converges weakly to ν := P[X∞ ∈ · ]
characterized by

P
[
〈X∞, y〉 is odd

]
= 1

2P
y
[
Yt 6= 0 ∀t ≥ 0

]
.

For more general initial laws, convergence will follow if

Py
[
〈X0,Yt〉 is odd

]
≈ 1

2P
y
[
Yt 6= 0

]
as t →∞.

This requires one to show that conditional on survival, Yt is large
and sufficiently random so that 〈X0,Yt〉 is odd with probab. ≈ 1/2.
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Numerical simulation

Interface process Y ′ of the two-sided rebellious voter model for
α = 0.4, 0.5, 0.51, 0.6.
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One-sided rebellious interface model

Interface process Y ′ of the one-sided rebellious voter model for
α = 0.3, 0.5, 0.6.
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Edge speeds
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Edge speeds for the rebellious voter model (left) and its one-sided
counterpart (right) [S. & Vrbenský ’10].
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Two functions of the process

Define the survival probability

ρ(α) := Pδ0 [Xt 6= 0 ∀t ≥ 0].

• coexistence ⇔ ρ(α) > 0.

Define the fraction of time spent with a single interface

χ(α) := P
[
|Y ′∞| = 1

]
.

• interface tightness ⇔ χ(α) > 0.
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Numerical data

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0  0.1  0.2  0.3  0.4  0.5  0.6  0.7  0.8  0.9  1

ρ(α)

χ(α)

The functions ρ and χ for the two-sided rebelious voter model.
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The functions ρ and χ for the one-sided rebelious voter model.
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Explicit formulas

It seems that for the one-sided model, the functions ρ and χ are
described by the explicit formulas:

ρ(α) = 0 ∨ 1− 2α

1− α
and χ(α) = 0 ∨

(
2− 1

α

)
.

In particular, one has the symmetry ρ(1− α) = χ(α) and the
critical parameter seems to be given by αc = 1/2.

Explanation?
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Numerical data
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Differences of ρ and χ with presumed explicit formulas.
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A critical exponent

Theoretical physicists believe that

ρ(α) ∼ (αc − α)β as α ↑ αc,

where β is a critical exponent.

It has been conjectured by I. Jensen (1994) that β = 13/14 and by
Inui & Tretyakov (1998) that β = 1. More recent estimates are
β ≈ 0.92, β ≈ 0.95 [Hinrichsen ’00] [Ódor & Szolnoki ’05]. Our
formula would imply β = 1.
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Stability

Let Y be a system of annihilating random walks where one particle
can split into three. Recall that Y is stable if it spends a positive
fraction of time with only one particle.

Start three n.n. random walks on Z on positions i < j < k and let
τ be the first time than any two of them meet. Then:

P[τ > t] ∝ t−3/2 as t →∞,
E[τ ] = (k − j)(j − i) <∞.

Conjecture The fact that 3/2 > 1 and hence E[τ ] <∞ is
essential for stable behavior.

Question What is the asymptotics of P[τ > t] for other systems of
recurrent walkers, e.g. in the domain of attraction of an α-stable
law?
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