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Idea behind the finite system scheme

This scheme compares the long-time behavior of large finite interacting
systems with the corresponding infinite interacting systems. Assume that
the finite interacting systems and infinite interacting systems have
different ergodic behavior. We are interested in the question:

How does the finite system realized its finiteness?

e Macroscopic point. At which macroscopic time scale does the finite
system realizes its finiteness?

e Microscopic point. What do we see when let the finite system evolve
for a long time (according to the macroscopic time scale) and then
start observing it at the regular time scale?
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The voter model and its ergodic theory

The voter model (7;),>¢ is the Markov process on {0, 1}%° determined by

ne(z) —1—mn(z), atrate S#{y~x: n(y) #n(x)}.
Assume that the initial distribution 1s translation invariant and shift
ergodic with density 8 € [0,1].

Non-trivial equilibria on 7% . 1f d > 3, then there is a translation invariant
and shift ergodic measure vy with density 6 € |0, 1] such that

L [7775] ? V.
Monotype equilibria on Gy .If Gy := [-N, N]¥ N Z% and () )¢>0 be
the Markov process on {0, 1}~ obtained by restricting in some natural
way the dynamics of (7;);>0 to G, then

L] = (1—-0)5 + 66;.

t— o0
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Graphical Representation
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Graphical Representation
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Tracing back lines: Duality to coalescing random walks

Coalescing RWs
ancestral lines perform SRW, and
merge whenever they meet
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The finite system scheme: the global perspective

Ted Cox (1989); Coalescing random walks and voter model consensus times on the torus in 7% , Ann. Probab.

Ted Cox and Andreas Greven (1990); On the long term behavior of some finite particle systems, PTRF.

e Estimator of density. 6~ (n) := #%N D zeay (7).

e Macroscopic time scale. T (s) := #Gy - s, s € [0, 00].

e Limiting density process. dZ; = \/vZ;(1 — Z;)d B, with Zy =0,
where

v :=probability that two independent SRW started in 0 never meet

Global perspective. Assume that the initial distribution is translation
invariant and shift ergodic with density 8 € [0, 1]. Then

(éN(nlij(s))) — (ZS)SZO~

SZO N — oo
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The finite system scheme: the local perspective

Ted Cox & Andreas Greven (1990); On the long term behavior of some finite particle systems, PTRF.

Fix a finite window W C Z?. Then W C Gy for large enough N € N.
o Restriction of a configuration to the window W. n" =19 -

e Estimator of the configuration’s law.

N 1
2 (77) T H#GN ZQCEGN 5(7578\7777

where o, is the shift by x on the torus Gy, i.e.,

(aivn)y = (x +y) mod 2N.

Local perspective. Assume that the initial distribution is translation
invariant and shift ergodic with density 6 € [0, 1]. Then for fixed t > 0,

LI EY 0 42)) o 0 () = 0] = £7 (17 )20

N — oo
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Some proof heuristics

1. Not feeling the finiteness yet. Two coalescing particles on GG move
until one of them hits the boundary which takes time

O(VN) < Tn (1), t > 0.

2. Loosing a feeling for the geographic structure. If the have not
coalescent by that time, they (independently) wrap around the torus.
For any € > 0, by time of order T’y (¢) they have forgotten their initial
distances.

3. Coalescing with delay on a complete graph. From now on the
geographic structure does not play a role anymore, and it takes the 2
particles an

exponential time with mean #Gn

to meet (and coalesce).
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Finite system schemes: More examples

[ ) Branching RW; Contact PrOCESS. Cox & Greven (1990); On the long term behavior if

some finite particle system, PTRF

o Interacting diffusions. Cox, Greven & Shiga (1995), Finite and infinite systems of interacting

diffusions, PTRF

[ ) Interacting measure-valued ProcCesses. Dawson, Greven & Vaillancourt (1995);

Equilibria and quasi-equilibria for infinite collections of interacting Fleming-Viot processes, Trans. AMS

e Interacting mutually catalytic branching. cox, Dawson & Greven (2004); Mutually

catalytic branching random walks: large finite systems and renormalization analysis, Memoirs AMS

e Historical ProOCeESSES. Greven, Limic & Winter (2005); Representation theorems for interacting

Moran models, interacting Fisher-Wright diffusions and applications, EJP

e Interacting state-dependent multi-type branching. pratteihuber (2006); The

finite system scheme for state-dependent multi-type branching models, ALEA
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Main goal

Establish the finite system scheme for evolving genealogies of
A -Fleming-Viot processes.
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Our model: Interacting A-Cannings model

Geographic space. G, discrete

We consider a multi-type asexual population of fixed size which individuals
placed at asite x € GG

e Migration. The individuals perform independently rate 1 random
walks with transition kernel a(x, y)

e Reproduction. Ateach site x € G, if there are currently n
individuals then for each k£ € {2,...,n} and k-individuals {1, ..., 7}
atrate A, 1,

— the k-individuals {iq,...,7;} currently situated in G are killed,
and

— replaced by £ copies of the individual 7, chosen at random
among {i1, ..., }. That is, the offspring inherits the type from i, .
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Consistency

Consistency. (= same dynamics is observed in any sample)

Jim Pitman (1999), Coalescent with multiple collisions, Annals of Probability

Serik Sagitov (1999), The general coalescent with asynchronous mergers of ancestral lines, Annals of applied

Probability

There exists a finite measure A on [0, 1] with

1
An ke = / A(dz) 2" 72(1 — )" F.
0

Particular instances of A-Cannings.
e A = p; Moran model = (locally) Voter model on the complete graph

e A = 67 (locally) one individual takes over the whole population
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A-Cannings dynamics
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A-Cannings dynamics
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From particle model to continuum limits

X,"* .= empirical type distribution at time ¢

Jean Bertoin & Jean-Francois Le Gall (2003) Stochastic flows associated to stochastic processes, PTRF
Jochen Blath & Matthias Birkner (2009) Rescaled stable generalised Fleming-Viot processes: ... EJP

Measure-valued process. (N — o). X is a strong Markov process
with values in M(K x GG) whose generator

Q.= Q%sample + QZi(g;r’:;lt)ion
acts on fcts of the form
po— H<M:1:m¢z> = z_1/ia:zaH¢z
i=1

where we abbreviate

fo = p( - x{x}), r €.

when we sample from a given x € G

Tree valued spatial A-Cannings dynamics



with local A-Cannings resampling and migration

Qﬁ;sample H<$mwz>(ﬂ)
1=1
— Z Z )‘#{jE{l,...,n}:xj:x},#Jx ’ H
r€{x1,..,Tn} J, C (2 =a} ie{1,...,n}\J
4T, > 2
(<1U’£C7 H ¢j> o H <Nma¢j>>
J1€J, 1€ J,

n
mlgratlon H Ti» wz

reG 1=1

— ZZ a(x,x;) — o(x xz))<®f;% oy @ e Qpyyq ﬂwz7H¢j>'
j=1
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Tracing back ancestry
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Tracing back ancestry
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Genealogies evolve as spatial A-coalescent

Spatial A-coalescent is a strong Markov process which takes values
in the set of partitions of all individuals where each partition block is
assigned a site in G such that any “locally finite”
subpopulation/-partition behaves as follows:

e Migration. Partition elements change their position according to
a rate 1 random walk with transition probabilities

a(x,y) = a(y,x).
e /\-coalescence. Each local partition performs a A -coalescent.
Constructions of the A -coalescent.
e finite (5. Limic & Sturm (2006), Spatial A -coalescent, EJP

e countable G. Donnelly & Kurtz’s (1999) Particle representations for measure-valued population

models, Annals of Probab.
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Heuristics for the spatial coalescent with delay

Greven, Limic & W. (2005) Representation theorems for interacting Moran models, interacting Fisher-Wright diffusions, EJP

Limic & Sturm (2006) The spatial A -coalescent, EJP

1. Not feeling the finiteness yet. Two coalescing particles on GG move
until one of them hits the boundary which takes time < T’y (1).

2. Loosing a feeling for the geographic structure. If the have not
coalescent by that time, they (independently) wrap around the torus.
For any € > 0, by time of order T’y (¢) they have forgotten their initial
distances.

3. Coalescing with (even more) delay on a complete graph. From now
on the geographic structure does not play a role anymore, and it takes
the 2 particles an exponential time with mean #G n to meet. Now they
either coalesce or depart again. For the actual coalescence, they need a

/ : . eqe A
geometric number of trails with success probability 5°5=— +2>\22 -

In a finite sample, at that stage you find never more than 2 particles
at the same location.
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Measure-valued finite system scheme: global perspective
G:=7%d>3,Gy :=[-N,N|"NZ% Tn(t):=t - #Gn

For 1 := {uy; x € Z4} C (M;(K))%", consider the average measures

é\N(M) = #CliN ZxEGN Uy € Ml(K)

Let 1 := (p¢)¢>0 be the measure-valued A-FV process and (V?'(So)tzo
the non-spatial measure-valued o, -FV diffusion, where

Ai=2- (,0 + )\22,2)_1 p := escape probability on Z.

— probab. that 2 individuals do not merge due to delayed coalescence on Z¢

Theorem. (Greven, Klimovsky & W.) Assume that a(x,y) is transient
and irreducible, and that the initial family {y,.(0); z € Z%} isi.i.d. with

mean measure § € M. Then

L [(é\N (“TJYN(t) )) tZO} — L [(Vtxao ) t>0] :

N — oo -
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Measure-valued finite system scheme: local perspective

G:=7%d>3, ay(z,y) = Dz 2y mod ay @(0,2)
Fix a finite window W C Z?. Then W C Gy for large enough N € N.

o Restriction of a measure to the window W. u"V = pu(- x (-NW))

e Empirical measure. SV (p) := #%N D reCn O(ou)up-

Theorem. (Greven, Klimovsky & W.) If a(x,y) is transient and
irreducible, and the initial family {,.(0);z € Z%} is i.i.d. with mean
measure 0 € M, then there exists v € M ((M1(K))%") such that

E[,ut} — .

t— o0

Moreover, for all ¢ > 0,

LUEN (i) PV i) = 0] =2 Loy (1) 0]

N — oo =
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Encoding genealogies in the non-spatial case ...

We aim to describe the genealogical tree of the whole population while

making ancestral lines of all possible samples explicit.

and evaluate samples via test functions of the form

n

o™ (U, r, 1) ;:/ " (dw) o ((7(wis ug))1<icj<n)-

Such test functions are referred to as polynomials.
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The state space: more formal

U := {isometry classes of ultra metric probability spaces}.

Misha Gromov (2000), Metric structures for Riemannian and non-Riemannian spaces; Chapter 3 %

Andreas Greven, Peter Pfaffelhuber & W. (2009), Convergence of random metric measure spaces: PTRF

Wolfgang Lohr (2013), Equivalence of Gromov-Prohorov- and Gromov’s O , -metric on the space of mm-spaces, ECP

We equip U with the Gromov-weak topology which means convergence
in the sense of convergence of all polynomials (with continuous bounded

test functions).

Tree valued spatial A-Cannings dynamics



The A-coalescent tree

We can associate a realization of a A -coalescent as a metric space: indeed,
first equip N with the genealogical distance 7geneaey » and then consider its
completion (N, 7'gneatogy ) -

Question. Can we assign (N , T'sencalogy) @ probability measure such that any
finite sample of size n is distributed like an n - A -coalescent.

Greven, Pfaffelhuber & W. (2009), Convergence of random metric measure spaces: The A -coalescent tree, PTRF

Theorem. The family

{(Na T"genealogy 5 % Zi:l 57,)7 n < N}

is tight if and only if the dust-free property holds, i.e., iff
fol A(dz)L = co.

The limit point is unique and referred to as A -coalescent tree.
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... and in the spatial case

We aim to describe the genealogical tree of the whole population while

making ancestral lines and locations of all possible samples explicit.

and evaluate samples via test functions of the form

QUL ) (U, ) :=/ D i, (due) (G 0 1)) ().

with

ru e (r(ug, ug) ) 1<i<j<n

113
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The state space including types: more formal

U% .= {isometry classes of ultra metric spaces such that p,.(U) =1, Vo € G }

Depperschmidt, Greven & Pfaffelhuber (2011) Marked metric measure spaces, ECP

Andreas Greven, Rongfeng Sun & W.; Continuum space limit of the genealogies of interacting Fleming-Viot processes

on 7, manuscript

We equip U“ with the marked Gromov-weak # topology which means
convergence in the sense of convergence of all polynomials (with

continuous bounded test functions).
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The spatial A-coalescent tree

Start with a realization of a spatial A -coalescent starting with infinitely
many singleton blocks at each location, and read off genealogical distances.
As the migration is transient on Z¢, d > 3, distances might be infinity due
to avoidance of blocks. Consider the transformation map t: U — U“
defined as

t((U, (-, -),,u)) = (U, 1—e ") u).

Question. Let Z denote the set of all individuals collected in the blocks.
Can we assign to (Z, 7'geneaogy) @ measure g on Z X G such that 1, is
probability measure and such that individuals sampled at prescribed
locations z1, ..., x,, span the corresponding finite spatial A -coalescent tree.

Under the dust-free property, we have a positive answer in the sense that

t((i, F gencalogy ) % Z Z 5L)) converges Gromov- # -weakly

x € first n individuals ¢ at x

The limit is referred to as spatial A -coalescent tree.
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Evolving genealogies
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Evolving genealogies
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Evolving genealogies
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Evolving genealogies
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Evolving genealogies

o o o O O O
— |
o o o O O O ® o6& o
=
O C|) o O O O
%
o o o O O O
~L— | | AN
o o o O O O
T
o o o O O O

Tree valued spatial A-Cannings dynamics



Evolving genealogies
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Tree-valued spatial A-Fleming-Viot

U is the U% -valued strong Markov process whose generator
0 =04 Qe+ Q
tree A-FV resample + migration + 3 dgrowth

acts on functions of the form

o) (U 1) 1) ::/ Qi fha, (du) (P o 1)) (u).

n p—

where n € N and x4, ...,x, € G.
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Tree growth

e==s Sample

— full tree

Time e passes
7~

Qgrowth(I)(x1 ) (Ua T, /L)

2 [ Sl ) Y (s uphsicin)

1<i<y<n
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A-Resampling

I s ol H ey

Resampling event — full tree

N
V

(3 indiv. involved)

A T e, Tn),
Qresamplingq)( ! ) d)(U’ ™)
_ > > Ap{Ge{l, .onyia =2}, #Jy '/®?:1umi(du) {o(z7" (W) — o (zw)},
zelzy,nen}t g o oqy r; =x}
H Ty > 2

where foreach n e N, J C {1,...n},and 1 <i < j <n,

T s ifi,j & J,
""%]j _ TiAmin J,iVmin J > .if’.i ¢ J,J" € J
’ TjAmin J,jVmin J, 1t € J, 7 & J,
0, ifz,7 € J.
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Well-posed martingale problem

Consider the operator
A a('a')
Qtree A-FV — Qresample —|_ Qmigration —|_ QgrOWth
acting on the space

I1¢ := (spatial) polynomials with differentiable, bounded test functions.

Theorem. (Greven, Klimovsky & W.) Let Py be a probability measure
on US . The (Po, Qiree A-FV; HG) -martingale problem is well-posed

provided that the dust-free property holds.
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The dual process

Tree-valued spatial A-coalescent. C = (Cy,r t)tZO
e Migration and coalescence. (C})y>¢ is the spatial A-coalescent.

o Distance growth. At time ¢, for all 1 < ¢ < j the information on the
genealogical distance 7/(7, j) grows with constant speed 2 as long as
the are not merged into the same partition element.

We encode the states of (C);~ by ({(’n, Ly): me 73})
>
‘0\00\( 00% /( /
e r(CS
Oe\go .".-“
N O&S\\/
O

&
g

We usually start in Cy := {({i},z;); i =1,...,n}.
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Duality in the tree-valued setting

tree-valued spatial A-FV
(U, T, 1)y

~ tree-valued spatial A -coalescent
(m,Ly); ® € P, 1r¥)y

Greven, Pfaffelhuber & W. (2013) Tree-valued Fleming-Viot diffusion, PTRF

Theorem. (Greven, Klimovsky & W.)
E(Uo-To:40) [/(X)(m)xl (du) ¢((r (us, Uj))1§i<j§n)]

= B O) / @) (10) (1) (V) (17 (71 ) + 79 (Vo) 0 W<J>))1<Z<~7<”)]

w E Py
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Longterm behavior

Recall » — 1 — e~ " and the corresponding map ¢ : U — U“
(transforming distances accordingly).

As a consequence of the duality,

t(Z/It) — t( spatial A -coalescent tree).

t— o0

Tree valued spatial A-Cannings dynamics



Tree valued spatial A-Cannings dynamics



Observing spatial genealogies

Encoding genealogies via metric measure spaces fits very well with
concept of sampling from the population.

For observing the spatial genealogies as marked metric measure
spaces we have different choices:

o From a macroscopic
point of view, we observe a finite sample from the whole
population and on the macroscopic time scale.

o From a microscopic point of view, we take a
finite sample from fixed locations, and observe an old population
on the microscopic time scale.
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The finite system scheme from a global point
Gy :=[-N,N|*NZ% d >3, an(z,y) := Dz 2—y mod ay @(0,2)

e Macroscopic time scale. T (t) := t#Gn

e Global average map. qy : (U,7, u) — (U, #Cl;Nfr, #éN,u(- x GN)).

e Limiting non-spatial dynamics. VA% is tree-valued
\ - 8 -Fleming-Viot diffusion with

Ai=2-(p+ )\22,2)_1 p := escape probability on Z¢.

— probab. that 2 individuals do not merge due to delayed coalescence on Z¢

Theorem (Greven, Klimovsky and W.) If for the initial states {fy of
tree-valued A-FV dynamics qn (Uy) — V)% and a(z,y) is transient and
N — o0

irreducible, then

(qN(Z/{%V(t)))tZO e (V?(SO)DO'
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The finite system scheme from a local point

Fix a finite window W c Z¢. Then W C G for large enough N € N.

e Restriction of genealogies to windows. (U, r, )" = (U,r, 'LL’W)

e Empirical genealogy. X((U,r, 1)) := 32— D vcay (U (o))

Theorem (Greven, Klimovsky and W.) Under the same assumptions
as stated for the global finite system scheme, for all ¢ > 0,

(iN (Z/IN’W )) __ ppatial X - 5 -coal tree[(u8)8>0}

TN(t)+S SZO N — oo -
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Two different strategies of proof

e The straight forward approach. Give the look-down construction for

the spatial A-coalescent tree, use
— estimates for how fast the coalescent comes down from
Greven, Limic & W. (2005) Representation theorems for interacting Moran models, interacting Fisher-Wright

diffusions, EJP
Limic & Sturm (2006) The spatial A -coalescent, EJP

— a criterion for the compact containment condition from

Greven, Pfaffelhuber & W. (2013) Tree-valued Fleming-Viot diffusion, PTRF

— general techniques for finite system schemes

Cox & Greven (1994); Finite system scheme: an abstract theorem and a new example; CRM

e More conceptional. Prove that our convergence results towards a
tree-valued strong Markov processes hold provided that
— the one-dimensional (tree-valued) distributions converge,

— they hold for the corresponding measure-valued processes,

— any limit process can be shown to be a strong Markov process.
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