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Introduction

Transport via Current Reservoirs

Continuous time Independent Random Walkers in {0, 1, . . . , 𝑁} → jumps outside suppressed

0 N

j

N
j

N

∙ particle created in 0 → at rate 𝑗𝑁−1

∙ rightmost particle deleted → at rate 𝑗𝑁−1

⎫⎬⎭ −→ to produce a current −2𝑗

References:
- IRW → [CDGP]: G.Carinci, A.De Masi, C.Giardina, E.Presutti

- SEP → [DPTV], [DFP]: A.De Masi, P.Ferrari, D.Tsagkarogiannis, E.Presutti, M.E.Vares
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Introduction

Density Reservoirs

0 N

Ρ" Ρ#

Hydrodynamic Limit −→

⎧⎨⎩
𝜕𝜌
𝜕𝑡

= 𝜕2𝜌
𝜕𝑟2

𝜌(0, 𝑡) = 𝜌+ 𝜌(1, 𝑡) = 𝜌−

Fick’s Law
↓

linear stationary profiles

Ρ"

Ρ#

0 1

Ρ
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Introduction

Plan of the talk

1 The Model

2 The Hydrodynamic Limit
The Free Boundary Problem
Stationary macroscopic profiles

3 Proof of the Hydrodynamic Limit
Characterization via Barriers
FBP Generalized Solutions via Barriers

4 The Super-Hydrodynamic Limit
Mass fluctuations
Diffusion on the manifold of stationary profiles
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Introduction

Motivations

1 Topological Interactions

2 Multiscale Phenomena

3 Microscopic Models for Free Boundary Problems

4 Beyond the classical Existence and Uniqueness results for the FBP
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The Model

Independent particles with current reservoirs: [CDGP]

Independent Random Walk in {0, 1, . . . , 𝑁} → jumps outside suppressed

0 N

j

N
j

N

∙ particle created in 0 → at rate 𝑗
𝑁

∙ rightmost particle deleted → at rate 𝑗
𝑁

⎫⎬⎭−→ to produce a current −2𝑗
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The Model

The Generator

Configurations −→ 𝜉(𝑥) = number of particles at 𝑥, 𝑥 ∈ {0, 1, . . . , 𝑁}

𝜉 ∈ {0, 1, . . . , 𝑁}N 𝑁 ∈ N

Generator: 𝐿 = 𝑗
𝑁
𝐿𝑎 + 𝐿0 + 𝑗

𝑁
𝐿𝑑:

𝐿0 = generator of independent symmetric random walks in {0, 1, . . . , 𝑁} with reflecting boundaries

𝐿0𝑓(𝜉) =
1

2

𝑁∑︁
𝑥=0

𝜉(𝑥)
(︀
𝑓(𝜉𝑥,𝑥+1)− 𝑓(𝜉)

)︀
+ 𝜉(𝑥+ 1)

(︀
𝑓(𝜉𝑥+1,𝑥)− 𝑓(𝜉)

)︀
where 𝜉𝑥,𝑦 is the configuration obtained from 𝜉 moving a particle from 𝑥 to 𝑦.

𝐿𝑎 = add a particle at the origin

𝐿𝑎𝑓(𝜉) = 𝑓(𝜉 + 10)− 𝑓(𝜉)

𝐿𝑑 = remove a particle at the rightmost occupied site

𝐿𝑏𝑓(𝜉) = 𝑓(𝜉 − 1𝑋𝜉
)− 𝑓(𝜉)

𝑋𝜉 := min
{︁
𝑦 ∈ {0, 1, . . . , 𝑁} : 𝜉(𝑦) > 0

}︁
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The Hydrodynamic Limit

The Hydrodynamic Limit

∃ 𝜌𝑡 = 𝜌𝑡(𝑟), 𝑟 ∈ [0, 1] such that

1

𝑁
𝜉𝑁2𝑡 → 𝜌𝑡 as 𝑁 → ∞

Theorem

∃ 𝜌𝑡 = 𝜌𝑡(𝑟), 𝑟 ∈ [0, 1], 𝑡 ≥ 0, non negative and L1 such that “𝜉𝑁2𝑡 converges to 𝜌𝑡 weakly” which
means that for any 𝜁 > 0

lim
𝑁→∞

𝑃
(𝑁)
𝜉

[︃
max

𝑥∈{0,...,𝑁}

⃒⃒⃒ 1
𝑁

𝐹𝑁 (𝑥; 𝜉𝑁2𝑡)− 𝐹 (𝑁−1𝑥; 𝜌𝑡)
⃒⃒⃒
> 𝜁

]︃
= 0

where

𝐹𝑁 (𝑥; 𝜉) :=
𝑁∑︁

𝑦=𝑥

𝜉(𝑦); 𝐹 (𝑟; 𝜌) :=

∫︁ 1

𝑟
𝜌(𝑟′)𝑑𝑟′

proved in [CDGP] under suitable assumptions on the initial datum.

Strategy

Barriers
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The Hydrodynamic Limit The Free Boundary Problem

Identification of the limit (heuristics): the FBP

Let 𝜌𝑡(·) is the hydrodynamic limit of 𝜉𝑡 and 𝑅𝑡 its “boundary”:

𝑅𝑡 := inf
{︁
𝑟 ∈ [0, 1] : 𝜌(𝑧, 𝑡) = 0 ∀𝑧 ≥ 𝑟

}︁
then (𝑅𝑡, 𝜌𝑡(·)) is a “Generalized Solution” of the above defined FBP.

𝑗 = 0: no births and deaths

𝜕𝜌

𝜕𝑡
=

1

2

𝜕2𝜌

𝜕𝑟2
,

𝜕𝜌

𝜕𝑟

⃒⃒⃒
0
=

𝜕𝜌

𝜕𝑟

⃒⃒⃒
1
= 0

The heat equation with Neumann boundary conditions.

𝑗 ̸= 0: adding births and deaths

𝜕𝜌

𝜕𝑡
=

1

2

𝜕2𝜌

𝜕𝑟2
+ 𝑗𝐷0 − 𝑗𝐷𝑅𝑡 , 𝑟 ∈ [0, 𝑅𝑡]

𝐷𝑟 = Dirac delta at 𝑟
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The Hydrodynamic Limit The Free Boundary Problem

The Free Boundary Problem

−→ If 𝜌𝑡(𝑟) is smooth in (0, 𝑅𝑡), integrating by parts we obtain the FBP in its calssical formulation

The pair (𝑅𝑡, 𝜌(·, 𝑡)) is a Classical Solution of the FBP with initial datum (𝑅0, 𝜌0) if it is “smooth
enough” and satisfies ⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

𝜕𝜌
𝜕𝑡

= 1
2

𝜕2𝜌
𝜕𝑟2

𝑟 ∈ (0, 𝑅𝑡)

𝜌(𝑅𝑡, 𝑡) = 0

𝜕𝜌
𝜕𝑟

⃒⃒⃒
𝑟=0+

= 𝜕𝜌
𝜕𝑟

⃒⃒⃒
𝑟=𝑅−

𝑡

= −2𝑗

𝜌(𝑟, 0) = 𝜌0(𝑟) 𝑟 ∈ (0, 𝑅0)

−→ The total mass is conserved: ∫︁ 𝑅𝑡

0
𝜌(𝑟, 𝑡) 𝑑𝑟 =

∫︁ 𝑅0

0
𝜌0(𝑟) 𝑑𝑟
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The Hydrodynamic Limit Derivation of the Stefan Problem from the FBP

The Stefan problem

⎧⎪⎪⎨⎪⎪⎩
𝜕𝑣
𝜕𝑡

= 1
2

𝜕2𝑣
𝜕𝑟2

, 𝑣(𝑟, 𝑡)
⃒⃒⃒
𝑟=0,𝑋𝑡

= 0

𝑑𝑋𝑡
𝑑𝑡

= −(2𝑗)−1 𝜕𝑣(𝑟,𝑡)
𝜕𝑟

⃒⃒⃒
𝑟=𝑋𝑡

is obtained from the FBP by setting

𝑣(𝑟, 𝑡) := −
1

2

𝜕𝜌

𝜕𝑟
(𝑟, 𝑡)− 𝑗

then 𝜌(𝑟, 𝑡) = 2

∫︁ 𝑋𝑡

𝑟

(︁
𝑣(𝑟′, 𝑡) + 𝑗

)︁
𝑑𝑟′

the equation for 𝑋𝑡 is obtained by differentiating the identity 𝜌(𝑋𝑡, 𝑡) = 0.

−→ Local existence and uniqueness of classical solutions for the Stephan problem are known.
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The Hydrodynamic Limit Stationary macroscopic profiles

Stationary macroscopic profiles:

−→ Linear Profiles with slope −2𝑗 are stationary:

(𝑅(𝑀), 𝜌(𝑀)), 𝜌(𝑀)(𝑟) := 𝑎𝑀 − 2𝑗𝑟, 0 ≤ 𝑟 ≤ 𝑅(𝑀) := min

{︂
𝑎𝑀

2𝑗
, 1

}︂

The linear profiles are parametrized by 𝑀 := Total Mass −→
∫︀ 1
0 𝜌(𝑀)(𝑟) 𝑑𝑟 = 𝑀

M

!2 j

0 1
r

ΡM

Figure : Stationary solution for 𝑀 < 𝑗

M

!2 j

0 1
r

ΡM

Figure : Stationary solution for 𝑀 > 𝑗

ℳ :=
{︁
𝜌(𝑀), 𝑀 > 0

}︁
−→ one-dimensional Manifold of Classical Stationary Solutions
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Proof of the Hydrodynamic Limit

Hydrodynamic Limit: Strategy of the Proof

We prove that

“𝑁−1𝜉
(𝑁)

𝑁2𝑡
−→ 𝜌𝑡” as 𝑁 → ∞ Hydrodynamic Limit Theorem

where (𝜌𝑡(·), 𝑅𝑡), (𝑅𝑡 boundary of 𝜌𝑡) is a “generalized solution” of the FBP

————

(𝑢𝑡(·), 𝑋𝑡) Generalized Solution of the FBP:= Limit of Quasi-Solutions

where

a Quasi-Solution is obtained by relaxing the mass conservation costraint in the FBP

————

Strategy of the Proof

1 Characterization of 𝜌𝑡 as the unique separating element of the “Barriers” through:
approximating microscopic processes
mass transport inequalities

2 Characterization of 𝑢𝑡 as the unique separating element of the Barriers
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Proof of the Hydrodynamic Limit Characterization via Barriers

Key Idea: Monotonicity

Compare the original process 𝜉𝑡 with the auxiliary process 𝜉−𝑡

Fix a time 𝑇 > 0

𝜉−𝑡 −→

⎧⎪⎪⎨⎪⎪⎩
in [0, 𝑇 ) −→ evolution with Independent Random Walk

at time 𝑇 −→
{︂

𝑁+(𝑇 ) particles are added at site 0
the 𝑁−(𝑇 ) rightmost particles are removed

where
𝑁+(𝑇 ) := number of particles added up to time 𝑇
𝑁−(𝑇 ) := number of particles removed up to time 𝑇

}︂
−→ in the original process 𝜉𝑡

then

“𝜉−𝑇 is obtained from 𝜉𝑇 by moving mass to the left”

—————
𝜉+𝑡 −→ is defined analogously, but the addition/removal mechanism is performed at time 0

“𝜉+𝑇 is obtained from 𝜉𝑇 by moving mass to the right”
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Proof of the Hydrodynamic Limit Characterization via Barriers

Mass Transport Inequalities

Definition (Partial order)

For 𝜉, 𝜉′ ∈ {0, . . . , 𝑁}N we say that
𝜉 ≤ 𝜉′

iff 𝜉′ is obtained from 𝜉 my moving mass to the right, e.g.

𝐹𝑁 (𝑥; 𝜉) ≤ 𝐹𝑁 (𝑥; 𝜉′) for all 𝑥 ∈ {0, . . . , 𝑁 − 1}

where
𝐹𝑁 (𝑥; 𝜉) =

∑︁
𝑦≥𝑥

𝜉(𝑦)

THEN

𝜉−𝑡 ≤ 𝜉𝑡 ≤ 𝜉+𝑡

“stochastically”: the two processes can be both realized on a same space where the inequality
holds pointwise almost surely.

Gioia Carinci – joint work with C. Giardinà, A. De Masi, E. Presutti (Università di Modena e Reggio Emila)Mass transport via Current Reservoirs: 5 March 2014 15 / 33



Proof of the Hydrodynamic Limit Characterization via Barriers

Approximating processes

IDEA −→ divide the time interval [0, 𝑁2𝑡] (Hydrodynamic Time Scale) into
small intervalls of lenght 𝑁2𝛿, 𝛿 small

𝜉
(𝛿,±)
𝑡 −→

⎧⎪⎪⎨⎪⎪⎩
evolution with Independent Random Walk −→ in (𝑘𝑁2𝛿, (𝑘 + 1)𝑁2𝛿)

addition/removal mechanism −→
{︂

at the beginning of the intervals for 𝜉(𝛿,+)

at the end of the intervals for 𝜉(𝛿,−)

THEN

𝜉
(𝛿,−)

𝑘𝑁2𝛿
≤ 𝜉𝑘𝑁2𝛿 ≤ 𝜉

(𝛿,+)

𝑘𝑁2𝛿
for all 𝑘 ∈ N
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Proof of the Hydrodynamic Limit Characterization via Barriers

Idea of the Proof: Barriers

IDEA −→ 𝜉
(𝛿,±)
𝑡 evolve as Independent Random Walk into the intervals, then they can be treated

with traditional techniques to get the Hydrodynamic Limit.

𝜉
(𝛿,−)

𝑘𝑁2𝛿
≤ 𝜉𝑘𝑁2𝛿 ≤ 𝜉

(𝛿,+)

𝑘𝑁2𝛿

↓ ↓ ↓ as 𝑁 → ∞ Hydrodynamic Limit

𝑆
(𝛿,−)
𝑘𝛿 ≤ ? ≤ 𝑆

(𝛿,+)
𝑘𝛿

in the sense of Mass Transport!

——————

We expect that

the mass-transport order is preserved in the limit⃒⃒
𝑆
(𝛿,+)
𝑘𝛿 − 𝑆

(𝛿,−)
𝑘𝛿

⃒⃒
→ 0 as 𝛿 → 0 in some sense

this would characterize the hydrodynamic limit 𝜌𝑡 as the limit as 𝛿 → 0 of 𝑆(𝛿,±)
𝑡 in some sense
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Proof of the Hydrodynamic Limit Characterization via Barriers

Hydrodynamic Limit for the Approximating Processes

We prove that
𝜉
(𝛿,±)

𝑘𝑁2𝛿
−→ 𝑆

(𝛿,±)
𝑘𝛿 as 𝑁 → ∞

in the following sense:

Theorem

Given any 𝑇 > 0 for any 𝛿 > 0 small enough, any 𝑘 : 𝑘𝛿 ≤ 𝑇 and any 𝜁 > 0

lim
𝑁→∞

𝑃
(𝑁)
𝜉0

[︃
max

𝑥∈{0,...,𝑁}

⃒⃒⃒
𝑁−1𝐹𝑁 (𝑥; 𝜉

(𝛿,±)

𝑘𝑁2𝛿
)− 𝐹 (𝑁−1𝑥;𝑆

(𝛿,±)
𝑘𝛿 (𝜌0))

⃒⃒⃒
≤ 𝜁

]︃
= 1

where

𝐹𝑁 (𝑥; 𝜉) :=

𝑁∑︁
𝑦=𝑥

𝜉(𝑦), 𝐹 (𝑟; 𝜌) :=

∫︁ 1

𝑟
𝜌(𝑟′)𝑑𝑟′

and 𝜌0 and 𝜉0 are “close” in some sense.
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Proof of the Hydrodynamic Limit Characterization via Barriers

Barriers:

S
(𝛿,+)
k𝛿 (𝜌) := 𝐺neum

𝛿 *𝐾(𝛿) · · · · · ·𝐺neum
𝛿 *𝐾(𝛿)𝜌 (𝑘 times)

S
(𝛿,−)
k𝛿 (𝜌) := 𝐾(𝛿)𝐺neum

𝛿 * · · · · · ·𝐾(𝛿)𝐺neum
𝛿 * 𝜌 (𝑘 times)

where

𝐺neum
𝛿 (𝑟, 𝑟′) = Green function of the heat equation in [0, 1] with Neumann b. c.

𝐾(𝛿) = “the cut and paste map”

1

j∆

RR∆ uu

u

1R∆u

uK∆

j∆D0

K(𝛿)u = j𝛿D0 + u1r∈[0,R𝛿(u)]

with 𝑅𝛿(𝑢) such that 𝐹 (𝑅𝛿(𝑢), 𝑢) =

∫︁ 1

𝑅𝛿

𝑢(𝑟)𝑑𝑟 = 𝑗𝛿
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Proof of the Hydrodynamic Limit Characterization via Barriers

Macroscopic Mass trasport inequalities

Call 𝐹 (𝑟;𝑢) :=

∫︁ 1

𝑟
𝑢(𝑟)𝑑𝑟, 𝑢 ≥ 0

Definition

For any integrable 𝑢 and 𝑣

𝑢 ≤ 𝑣 iff 𝐹 (𝑟;𝑢) ≤ 𝐹 (𝑟; 𝑣), ∀𝑟 ∈ [0, 1]

𝐹 (𝑟;𝑢) is a non increasing function of 𝑟 which starts at 0 from the total mass of 𝑢, 𝐹 (0;𝑢)

Lemma

For any 𝛿 > 0 and any integer 𝑘
𝑆
(𝛿,−)
𝑘𝛿 (𝑢) ≤ 𝑆

(𝛿,+)
𝑘𝛿 (𝑢)
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Proof of the Hydrodynamic Limit Characterization via Barriers

Hydrodynamic Limit: Barriers separating element

Definition

We say that a function 𝑢(·, 𝑡), 𝑢 ∈ 𝐿∞([0, 1],R+), separates the barriers {𝑆(𝛿,±)
𝑘𝛿 (𝑢)(·)} iff

𝑆
(𝛿,−)
𝑡 (𝑢)(·) ≤ 𝑢(·, 𝑡) ≤ 𝑆

(𝛿,+)
𝑡 (𝑢)(·) for all 𝛿 > 0 and 𝑡 such that 𝑡 = 𝑘𝛿, 𝑘 ∈ N

Theorem (Existence and uniqueness of separating elements)

Let 𝑢 ∈ 𝐿∞([0, 1],R+) and 𝐹 (0;𝑢) > 0. Then there exists a unique function 𝑢(𝑟, 𝑡) which
separates the barriers {𝑆(𝛿,±)

𝑘𝛿 (𝑢)}. 𝑢(𝑟, 𝑡) is continuous on the compacts of [0, 1]× (0,∞) and
𝑢(·, 𝑡) converges weakly to 𝑢(·) as 𝑡 → 0.

Theorem (Characterization of hydrodynamic limit)

The hydrodynamic limit 𝜌(𝑟, 𝑡) of 𝜉𝑡 separates the barriers {𝑆(𝛿,±)
𝑘𝛿 (𝜌0)}. Theorem
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Proof of the Hydrodynamic Limit FBP Generalized Solutions via Barriers

The Free Boundary Problem

The pair (𝑋𝑡, 𝑢(·, 𝑡)) is a Classical Solution of the FBP with initial datum (𝑋0, 𝑢0) in the time
interval [0, 𝑇 ) if it satisfies⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

𝜕𝑢
𝜕𝑡

= 1
2

𝜕2𝑢
𝜕𝑟2

𝑟 ∈ (0, 𝑋𝑡), 𝑡 ∈ [0, 𝑇 )

𝑢(𝑋𝑡, 𝑡) = 0 𝑡 ∈ [0, 𝑇 )

𝜕𝑢
𝜕𝑟

⃒⃒⃒
𝑟=0+

= −2𝑗 𝑡 ∈ [0, 𝑇 )

𝜕𝑢
𝜕𝑟

⃒⃒⃒
𝑟=𝑋−

𝑡

= −2𝑗 𝑡 ∈ [0, 𝑇 )

𝑢(𝑟, 0) = 𝑢0(𝑟) 𝑟 ∈ (0, 𝑋0), 𝑋𝑡=0 = 𝑋0

i) 𝑋𝑡 ∈ 𝐶1([0, 𝑇 ),R+);
ii) 𝑢(·, 𝑡) ∈ 𝐶2((0, 𝑅𝑡),R+) and it has limits with its derivatives at 0 and 𝑋𝑡, ∀𝑡 ∈ [0, 𝑇 );

𝑢(𝑟, ·) differentiable ∀𝑟 ∈ [0, 𝑋𝑡].

−→ The total mass is conserved: ∫︁ 𝑋𝑡

0
𝑢(𝑟, 𝑡) 𝑑𝑟 =

∫︁ 𝑋0

0
𝑢0(𝑟) 𝑑𝑟
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Proof of the Hydrodynamic Limit FBP Generalized Solutions via Barriers

The Free Boundary Problem: an equivalent formulation

The pair (𝑋𝑡, 𝑢(·, 𝑡)) is a Classical Solution of the FBP with initial datum (𝑋0, 𝑢0) in the time
interval [0, 𝑇 ) if it satisfies⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

𝜕𝑢
𝜕𝑡

= 1
2

𝜕2𝑢
𝜕𝑟2

𝑟 ∈ (0, 𝑋𝑡), 𝑡 ∈ [0, 𝑇 )

𝑢(𝑋𝑡, 𝑡) = 0 𝑡 ∈ [0, 𝑇 )

𝜕𝑢
𝜕𝑟

⃒⃒⃒
𝑟=0+

= −2𝑗 𝑡 ∈ [0, 𝑇 )

∫︀𝑋𝑡
0 𝑢(𝑟, 𝑡) 𝑑𝑟 =

∫︀𝑋0
0 𝑢0(𝑟) 𝑑𝑟 𝑡 ∈ [0, 𝑇 )

𝑢(𝑟, 0) = 𝑢0(𝑟) 𝑟 ∈ (0, 𝑋0), 𝑋𝑡=0 = 𝑋0

i) 𝑋𝑡 ∈ 𝐶1([0, 𝑇 ),R+);

ii) 𝑢(·, 𝑡) ∈ 𝐶2((0, 𝑋𝑡),R+) and it has limits with its derivatives at 0 and 𝑋𝑡, ∀𝑡 ∈ [0, 𝑇 );
𝑢(𝑟, ·) differentiable ∀𝑟 ∈ [0, 𝑋𝑡].
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Proof of the Hydrodynamic Limit FBP Generalized Solutions via Barriers

Key Idea

For a given 𝑋𝑡 consider the problem without the mass conservation constraint:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

𝜕𝑣
𝜕𝑡

= 1
2

𝜕2𝑣
𝜕𝑟2

𝑟 ∈ (0, 𝑋𝑡), 𝑡 ∈ [0, 𝑇 )

𝑣(𝑅𝑡, 𝑡) = 0 𝑡 ∈ [0, 𝑇 )

𝜕𝑣
𝜕𝑟

⃒⃒⃒
𝑟=0+

= −2𝑗 𝑡 ∈ [0, 𝑇 )

𝑣(𝑟, 0) = 𝑣0(𝑟) 𝑟 ∈ (0, 𝑋0), 𝑋𝑡=0 = 𝑋0

then

𝑣(𝑟, 𝑡) :=

∫︁
𝐺𝑋, neum

0,𝑡 (𝑟′, 𝑟)𝑣0(𝑟
′) 𝑑𝑟′ +

∫︁ 𝑡

0
𝑗𝐺𝑋, neum

𝑠,𝑡 (0, 𝑟) 𝑑𝑠

where

𝐺𝑋, neum
𝑠,𝑡 (𝑟, ·) = law density of −→

Brownian motion 𝐵𝑡 starting from 𝑟 at time 𝑠,
reflected at 0 and restricted to trajectories
so that 𝐵𝑠′ < 𝑋𝑠′ , ∀𝑠′ ∈ [𝑠, 𝑡]

∫︁
𝐼
𝐺𝑋, neum

𝑠,𝑡 (𝑟′, 𝑟)𝑑𝑟 = 𝑃𝑟′;𝑠[𝜏
𝑋
𝑠 > 𝑡 ; 𝐵𝑡 ∈ 𝐼], 𝜏𝑋𝑠 = inf{𝑡 ≥ 𝑠 : 𝐵𝑡 ≥ 𝑋𝑡}, 𝐼 ⊂ R+
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Proof of the Hydrodynamic Limit FBP Generalized Solutions via Barriers

Quasi-Solutions and Generalized Solutions

Definition (Quasi-solutions)

(𝑋𝑡, 𝑢(·, 𝑡), 𝜖) is a quasi-solution of the FBP in the time interval [0, 𝑇 ) with initial datum 𝑢0 and
accuracy parameter 𝜖 if:

(𝑋𝑡, 𝑢(·, 𝑡)) satisfies the problem where the mass conservation constraint is replaced by

sup
𝑡≤𝑇

⃒⃒⃒ ∫︁ 𝑋𝑡

0
𝑢(𝑟, 𝑡) 𝑑𝑟 −

∫︁ 𝑋0

0
𝑢(𝑟, 0) 𝑑𝑟

⃒⃒⃒
≤ 𝜖, 𝑡 ∈ [0, 𝑇 ] FBP

𝑋𝑡 > 0 is Lipschitz and piecewise 𝐶1 (with finitely many discontinuities of the derivative)

𝑢(𝑟, 𝑡) is “smooth”.

Definition (Generalized solutions)

(𝑋𝑡, 𝑢(𝑟, 𝑡)) is a generalized solution of the FBP in [0, 𝑇 ) with initial datum 𝑢0 if there exists a

sequence (𝑋
(𝑛)
𝑡 , 𝑢(𝑛)(·, 𝑡), 𝜖𝑛), 𝑡 ∈ [0, 𝑇 ], of quasi-solutions in [0, 𝑇 ) with initial datum 𝑢0 such

that
lim

𝑛→∞
𝜖𝑛 = 0 and lim

𝑛→∞
𝑢(𝑛) = 𝑢 weakly
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Proof of the Hydrodynamic Limit FBP Generalized Solutions via Barriers

Strategy of the Proof

Definition (Partial order modulo 𝑚)

For any integrable 𝑢 and 𝑣 and 𝑚 > 0, we define

𝑢 ≤ 𝑣 modulo 𝑚 iff for all 𝑟 ≥ 0: 𝐹 (𝑟;𝑢) ≤ 𝐹 (𝑟; 𝑣) +𝑚

We use the probabilistic representation of the quasi-solution and the relaxed condition on the
mass to prove that:

Proposition

If (𝑋𝑡, 𝑢(𝜖)(·, 𝑡), 𝜖) is a quasi-solution of the FBP with accuracy 𝜖 then for any 𝛿 > 0, there is 𝑐 so
that for all 𝑘 ∈ N such that 𝑘𝛿 ≤ 𝑇

𝑆
(𝛿,−)
𝑘𝛿 (𝑢(𝜖)(·, 0)) ≤ 𝑢(𝜖)(·, 𝑘𝛿) ≤ 𝑆

(𝛿,+)
𝑘𝛿 (𝑢(𝜖)(·, 0)) modulo 𝑐𝑘𝜖

THEN

The Generalized Solution 𝑢 = lim𝜖→0 𝑢(𝜖) of the FBP is the unique separating element between
barriers!
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Proof of the Hydrodynamic Limit FBP Generalized Solutions via Barriers

Existence and Uniqueness

Theorem (Existence and uniqueness)

For any 𝑢0 ∈ 𝐿∞(R+,R+) ∩ 𝐿1(R+,R+) and any 𝑇 > 0 the following holds.

(a) There exists a Generalized Solution (𝑋𝑡, 𝑢(𝑟, 𝑡)) of the FBP in [0, 𝑇 ) with initial datum 𝑢0.

(b) Let 𝑆𝑡(𝑢0) be the Separating Element of the Barriers {𝑆(𝛿,±)
𝑘𝛿 (𝑢0)}.

Then, if 𝑢(·, 𝑡) is a generalized solution of the FBP in [0, 𝑇 ) with initial datum 𝑢0 then

𝑢(·, 𝑡) = 𝑆𝑡(𝑢0) for all 𝑡 ∈ [0, 𝑇 )

Consequence:

“The Hydrodynamic Limit of 𝜉𝑡 is equal to the Generalized Solution of the FBP”

“ lim
𝑁→∞

(𝑁−1𝜉𝑁2𝑡, 𝑅𝜉
𝑁2𝑡

) = (𝑢(·, 𝑡), 𝑋𝑡)
′′
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The Super-Hydrodynamic Limit

Stationary macroscopic profiles:

−→ Linear Profiles with slope −2𝑗 are stationary:

(𝑅(𝑀), 𝜌(𝑀)), 𝜌(𝑀)(𝑟) := 𝑎𝑀 − 2𝑗𝑟, 0 ≤ 𝑟 ≤ 𝑅(𝑀) := min

{︂
𝑎𝑀

2𝑗
, 1

}︂

The linear profiles are parametrized by 𝑀 := Total Mass −→
∫︀ 1
0 𝜌(𝑀)(𝑟) 𝑑𝑟 = 𝑀

M

!2 j

0 1
r

ΡM

Figure : Stationary solution for 𝑀 < 𝑗

M

!2 j

0 1
r

ΡM

Figure : Stationary solution for 𝑀 > 𝑗

ℳ :=
{︁
𝜌(𝑀), 𝑀 > 0

}︁
−→ one-dimensional Manifold of Classical Stationary Solutions
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The Super-Hydrodynamic Limit

Stability of the manifold of stationary profiles.

Theorem (Stability)

Let
∫︁ 1

0
𝜌0(𝑟)𝑑𝑟 = 𝑀 and 𝜌𝑡 the hydro-limit starting from 𝜌0. Then, as 𝑡 → ∞, 𝜌𝑡 converges

weakly to 𝜌(𝑀) in the sense that

lim
𝑡→∞

𝐹 (𝑟; 𝜌𝑡) = 𝐹 (𝑟; 𝜌(𝑀)), ∀𝑟 ∈ [0, 1]

where 𝐹 (𝑟;𝑢) =

∫︁ 1

𝑟
𝑢(𝑟)𝑑𝑟

FICK’s LAW:

Agreement: The Stationary Profiles are Stable and Linear

Disagrement: The Stationary Profile is not Unique because the Desity is not
fixed (unlike the case of Density Reservoirs)
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The Super-Hydrodynamic Limit

Microscopic Stationary State

On the one hand:

𝜉𝑡 is an irreducible, aperiodic Markov Process ⇒

⎧⎨⎩ if it has a stationary state then
it is even a limiting state
and it is unique

On the other hand:

“𝑁−1𝜉𝑁2𝑡 −→ 𝜌𝑡” as 𝑁 → ∞ Hydrodynamic Limit (𝑡 fixed)

“𝜌𝑡 −→ 𝜌(𝑚)” as 𝑡 → ∞ with 𝜌(𝑚) ∈ ℳ, 𝑚 = lim
𝑁→∞

𝑁−1|𝜉0|

Interchange of limits in not allowed!

THEN

There is a second time scale beyond the hydrodynamic one

where we expect to observe one of the two following scenarios

either there is a preferential profile

or none of such profiles is stationary
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The Super-Hydrodynamic Limit Mass fluctuations

The total number of particles

|𝜉𝑡| = Total Number of particles at time 𝑡

∙ particle added: |𝜉| → |𝜉|+ 1 → at rate 𝑗
𝑁

∙ particle deleted: |𝜉| → |𝜉| − 1 → at rate 𝑗
𝑁

⎫⎬⎭−→
|𝜉𝑡| performs a
symmetric random walk
with jumps ±1 at rate 𝑗

𝑁

The density
|𝜉𝑡|
𝑁

changes after times of the order 𝑁3:

𝑀𝑁
𝑡 :=

|𝜉𝑁3𝑡|
𝑁

−→ 𝐵𝑡 as 𝑁 → ∞

where 𝐵𝑡 := Brownian Motion on R+ with reflecting boundary conditions at 0
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The Super-Hydrodynamic Limit Diffusion on the manifold of stationary profiles

Superhydrodynamic Limit
Brownian motion on the manifold of stationary profiles

Theorem (Super-hydrodynamic limit)

Let 𝜉(𝑁) be a sequence such that |𝜉(𝑁)|𝑁−1 → 𝑚 > 0 as 𝑁 → ∞. Let 𝑡𝑁 be an increasing,
divergent sequence, then the process 𝜉𝑁2𝑡𝑁

has two regimes:

Subcritical. Suppose 𝑁−1𝑡𝑁 → 0, then

lim
𝑁→∞

𝑃
(𝑁)

𝜉(𝑁)

[︃
max

𝑥∈{0,...,𝑁}

⃒⃒⃒⃒
1

𝑁
𝐹𝑁 (𝑥; 𝜉𝑁2𝑡𝑁

)− 𝐹 (𝑁−1𝑥; 𝜌(𝑚))

⃒⃒⃒⃒
≤ 𝜁

]︃
= 1 (1)

Critical. Let 𝑡𝑁 = 𝑁𝑡 then

lim
𝑁→∞

𝑃
(𝑁)

𝜉(𝑁)

[︃
max

𝑥∈{0,...,𝑁}

⃒⃒⃒⃒
1

𝑁
𝐹𝑁 (𝑥; 𝜉𝑁3𝑡)− 𝐹 (𝑁−1𝑥; 𝜌(𝑀

(𝑁)
𝑡 ))

⃒⃒⃒⃒
≤ 𝜁

]︃
= 1 (2)

where 𝑀
(𝑁)
𝑡 := 𝜖|𝜉(𝑁)|𝑁3𝑡| converges in law as 𝑁 → ∞ to 𝐵𝑗𝑡, where (𝐵𝑡)𝑡≥0, 𝐵0 = 𝑚, is

the Brownian motion on R+ reflected at the origin.

Gioia Carinci – joint work with C. Giardinà, A. De Masi, E. Presutti (Università di Modena e Reggio Emila)Mass transport via Current Reservoirs: 5 March 2014 32 / 33



References

References

Carinci, De Masi, Giardinà, Presutti:
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