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Transport via Current Reservoirs

Continuous time Independent Random Walkersin  {0,1,...,N} —  jumps outside suppressed

o0
[
ﬁvzl—-

e particle created in 0 — atrate jN !
—— to produce a current —2j
e rightmost particle deleted — atrate jN—1

References:
- IRW — [CDGP]: G.Carinci, A.De Masi, C.Giardina, E.Presutti
- SEP — [DPTV], [DFP]: A.De Masi, P.Ferrari, D.Tsagkarogiannis, E.Presutti, M.E.Vares
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Density Reservoirs
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Plan of the talk

@ The Model

© The Hydrodynamic Limit
@ The Free Boundary Problem
@ Stationary macroscopic profiles

e Proof of the Hydrodynamic Limit
@ Characterization via Barriers
@ FBP Generalized Solutions via Barriers

° The Super-Hydrodynamic Limit
@ Mass fluctuations
@ Diffusion on the manifold of stationary profiles
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Introduction

Motivations

@ Topological Interactions

@ Multiscale Phenomena

© Microscopic Models for Free Boundary Problems

© Beyond the classical Existence and Uniqueness results for the FBP
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Independent particles with current reservoirs: [CDGP]

Independent Random Walk in  {0,1,..., N} —  jumps outside suppressed
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e particle created in 0 -  atrate &

] — to produce a current —2j
e rightmost particle deleted — atrate 4
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The Generator

Configurations —  £(xz) = number of particles at =, z€{0,1,...,N}

¢e{0,1,..., N} NeN

Generator: L = 4 L, + Lo + 4 Lg:
Lo = generator of independent symmetric random walks in {0, 1, ..., N} with reflecting boundaries

N
Lof(€) = 5 &) (SE=+1) = J(©) + €+ 1) (FEH) = £(©))
z=0

where £*Y is the configuration obtained from £ moving a particle from z to y.
Lg = add a particle at the origin

Laf(§) = f(§+10) — f(&)

L4 = remove a particle at the rightmost occupied site

Ly f(&) = f(§ —1x,) — f(§)

Xe :=min{ye{o,1,...,N} : 5(y)>0}
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The Hydrodynamic Limit

3 pt = pe(r),r € [0,1] such that

1
N§N2t — pt as N — oo
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The Hydrodynamic Limit

3 pt = pe(r),r € [0,1] such that

1
N§N2t — pt as N — oo

Theorem

3 pt = pt(r),r € [0,1], t > 0, non negative and L such that “¢ 52, converges to p; weakly” which
means that for any ¢ > 0

. (™) 1 . _ —1. _
Jim P Le{%l’éfc,N}‘NFN(w,ﬁmt) F(N w7pt)'>4} 0

where

N 1
Fn@&) =360 Fiip)= [ pth)ar

y==

proved in [CDGP] under suitable assumptions on the initial datum.
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The Free Boundary Problem
Identification of the limit (heuristics): the FBP

Let p¢(-) is the hydrodynamic limit of & and Ry its “boundary”.
Ry := inf {7“ €[0,1]: p(z,t) =0Vz > 7‘}

then (R¢, p+(+)) is a “Generalized Solution” of the above defined FBP,

@ j = 0: no births and deaths

o _15% o _oo) _,
ot 20r2’ orlo  orlt

The heat equation with Neumann boundary conditions.

@ j # 0: adding births and deaths

dp 10%p
—_——= - iDo — jD 0,R
ot 2 or2 +3Do JL Ry 7"6[ ) t]

@ D, =Dirac delta at r
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The Hydrodynamic Limit The Free Boundary Problem

The Free Boundary Problem

— If pe(r) is smooth in (0, R;), integrating by parts we obtain the FBP in its calssical formulation

The pair (R, p(-,t)) is a Classical Solution of the FBP with initial datum (Ro, po) if it is “smooth

enough” and satisfies

Q

P

62
¢ 877"5 re (07 Ri)

=

p(Re,t) =0

or |.—o+

p(r,0) = po(r) r € (0, Ro)

— The total mass is conserved:
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The Hydrodynamic Limit Derivation of the Stefan Problem from the FBP

The Stefan problem

ov _ 182 _
37;) 587.12]’ U(th) r=0,X; -
dXy _ -\ —1 9v(r,t)
dtt - _(2-]) or r=X;
is obtained from the FBP by setting
10p
) t) = ——— k) t) —
o(r,t) = =5 SE (1) =

Xt
then p(r,t) = 2/ <'U(T’, t) + j) dr’
™
the equation for X; is obtained by differentiating the identity p(X¢,t) = 0.

— Local existence and uniqueness of classical solutions for the Stephan problem are known.
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Sy TR Rz
Stationary macroscopic profiles:

— Linear Profiles with slope —2j are stationary:

(RO p(M)y pM) (1) = apg — 2jr, 0<r<RM .— min{%J}
J
The linear profiles are parametrized by M := Total Mass — J oM () dr = M
| |
| —2j !
| |
| |
l l
-2j I M R
M ! |
| |
I . 1 .
Figure : Stationary solution for M < j Figure : Stationary solution for M > j

M= { p(M M > 0} — one-dimensional Manifold of Classical Stationary Solutions
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Hydrodynamic Limit: Strategy of the Proof

We prove that
“N‘lgl(vj\é)t —p” a N oo Hydrodynamic Limit
where (p¢(+), Rt), (R: boundary of p;) is a “generalized solution” of the FBP

(ut(+), X¢) Generalized Solution of the FBP:= Limit of Quasi-Solutions
where

a Quasi-Solution is obtained by relaxing the mass conservation costraint in the FBP

Strategy of the Proof

@ Characterization of p, as the unique separating element of the “Barriers” through:

@ approximating microscopic processes
@ mass transport inequalities

@ Characterization of u; as the unique separating element of the Barriers

Gioia Carinci — joint work with C. Giardi Mass transport via Current Reservoirs: 5 March 2014

13/33



aedien i B
Key Idea: Monotonicity

Compare the original process &; with the auxiliary process &,

FixatimeT >0
in [0,7) — evolution with Independent Random Walk

& — attime T —s NT(T) particles are added at site 0
the N~ (T') rightmost particles are removed
where
NT(T) := number of particles added up to time T —» inthe original process &
N—(T) := number of particles removed up to time T’ Qrigina’ process ¢
o
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aedien i B
Key Idea: Monotonicity

Compare the original process &; with the auxiliary process &,

FixatimeT >0
in [0,7) — evolution with Independent Random Walk

& — attime T —s NT(T) particles are added at site 0
the N~ (T') rightmost particles are removed
where
NT(T) := number of particles added up to time T —» inthe original process &
N—(T) := number of particles removed up to time T’ Qrigina’ process ¢
o
then

“¢1 is obtained from &7 by moving mass to the left”
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aedien i B
Key Idea: Monotonicity

Compare the original process &; with the auxiliary process &,

FixatimeT >0
in [0,7) — evolution with Independent Random Walk

& — attime T —s NT(T) particles are added at site 0
the N~ (T') rightmost particles are removed
where
NT(T) := number of particles added up to time T —» inthe original process &
N—(T) := number of particles removed up to time T’ Qrigina’ process ¢
o
then

“¢1 is obtained from &7 by moving mass to the left”

ﬁf — is defined analogously, but the addition/removal mechanism is performed at time 0
“{}r is obtained from £ by moving mass to the right”
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Proof of the Hydrodynamic Limit Characterization via Barriers

Mass Transport Inequalities

Definition (Partial order)
Foré¢, ¢ €{0,..., N} we say that

e<e
iff £’ is obtained from ¢ my moving mass to the right, e.g.
Fn(z;€) < Fy(x;¢) foral ze{0,...,N—1}
where
Fy(z:6) =) &)
y>z
v
THEN
& <& <&t

“stochastically”: the two processes can be both realized on a same space where the inequality

holds pointwise almost surely.

Gioia Carinci — JOINt work with C. Giardi Mass transport via Current Reservoirs:

5 March 2014 15/33




aedien i B
Approximating processes

IDEA — divide the time interval [0, N2¢] (Hydrodynamic Time Scale) into
small intervalls of lenght N26, 6 smalll

evolution with Independent Random Walk — in (N2, (k + 1)N245)

(6,%)
t - at the beginning of the intervals for £(%:+)

addition/removal mechanism — { at the end of the intervals for £(5—)

THEN

8- 5+
€00) < Eunes < €LY forall keN
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Characterization via Barriers
Idea of the Proof: Barriers

IDEA — gt(‘s’i) evolve as Independent Random Walk into the intervals, then they can be treated

with traditional techniques to get the Hydrodynamic Limit.

5,— s,
Gnes S G < ERE
1 1 1 as N — oo Hydrodynamic Limit
s <0 < osgY

in the sense of Mass Transport!
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Characterization via Barriers
Idea of the Proof: Barriers

IDEA — gt(‘s’ﬁ evolve as Independent Random Walk into the intervals, then they can be treated
with traditional techniques to get the Hydrodynamic Limit.

5,— s,
Gnes S G < ERE
1 1 1 as N — oo Hydrodynamic Limit
s <0 < osgY

in the sense of Mass Transport!

We expect that

@ the mass-transport order is preserved in the limit

o [5%) — %) - 0as 5 — 0in some sense

this would characterize the hydrodynamic limit p; as the limit as 6 — 0 of St(‘s’i) in some sense
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Characterization via Barriers
Hydrodynamic Limit for the Approximating Processes

We prove that
€05 — S5 as No oo

in the following sense:

Theorem

Given any T > 0 for any 6 > 0 small enough, any k : k§ < T andany ¢ > 0

. _ s+ _ 5,4+
ngnoong“Le{rge;gN}\N PPN (360053 — FIN " 23 515 (po))| <<} =1

where
N 1
Fy@€) =Y ¢w).  Flrp)= [ o)
y=c "

and pg and &g are “close” in some sense.
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Characterization via Barriers
Barriers:

S (p) i= G K(O) . Gremm K0 p (k times)
S (p) i= KO Gpenm ... K®Gueum o (k times)

where

@ Gyev™(r,r") = Green function of the heat equation in [0, 1] with Neumann b. c.
o K = “the cut and paste map”

| |
| |
| |
| |
| ~__ |
— | — |
~— | ‘\=\\
| - |
B | ! :
e R "o :
K(é)u = _]6D0 +u 11‘6[07R5(u)]
1
with Rs(u) such that F(Rs(u),u) = / u(r)dr = 38
Rs
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Characterization via Barriers
Macroscopic Mass trasport inequalities

1
Call F(r;u) := / u(r)dr, w>0

Definition
For any integrable v and v

u<wv iff F(rju) < F(r;v), vr € [0,1]

@ F(r;u) is a non increasing function of r which starts at 0 from the total mass of u, F'(0; )

Lemma

For any 6 > 0 and any integer k
5,— 5,
Sty (w) < 855 ()
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Qv U B
Hydrodynamic Limit: Barriers separating element

Definition

We say that a function u(-,t), u € L°°([0, 1], R4.), separates the barriers {S,if;‘i) (u)()} iff

SOy <ult) <SP (w)()  foralls > 0andtsuchthatt = ks, k € N

Theorem (Existence and uniqueness of separating elements)

Letw € L°°([0,1],R4) and F(0;w) > 0. Then there exists a unique function u(r, t) which

separates the barriers {S,(j;’i) (u)}. u(r, t) is continuous on the compacts of [0, 1] x (0,00) and
u(-,t) converges weakly to u(-) ast — 0.

Theorem (Characterization of hydrodynamic limit)

The hydrodynamic limit p(r, t) of &; separates the barriers {S,(C‘f;i) (po)}- J
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FBP Generalized Solutions via Barriers
The Free Boundary Problem

The pair (X¢, u(-, t)) is a Classical Solution of the FBP with initial datum (Xo, uo) in the time
interval [0, T") if it satisfies

2

Gu—-1%% re(0,X;), telo,T)
w(Xe,t) =0 te0,T)
ou 9

|0+ 2j tel0,T)
ou .

Zu =-2 telo,T
or r=X; J [ )
u(r, 0) = uo(r) r € (0,Xo), Xi=0= Xo

) Xt e CH[0,T),Ry);
i) u(-,t) € C2((0, Rt),R4) and it has limits with its derivatives at 0 and X¢, Vt € [0, T);
u(r, -) differentiable vr € [0, X¢].

— The total mass is conserved:

/OXt u(r,t)dr = /(;XO uo(r) dr
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FBP Generalized Solutions via Barriers
The Free Boundary Problem: an equivalent formulation

The pair (X¢, u(+,t)) is a Classical Solution of the FBP with initial datum (Xo, uo) in the time

interval [0, T') if it satisfies

8%u

ou 1
2 or2

ot

u(X¢,t) =0

ou

or =-2

r=0t

fOX" u(r,t)dr = fOXO uo(r) dr

u(r,0) = uo(r)

i) X; e CL([0,T),Ry);

re (0, Xt),

r € (0, Xo),

te[0,7T)
te[0,T)

te0,T) [ < )

te[0,7T)

Xi=0 = Xo

i) u(-,t) € C?((0, X:),Ry) and it has limits with its derivatives at 0 and X, Vt € [0,7T);

u(r, -) differentiable vr € [0, X¢].
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FEP @z S i ame v  BaE
Key ldea

For a given X; consider the problem without the mass conservation constraint:

2
%: %grg T€(07Xt)7 tG[O,T)
v(Ry,t) =0 telo,T)
ov Y
or|,_ot 27 te[0,T)

U(T7 0) = ’UQ(’I") re (07X0)7 Xi=0 = Xo

then .
v(r,t) = /Gé;"eum(r',r)vo(ﬂ) dr’ +/ ij'ffle‘m“([)7 r)ds
0
where
Brownian motion B; starting from r at time s,
G mem () — Jaw density of —»  reflected at 0 and restricted to trajectories
' sothat By < X/, Vs’ € [s,1]
/Gfineum(r',r)dr = Pr/;S[TSX >t; By € 1], X =inf{t>s: B, > X}, ICRy
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FBP Generalized Solutions via Barriers
Quasi-Solutions and Generalized Solutions

Definition (Quasi-solutions)

(X¢,u(-,t),€) is aquasi-solution of the FBP in the time interval [0, T') with initial datum wo and
accuracy parameter e if:

@ (Xi,u(-,t)) satisfies the problem where the mass conservation constraint is replaced by

Xy X0
sup ‘ / u(r,t) dr — / u(r,0)dr| <e, t€[0,T] FBP
t<T ! Jo 0

@ X > 0 is Lipschitz and piecewise C' (with finitely many discontinuities of the derivative)
@ u(r,t) is “smooth”.

Definition (Generalized solutions)
(X¢,u(r,t)) is a generalized solution of the FBP in [0, T') with initial datum wy if there exists a

sequence )((77')7 u( ) wt),en), t € 0, T], of quasi—so/utions in 0, T) with initial datum uo such
+
that
lim e, =0 and lim ™ =u weakly

n—>00 n—>00
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FBP Generalized Solutions via Barriers
Strategy of the Proof

Definition (Partial order modulo m)

For any integrable v and v and m > 0, we define

uw<v modulom iff forallr >0: F(r;u) < F(r;v)+m

We use the probabilistic representation of the quasi-solution and the relaxed condition on the
mass to prove that:

Proposition

If (X¢,ul®) (-, 1), €) is a quasi-solution of the FBP with accuracy e then for any § > 0, there is ¢ so
that for all k € N such that ké < T

S (W (,0)) < w9 (-, k8) <SG (w (-, 0)) modulo  cke

THEN

The Generalized Solution v = lim._,o u(¢) of the FBP is the unique separating element between
barriers!

Gioia Carinci — joint work with C. Giardi Mass transport via Current Reservoirs: 5 March 2014 26/33



FBP Generalized Solutions via Barriers
Existence and Uniqueness

Theorem (Existence and uniqueness)

For any up € L™ (Ry,R.) N LY (R4, R4) and any T > 0 the following holds.

(a) There exists a Generalized Solution (X, u(r,t)) of the FBP in [0, T) with initial datum wg.

(b) Let St(uo) be the Separating Element of the Barriers {S,if;i) (uo)}-

Then, ifu(-,t) is a generalized solution of the FBP in [0, T') with initial datum uo then

u(-,t) = Se(uo) forall te€[0,T)

Consequence:

“The Hydrodynamic Limit of &; is equal to the Generalized Solution of the FBP”

(N_lgNQtf R§N2t) = (u('»t)7Xt)//

“ lim
N—oo
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Stationary macroscopic profiles:

— Linear Profiles with slope —2j are stationary:

(RO p(M)y pM) (1) = apg — 2jr, 0<r<RM .— min{%J}
J
The linear profiles are parametrized by M := Total Mass — J oM () dr = M
| |
| —2j !
| |
| |
l l
-2j I M R
M ! |
| |
I . 1 .
Figure : Stationary solution for M < j Figure : Stationary solution for M > j

M= { p(M M > 0} — one-dimensional Manifold of Classical Stationary Solutions
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Stability of the manifold of stationary profiles.

Theorem (Stability)

1
Let / po(r)dr = M and p; the hydro-limit starting from po. Then, as t — oo, p; converges

0
weakly to p(M) in the sense that

tlim F(r;pe) = F(r; pBD), vr € [0,1]
—o0

1
where F(r;u) = / u(r)dr

FICK’s LAW:

Agreement: The Stationary Profiles are Stable and Linear

Disagrement: The Stationary Profile is not Unique because the Desity is not
fixed (unlike the case of Density Reservoirs)
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Microscopic Stationary State

@ On the one hand:

if it has a stationary state then

& is an irreducible, aperiodic Markov Process = it is even a limiting state
and it is unique

@ On the other hand:

“‘N~leye, — p” as N — oo Hydrodynamic Limit (¢ fixed)
“or —> p(m)" as t — oo with p(m) eEM, m = lim N_1|£0|
N—oco

Interchange of limits in not allowed!
THEN
There is a second time scale beyond the hydrodynamic one
where we expect to observe one of the two following scenarios

@ either there is a preferential profile
@ or none of such profiles is stationary
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Mass fluctuations
The total number of particles

|&¢| = Total Number of particles at time ¢

e particle added: |¢] — |¢] +1 —  atrate & |&¢| performs a
—» symmetric random walk
e particle deleted: [¢] — |¢| —1 - at rate 4 with jumps %1 at rate %
The density ‘f\’—t‘ changes after times of the order N3
Mﬂ::%ﬁ& as N — oo

where By := Brownian Motion on R with reflecting boundary conditions at 0
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Diffusion on the manifold of stationary profiles
Superhydrodynamic Limit

Brownian motion on the manifold of stationary profiles

Theorem (Super-hydrodynamic limit)

Let£(N) be a sequence such that |€N)[N~1 — m > 0as N — cc. Lettx be an increasing,
divergent sequence, then the process & y2,,, has two regimes:

@ Subcritical. Suppose N~tn — 0, then

lim PWY)

N—oo &WV)

1 1
xe{%lan,N} ’NFN(x;gNth) - F(N v p(m))’ = C:| - (1)

@ Critical. Letty = Nt then

; (V) 1 . o p(N=1p s MIN| < | =
R I R B R

where M) := ¢|¢()| 5, | converges in law as N — oo to Bj;, where (By);>0, Bo = m, is
the Brownian motion on R reflected at the origin.

v
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