Mass transport via Current Reservoirs: a microscopic model for a Free Boundary Problem

Gioia Carinci

joint work with C. Giardinà, A. De Masi, E. Presutti

Università di Modena e Reggio Emila

YEP, March 2014

Gioia Carinci – **joint work with C. Giardi**

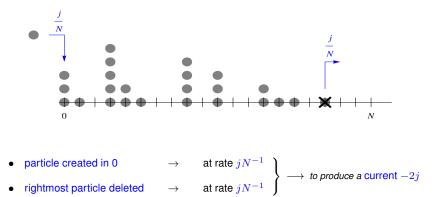
Mass transport via Current Reservoirs:

5 March 2014 1 / 33

< E

Transport via Current Reservoirs

Continuous time Independent Random Walkers in $\{0, 1, \dots, N\} \rightarrow jumps \text{ outside suppressed}$



References:

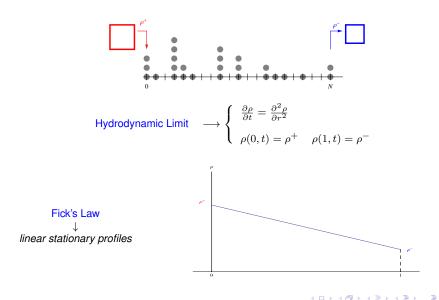
- IRW \rightarrow [CDGP]: G.Carinci, A.De Masi, C.Giardina, E.Presutti
- SEP \rightarrow [DPTV], [DFP]: A.De Masi, P.Ferrari, D.Tsagkarogiannis, E.Presutti, M.E.Vares

Gioia Carinci – joint work with C. Giardi

Mass transport via Current Reservoirs:

Introduction

Density Reservoirs



Gioia Carinci – joint work with C. Giardi

Mass transport via Current Reservoirs:

5 March 2014 3 / 33

Introduction

Plan of the talk

- The Hydrodynamic Limit
 - The Free Boundary Problem
 - Stationary macroscopic profiles
- Proof of the Hydrodynamic Limit
 - Characterization via Barriers
 - FBP Generalized Solutions via Barriers
 - The Super-Hydrodynamic Limit
 - Mass fluctuations
 - Diffusion on the manifold of stationary profiles

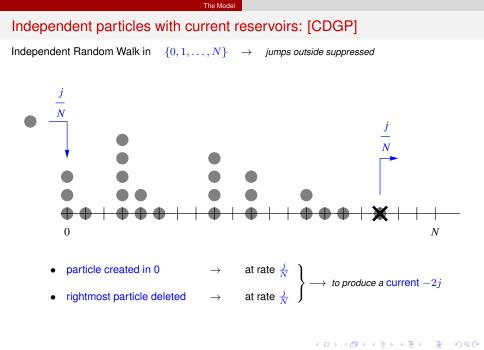
Motivations

Topological Interactions

Ø Multiscale Phenomena

Microscopic Models for Free Boundary Problems

Beyond the classical Existence and Uniqueness results for the FBP



Gioia Carinci – joint work with C. Giardi

Mass transport via Current Reservoirs:

5 March 2014 6 / 33

The Model

The Generator

$$\begin{array}{lll} \mbox{Configurations} & \longrightarrow & \xi(x) = \mbox{number of particles at } x, & x \in \{0,1,\ldots,N\} \\ & & \xi \in \{0,1,\ldots,N\}^{\mathbb{N}} & N \in \mathbb{N} \end{array}$$

Generator: $L = \frac{j}{N}L_a + L_0 + \frac{j}{N}L_d$:

 L_0 = generator of independent symmetric random walks in $\{0, 1, \dots, N\}$ with reflecting boundaries

$$L_0 f(\xi) = \frac{1}{2} \sum_{x=0}^N \xi(x) \left(f(\xi^{x,x+1}) - f(\xi) \right) + \xi(x+1) \left(f(\xi^{x+1,x}) - f(\xi) \right)$$

where $\xi^{x,y}$ is the configuration obtained from ξ moving a particle from x to y.

 L_a = add a particle at the origin

$$L_a f(\xi) = f(\xi + \mathbf{1}_0) - f(\xi)$$

 L_d = remove a particle at the rightmost occupied site

$$L_b f(\xi) = f(\xi - \mathbf{1}_{X_{\xi}}) - f(\xi)$$

$$X_{\boldsymbol{\xi}} := \min \left\{ y \in \{0, 1, \dots, N\} : \, \boldsymbol{\xi}(y) > 0
ight\}$$

Gioia Carinci – joint work with C. Giardi

Mass transport via Current Reservoirs:

The Hydrodynamic Limit

 $\exists \ \mathbf{\rho_t} = \mathbf{\rho_t}(r), r \in [0, 1]$ such that

$$\frac{1}{N} \xi_{N^2 t} \to \rho_t \qquad \text{as} \qquad N \to \infty$$

Gioia Carinci – **joint work with C. Giardi**

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・

The Hydrodynamic Limit

 $\exists \ \mathbf{\rho_t} = \mathbf{\rho_t}(r), r \in [0,1]$ such that

$$\frac{1}{N} \xi_{N^2 t} \to \rho_t \qquad \text{as} \qquad N \to \infty$$

Theorem

 $\exists \rho_t = \rho_t(r), r \in [0, 1], t \ge 0$, non negative and \mathbf{L}^1 such that " ξ_{N^2t} converges to ρ_t weakly" which means that for any $\zeta > 0$

$$\lim_{N \to \infty} P_{\xi}^{(N)} \left[\max_{x \in \{0, \dots, N\}} \left| \frac{1}{N} F_N(x; \xi_{N^2 t}) - F(N^{-1} x; \rho_t) \right| > \zeta \right] = 0$$

where

$$F_N(x;\xi) := \sum_{y=x}^N \xi(y); \qquad \quad F(r;\rho) := \int_r^1 \rho(r') dr'$$

proved in [CDGP] under suitable assumptions on the initial datum.

Gioia Carinci – joint work with C. Giardi

Mass transport via Current Reservoirs:

Strategy

8/33

5 March 2014

Identification of the limit (heuristics): the FBP

Let $\rho_t(\cdot)$ is the hydrodynamic limit of ξ_t and R_t its "boundary":

$$R_t := \inf \left\{ r \in [0,1] : \ \rho(z,t) = 0 \ \forall z \ge r \right\}$$

then $(R_t, \rho_t(\cdot))$ is a "Generalized Solution" of the above defined FBP.

•
$$j = 0$$
: no births and deaths

$$\frac{\partial \rho}{\partial t} = \frac{1}{2} \frac{\partial^2 \rho}{\partial r^2}, \qquad \qquad \frac{\partial \rho}{\partial r}\Big|_0 = \frac{\partial \rho}{\partial r}\Big|_1 = 0$$

The heat equation with Neumann boundary conditions.

• $j \neq 0$: adding births and deaths

$$\frac{\partial \rho}{\partial t} = \frac{1}{2} \frac{\partial^2 \rho}{\partial r^2} + j D_0 - j D_{R_t}, \qquad r \in [0, R_t]$$

• D_r = Dirac delta at r

Gioia Carinci – joint work with C. Giardi

The Free Boundary Problem

 \longrightarrow If $\rho_t(r)$ is smooth in $(0, R_t)$, integrating by parts we obtain the FBP in its calssical formulation

The pair $(R_t, \rho(\cdot, t))$ is a **Classical Solution** of the FBP with initial datum (R_0, ρ_0) if it is *"smooth enough"* and satisfies

$$\begin{cases} \frac{\partial \rho}{\partial t} = \frac{1}{2} \frac{\partial^2 \rho}{\partial r^2} & r \in (0, R_t) \\ \rho(R_t, t) = 0 \\ \frac{\partial \rho}{\partial r} \Big|_{r=0^+} = \frac{\partial \rho}{\partial r} \Big|_{r=R_t^-} = -2j \\ \rho(r, 0) = \rho_0(r) & r \in (0, R_0) \end{cases}$$

The total mass is conserved:

$$\int_0^{R_t} \rho(r,t) \, dr = \int_0^{R_0} \rho_0(r) \, dr$$

Gioia Carinci – joint work with C. Giardi

The Stefan problem

$$\begin{cases} \left. \frac{\partial v}{\partial t} = \frac{1}{2} \frac{\partial^2 v}{\partial r^2}, \qquad v(r,t) \right|_{r=0,X_t} = 0 \\ \\ \left. \frac{dX_t}{dt} = -(2j)^{-1} \frac{\partial v(r,t)}{\partial r} \right|_{r=X_t} \end{cases}$$

is obtained from the FBP by setting

$$v(r,t) := -\frac{1}{2} \frac{\partial \rho}{\partial r}(r,t) - j$$

then
$$\rho(r,t)=2\int_{r}^{X_{t}}\Big(v(r',t)+j\Big)dr'$$

the equation for X_t is obtained by differentiating the identity $\rho(X_t, t) = 0$.

→ Local existence and uniqueness of classical solutions for the Stephan problem are known.

・ロト ・回ト ・ヨト ・ヨト

Stationary macroscopic profiles:

 \rightarrow Linear Profiles with slope -2j are stationary:

$$(R^{(M)}, \rho^{(M)}), \qquad \rho^{(M)}(r) := a_M - 2jr, \qquad 0 \le r \le R^{(M)} := \min\left\{\frac{a_M}{2j}, 1\right\}$$

The linear profiles are parametrized by $M := Total Mass \longrightarrow \int_0^1 \rho^{(M)}(r) dr = M$

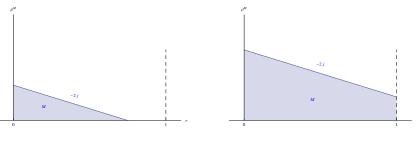


Figure : Stationary solution for M < j

Figure : Stationary solution for M > j

 $\mathcal{M} := \left\{ \rho^{(M)}, \ M > 0 \right\} \quad \longrightarrow \text{ one-dimensional Manifold of Classical Stationary Solutions}$

Gioia Carinci – joint work with C. Giardi

Mass transport via Current Reservoirs:

5 March 2014 12 / 33

Hydrodynamic Limit: Strategy of the Proof

 $"N^{-1}\xi_{N^2t}^{(N)} \longrightarrow \rho_t" \qquad \text{as} \qquad N \to \infty \qquad \text{Hydrodynamic Limit} \qquad \text{Theorem}$

where $(\rho_t(\cdot), R_t)$, $(R_t$ boundary of $\rho_t)$ is a "generalized solution" of the FBP

 $(u_t(\cdot), X_t)$ Generalized Solution of the FBP:= Limit of Quasi-Solutions

where

a Quasi-Solution is obtained by relaxing the mass conservation costraint in the FBP

Strategy of the Proof

• Characterization of ρ_t as the unique separating element of the "Barriers" through:

- approximating microscopic processes
- mass transport inequalities

2 Characterization of u_t as the unique separating element of the *Barriers*

Gioia Carinci – joint work with C. Giardi

Mass transport via Current Reservoirs:

◆□▶ ◆□▶ ◆三▶ ◆三▶ ◆□▶ ◆□

Key Idea: Monotonicity

Gioia Carinci – joint work with C. Giard

◆□ > ◆□ > ◆豆 > ◆豆 > ̄豆 − のへで

Key Idea: Monotonicity

then

" ξ_T^- is obtained from ξ_T by moving mass to the left"

Gioia Carinci – joint work with C. Giardi

◆□ > ◆□ > ◆豆 > ◆豆 > ̄豆 − のへで

Key Idea: Monotonicity

then

" ξ_T^- is obtained from ξ_T by moving mass to the left"

 $\xi_t^+ \longrightarrow$ is defined analogously, but the addition/removal mechanism is performed at time 0

" ξ_T^+ is obtained from ξ_T by moving mass to the right"

Gioia Carinci – joint work with C. Giardi

Mass transport via Current Reservoirs:

5 March 2014 14 / 33

・ロット語・ (曲・ (目・)

Mass Transport Inequalities

Definition (Partial order)

For $\xi,\xi'\in\{0,\ldots,N\}^{\mathbb{N}}$ we say that

$$\xi \leq \xi'$$

iff ξ' is obtained from ξ my moving mass to the right, e.g.

$$F_N(x;\xi) \le F_N(x;\xi')$$
 for all $x \in \{0,\ldots,N-1\}$

where

$$F_N(x;\xi) = \sum_{y \ge x} \xi(y)$$

THEN

$\xi_t^- \le \xi_t \le \xi_t^+$

"stochastically": the two processes can be both realized on a same space where the inequality holds pointwise almost surely.

Gioia Carinci – **joint work with C. Giardi**

Mass transport via Current Reservoirs:

5 March 2014 15 / 33

・ロト ・回ト ・ヨト ・ヨト … ヨ

Approximating processes

IDEA \rightarrow divide the time interval $[0, N^2t]$ (Hydrodynamic Time Scale) into small intervalls of lenght $N^2\delta$. δ small

 $\xi_t^{(\delta,\pm)} \longrightarrow \left\{ \begin{array}{l} \text{evolution with Independent Random Walk} \longrightarrow \text{in } (kN^2\delta, (k+1)N^2\delta) \\ \\ \text{addition/removal mechanism} \longrightarrow \left\{ \begin{array}{l} \text{at the beginning of the intervals for } \xi^{(\delta,+)} \\ \\ \text{at the end of the intervals for } \xi^{(\delta,-)} \end{array} \right. \right.$

THEN

$$\xi_{kN^2\delta}^{(\delta,-)} \leq \xi_{kN^2\delta} \leq \xi_{kN^2\delta}^{(\delta,+)} \qquad \text{for all} \quad k \in \mathbb{N}$$

Gioia Carinci – joint work with C. Giardi

・ロ・・母・・ヨ・・日・ うへの

Idea of the Proof: Barriers

 $\mathsf{IDEA} \longrightarrow \xi_t^{(\delta,\pm)}$ evolve as Independent Random Walk into the intervals, then they can be treated with traditional techniques to get the Hydrodynamic Limit.

in the sense of Mass Transport!

Gioia Carinci – joint work with C. Giardi

・ロト ・回ト ・ヨト ・ヨト

Idea of the Proof: Barriers

 $\mathsf{IDEA} \longrightarrow \xi_t^{(\delta,\pm)}$ evolve as Independent Random Walk into the intervals, then they can be treated with traditional techniques to get the Hydrodynamic Limit.

We expect that

- the mass-transport order is preserved in the limit
- $\bullet \ \left|S_{k\delta}^{(\delta,+)}-S_{k\delta}^{(\delta,-)}\right|\to 0 \text{ as } \delta\to 0 \text{ in some sense}$

this would characterize the hydrodynamic limit ρ_t as the limit as $\delta \to 0$ of $S_t^{(\delta,\pm)}$ in some sense

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ▶

Hydrodynamic Limit for the Approximating Processes

We prove that

$$\xi^{(\delta,\pm)}_{kN^2\delta} \longrightarrow S^{(\delta,\pm)}_{k\delta} \qquad \text{as} \qquad N \to \infty$$

in the following sense:

Theorem

Given any T > 0 for any $\delta > 0$ small enough, any $k : k\delta \leq T$ and any $\zeta > 0$

$$\lim_{N \to \infty} P_{\xi_0}^{(N)} \left[\max_{x \in \{0, \dots, N\}} \left| N^{-1} F_N(x; \xi_{kN^2 \delta}^{(\delta, \pm)}) - F(N^{-1}x; S_{k\delta}^{(\delta, \pm)}(\rho_0)) \right| \le \zeta \right] = 1$$

where

$$F_N(x;\xi) := \sum_{y=x}^N \xi(y), \qquad F(r;\rho) := \int_r^1 \rho(r') dr'$$

and ρ_0 and ξ_0 are "close" in some sense.

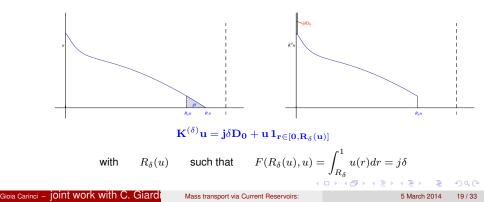
Barriers:

$$\mathbf{S}_{\mathbf{k}\delta}^{(\delta,+)}(\rho) := G_{\delta}^{\operatorname{neum}} * K^{(\delta)} \cdot \dots \cdot G_{\delta}^{\operatorname{neum}} * K^{(\delta)}\rho \qquad (k \text{ times})$$

$$\mathbf{S}_{\mathbf{k}\delta}^{(\delta,-)}(\rho) := K^{(\delta)}G_{\delta}^{\mathrm{neum}} * \cdots K^{(\delta)}G_{\delta}^{\mathrm{neum}} * \rho \qquad (k \text{ times})$$

where

- $G_{\delta}^{neum}(r,r')$ = Green function of the heat equation in [0,1] with Neumann b. c.
- $K^{(\delta)}$ = "the cut and paste map"



Macroscopic Mass trasport inequalities

Call
$$F(r; u) := \int_{r}^{1} u(r) dr$$
, $u \ge 0$

Definition

For any integrable u and v

$$u \leq v$$
 iff $F(r; u) \leq F(r; v), \quad \forall r \in [0, 1]$

• F(r; u) is a non increasing function of r which starts at 0 from the total mass of u, F(0; u)

Lemma

For any $\delta > 0$ and any integer k

$$S_{k\delta}^{(\delta,-)}(u) \le S_{k\delta}^{(\delta,+)}(u)$$

Gioia Carinci – **joint work with C. Giardi**

Hydrodynamic Limit: Barriers separating element

Definition

We say that a function $u(\cdot, t), u \in L^{\infty}([0, 1], \mathbb{R}_+)$, separates the barriers $\{S_{k\delta}^{(\delta, \pm)}(u)(\cdot)\}$ iff

 $S_t^{(\delta,-)}(u)(\cdot) \le u(\cdot,t) \le S_t^{(\delta,+)}(u)(\cdot) \qquad \text{for all } \delta > 0 \text{ and } t \text{ such that } t = k\delta, \, k \in \mathbb{N}$

Theorem (Existence and uniqueness of separating elements)

Let $u \in L^{\infty}([0,1], \mathbb{R}_+)$ and F(0; u) > 0. Then there exists a unique function u(r, t) which separates the barriers $\{S_{k\delta}^{(\delta,\pm)}(u)\}$. u(r,t) is continuous on the compacts of $[0,1] \times (0,\infty)$ and $u(\cdot,t)$ converges weakly to $u(\cdot)$ as $t \to 0$.

Theorem (Characterization of hydrodynamic limit)

The hydrodynamic limit $\rho(r,t)$ of ξ_t separates the barriers $\{S_{k\delta}^{(\delta,\pm)}(\rho_0)\}$.

Theorem

The Free Boundary Problem

The pair $(X_t, u(\cdot, t))$ is a **Classical Solution** of the FBP with initial datum (X_0, u_0) in the time interval [0, T) if it satisfies

ſ	$\frac{\partial u}{\partial t} = \frac{1}{2} \frac{\partial^2 u}{\partial r^2}$	$r\in(0,X_t),$	$t\in [0,T)$
	$u(X_t,t) = 0$		$t\in [0,T)$
)	$\left. \frac{\partial u}{\partial r} \right _{r=0^+} = -2j$		$t\in [0,T)$
	$\left. \frac{\partial u}{\partial r} \right _{r=X_t^-} = -2j$		$t\in [0,T)$
l	$u(r,0) = u_0(r)$	$r \in (0, X_0),$	$X_{t=0} = X_0$

i) $X_t \in C^1([0,T), \mathbb{R}_+)$; ii) $u(\cdot,t) \in C^2((0,R_t), \mathbb{R}_+)$ and it has limits with its derivatives at 0 and $X_t, \forall t \in [0,T)$; $u(r, \cdot)$ differentiable $\forall r \in [0, X_t]$.

 \rightarrow <u>The total mass is conserved:</u>

$$\int_0^{X_t} u(r,t) \, dr = \int_0^{X_0} u_0(r) \, dr$$

Gioia Carinci – **joint work with C. Giardi**

Mass transport via Current Reservoirs:

The Free Boundary Problem: an equivalent formulation

The pair $(X_t, u(\cdot, t))$ is a **Classical Solution** of the FBP with initial datum (X_0, u_0) in the time interval [0, T) if it satisfies

ſ	$\frac{\partial u}{\partial t} = \frac{1}{2} \frac{\partial^2 u}{\partial r^2}$	$r\in(0,X_t),$	$t\in [0,T)$	
	$u(X_t, t) = 0$		$t\in [0,T)$	
ł	$\left. \frac{\partial u}{\partial r} \right _{r=0^+} = -2j$		$t\in [0,T)$	
	$\int_0^{X_t} u(r,t) dr = \int_0^{X_0} u_0(r) dr$		$t\in [0,T)$	
l	$u(r,0) = u_0(r)$	$r\in(0,X_0),$	$X_{t=0} = X_0$	

i) $X_t \in C^1([0,T), \mathbb{R}_+)$; ii) $u(\cdot,t) \in C^2((0,X_t), \mathbb{R}_+)$ and it has limits with its derivatives at 0 and $X_t, \forall t \in [0,T)$; $u(r, \cdot)$ differentiable $\forall r \in [0, X_t]$.

・ロト ・回ト ・ヨト ・ヨト

Key Idea

For a given X_t consider the problem without the mass conservation constraint:

$$\begin{aligned} \left. \begin{array}{l} \frac{\partial v}{\partial t} = \frac{1}{2} \frac{\partial^2 v}{\partial r^2} & r \in (0, X_t), \quad t \in [0, T) \\ v(R_t, t) = 0 & t \in [0, T) \\ \left. \frac{\partial v}{\partial r} \right|_{r=0^+} = -2j & t \in [0, T) \\ \cdot v(r, 0) = v_0(r) & r \in (0, X_0), \quad X_{t=0} = X_0 \end{aligned} \end{aligned}$$

then

$$v(r,t) := \int G_{0,t}^{X,\,\text{neum}}(r',r)v_0(r')\,dr' + \int_0^t jG_{s,t}^{X,\,\text{neum}}(0,r)\,ds$$

where

 $\begin{array}{ll} G^{X,\,\mathrm{neum}}_{s,t}(r,\cdot) = \textit{law density} \text{ of } &\longrightarrow & \text{Brownian motion } B_t \text{ starting from } r \text{ at time } s, \\ reflected at 0 \text{ and restricted to trajectories} \\ \text{ so that } B_{s'} < X_{s'}, \ \forall s' \in [s,t] \end{array}$

$$\int_{I} G_{s,t}^{X,\,\text{neum}}(r',r)dr = P_{r';s}[\tau_{s}^{X} > t\,;\,B_{t} \in I], \qquad \tau_{s}^{X} = \inf\{t \ge s: B_{t} \ge X_{t}\}, \quad I \subset \mathbb{R}_{+}$$

Quasi-Solutions and Generalized Solutions

Definition (Quasi-solutions)

 $(X_t, u(\cdot, t), \epsilon)$ is a quasi-solution of the FBP in the time interval [0, T) with initial datum u_0 and accuracy parameter ϵ if:

• $(X_t, u(\cdot, t))$ satisfies the problem where the mass conservation constraint is replaced by

$$\sup_{t \leq T} \left| \int_0^{X_t} u(r,t) \, dr - \int_0^{X_0} u(r,0) \, dr \right| \leq \epsilon, \qquad t \in [0,T] \qquad \text{FBP}$$

- $X_t > 0$ is Lipschitz and piecewise C^1 (with finitely many discontinuities of the derivative)
- u(r,t) is "smooth".

Definition (Generalized solutions)

 $(X_t, u(r, t))$ is a generalized solution of the FBP in [0, T) with initial datum u_0 if there exists a sequence $(X_t^{(n)}, u^{(n)}(\cdot, t), \epsilon_n), t \in [0, T]$, of quasi-solutions in [0, T) with initial datum u_0 such that

(I) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1))

Strategy of the Proof

Definition (Partial order modulo m)

For any integrable u and v and m > 0, we define

 $u \leq v \mod m$ iff for all $r \geq 0$: $F(r; u) \leq F(r; v) + m$

We use the probabilistic representation of the quasi-solution and the relaxed condition on the mass to prove that:

Proposition

If $(X_t, u^{(\epsilon)}(\cdot, t), \epsilon)$ is a quasi-solution of the FBP with accuracy ϵ then for any $\delta > 0$, there is c so that for all $k \in \mathbb{N}$ such that $k\delta \leq T$

 $S_{k\delta}^{(\delta,-)}(u^{(\epsilon)}(\cdot,0)) \le u^{(\epsilon)}(\cdot,k\delta) \le S_{k\delta}^{(\delta,+)}(u^{(\epsilon)}(\cdot,0)) \qquad \textit{modulo} \quad ck\epsilon$

THEN

The Generalized Solution $u = \lim_{\epsilon \to 0} u^{(\epsilon)}$ of the FBP is the unique separating element between barriers!

Gioia Carinci – **joint work with C. Giardi**

Existence and Uniqueness

Theorem (Existence and uniqueness)

For any $u_0 \in L^{\infty}(\mathbb{R}_+, \mathbb{R}_+) \cap L^1(\mathbb{R}_+, \mathbb{R}_+)$ and any T > 0 the following holds.

- (a) There exists a <u>Generalized Solution</u> $(X_t, u(r, t))$ of the FBP in [0, T) with initial datum u_0 .
- (b) Let $S_t(u_0)$ be the Separating Element of the Barriers $\{S_{k\delta}^{(\delta,\pm)}(u_0)\}$. Then, if $u(\cdot, t)$ is a generalized solution of the FBP in [0, T) with initial datum u_0 then $u(\cdot, t) = S_t(u_0)$ for all $t \in [0, T)$

Consequence:

"The Hydrodynamic Limit of ξ_t is equal to the Generalized Solution of the FBP"

$$\lim_{N \to \infty} (N^{-1} \xi_{N^2 t}, R_{\xi_{N^2 t}}) = (u(\cdot, t), X_t)''$$

Gioia Carinci – joint work with C. Giardi

◆□▶ ◆□▶ ◆三▶ ◆三▶ ◆□▶ ◆□

Stationary macroscopic profiles:

 \rightarrow Linear Profiles with slope -2j are stationary:

$$(R^{(M)}, \rho^{(M)}), \qquad \qquad \rho^{(M)}(r) := a_M - 2jr, \qquad \qquad 0 \le r \le R^{(M)} := \min\left\{\frac{a_M}{2j}, 1\right\}$$

The linear profiles are parametrized by $M := Total Mass \longrightarrow \int_0^1 \rho^{(M)}(r) dr = M$

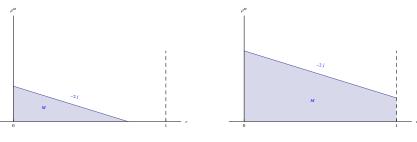


Figure : Stationary solution for M < j

Figure : Stationary solution for M > j

 $\mathcal{M} := \left\{ \rho^{(M)}, \ M > 0 \right\} \quad \longrightarrow \text{ one-dimensional Manifold of Classical Stationary Solutions}$

Gioia Carinci – joint work with C. Giardi

Mass transport via Current Reservoirs:

5 March 2014 28 / 33

Stability of the manifold of stationary profiles.

Theorem (Stability)

Let $\int_0^1 \rho_0(r) dr = M$ and ρ_t the hydro-limit starting from ρ_0 . Then, as $t \to \infty$, ρ_t converges weakly to $\rho^{(M)}$ in the sense that

$$\lim_{t \to \infty} F(r; \rho_t) = F(r; \rho^{(M)}), \qquad \forall r \in [0, 1]$$

where
$$F(r; u) = \int_{r}^{1} u(r) dr$$

FICK's LAW:

Agreement: The Stationary Profiles are Stable and Linear

Disagrement: The Stationary Profile is not Unique because the Desity is not fixed (unlike the case of Density Reservoirs)

Microscopic Stationary State

• On the one hand:

 ξ_t is an *irreducible*, *aperiodic* Markov Process \Rightarrow $\begin{cases} \text{ if it has a stationary state then} \\ \text{ it is even a$ *limiting state* $} \\ \text{ and it is$ *unique* $} \end{cases}$

On the other hand:

" $N^{-1}\xi_{N^2t} \longrightarrow \rho_t$ " as $N \to \infty$ Hydrodynamic Limit (t fixed)

$$``\rho_t \longrightarrow \rho^{(m)"} \quad \text{ as } \quad t \to \infty \quad \text{with } \quad \rho^{(m)} \in \mathcal{M}, \qquad m = \lim_{N \to \infty} N^{-1} |\xi_0|$$

Interchange of limits in not allowed!

THEN

There is a second time scale beyond the hydrodynamic one

where we expect to observe one of the two following scenarios

- either there is a preferential profile

Gioia Carinci – joint work with C. Giardi

Mass transport via Current Reservoirs:

The total number of particles

 $|\xi_t| =$ Total Number of particles at time t

- particle added: $|\xi| \rightarrow |\xi| + 1 \rightarrow at rate \frac{j}{N}$ particle deleted: $|\xi| \rightarrow |\xi| 1 \rightarrow at rate \frac{j}{N}$ $\left. \begin{array}{c} |\xi_t| \text{ performs a} \\ \text{symmetric random walk} \\ \text{with jumps } \pm 1 \text{ at rate } \frac{j}{N} \end{array} \right\}$

The density $\frac{|\xi_t|}{N}$ changes after times of the order N^3 :

$$M_t^N := rac{|\xi_{N^3t}|}{N} \longrightarrow B_t \quad \text{as} \quad N o \infty$$

where $B_t :=$ Brownian Motion on \mathbb{R}^+ with reflecting boundary conditions at 0

Gioia Carinci – joint work with C. Giardi

・ロト・日本・日本・日本・日本・日本

Superhydrodynamic Limit

Brownian motion on the manifold of stationary profiles

Theorem (Super-hydrodynamic limit)

Let $\xi^{(N)}$ be a sequence such that $|\xi^{(N)}|N^{-1} \to m > 0$ as $N \to \infty$. Let t_N be an increasing, divergent sequence, then the process $\xi_{N^2 t_N}$ has two regimes:

• Subcritical. Suppose $N^{-1}t_N \rightarrow 0$, then

$$\lim_{N \to \infty} P_{\xi^{(N)}}^{(N)} \left[\max_{x \in \{0, \dots, N\}} \left| \frac{1}{N} F_N(x; \xi_{N^2 t_N}) - F(N^{-1}x; \rho^{(m)}) \right| \le \zeta \right] = 1$$
(1)

• Critical. Let $t_N = Nt$ then

$$\lim_{N \to \infty} P_{\xi^{(N)}}^{(N)} \left[\max_{x \in \{0, \dots, N\}} \left| \frac{1}{N} F_N(x; \xi_{N^3 t}) - F(N^{-1}x; \rho^{(M_t^{(N)})}) \right| \le \zeta \right] = 1$$
(2)

where $M_t^{(N)} := \epsilon |\xi^{(N)}|_{N^3t}|$ converges in law as $N \to \infty$ to B_{jt} , where $(B_t)_{t \ge 0}$, $B_0 = m$, is the Brownian motion on \mathbb{R}_+ reflected at the origin.

(I) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1))

References

Carinci, De Masi, Giardinà, Presutti:

- Hydrodynamic limit in a particle system with topological interactions, (2013) arxiv:1307.6385
- Super-hydrodynamic limit in interacting particle systems, (2014) arxiv:1312.0640
- Global solutions of a free boundary problem via mass transport inequalities, (2014) arxiv:1402.5529

Gioia Carinci – joint work with C. Giardi