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Markov processes

Let (X¢)t>0 be a Markov process on a polish space (E, d).
B Its semigroup (P;)¢>o is defined by

Vx € E, Vt >0, Pf(x) = E[f(X.) | Xo = x],

B Its generator L is defined by

LR = tim PP 1)

m = 0tPtl—of(x)

Natural questions :

B Convergence : Pif = 7?
B Exponential convergence &(uP;, ) < Ce 7
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B For any probability measures p1, pp on (E, d) :

W(ﬂlvﬁ@) = inf d(va)rI(an dy)
N JeExE

—  inf  E[d(X, X
X1NMI1nX2Nu2 [ ( ! 2)]

sup /fdul /fd,uz
Lip(f)<1

4/ 33



Wasserstein curvature of Markov processes

Wasserstein curvature

Wasserstein distance

Wasserstein distance

B For any probability measures p1, pp on (E, d) :

W(ﬂlvﬁ@) = inf d(va)rI(an dy)
N JeExE

—  inf  E[d(X, X
X1NMI1nX2Nu2 [ ( ! 2)]

sup /fdul /fd,uz
Lip(f)<1

B if d is bounded then Convergence with YW < Convergence in law.

4/ 33



Wasserstein curvature of Markov processes

Wasserstein curvature

Wasserstein distance

Wasserstein distance

B For any probability measures p1, pp on (E, d) :

W(ﬂlvﬁ@) = inf d(va)rI(an dy)
N JeExE

inf  E[d(X, X
X1NMI1nX2Nu2 [ ( ! 2)]

sup /fdul /fd,uz
Lip(f)<1

B if d is bounded then Convergence with YW < Convergence in law.

B Also called Kantorovich, Mallows, Monge, Fréchet, optimal
transport, coupling, minimum-L"...
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Definition
The Wasserstein curvature of a Markov semigroup (P¢)¢>0 is the largest
constant p such that

W(MPU V’Dt) S e—ptw(ﬂ’ Z/)a

for any probability measure u, v and any t > 0.
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Wasserstein curvature

Definition
The Wasserstein curvature of a Markov semigroup (P¢)¢>0 is the largest
constant p such that

W(MPU V’Dt) S e—ptw(ﬂ’ Z/)a
for any probability measure u, v and any t > 0.

B introduced independently by Joulin (2007), Ollivier (2007) and
Sammer (2005).

B Motivated by generalizing Bakry-Emery curvature of diffusion
processes or Ricci curvature of Riemannian Manifold.
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Let (M, g) be a smooth Riemannian manifold and (P;):>o be solution to

the heat equation
Vt >0, 0P f = AP,f,

Theorem (Sturm, Von Renesse, 05)

The two following assertions are equivalent :
Vx € M,Vv € R", Riccix(v, v) > k||v|?

Yt >0, Wa(uPy, vP:) < e *d(x,y).

B if M is a sphere with radius r and dimension n then p = (n—1)/r.

B Also equivalent to the convexity of the entropy, Bakry-Emery
curvature, W2 contraction ...

B Others definitions of curvature, see Sturm-Lott-Villani(06,09),
Erbar-Maas (2011), Gozlan-Roberto-Samson-Tetali<(2012)...
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Vt >0, W(uP:,n) < e P"W(u, ).
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Convergence to equilibrium

Lemma (Convergence in Wasserstein distance)

If p > 0 then there exists a unique invariant probability measure 7, and

Vt >0, W(uP;, ) < e P"W(u,n).

Theorem (Spectral gap / Poincaré inequality)

If p> 0 and 7 is reversible then (P;):>o verifies a Poincaré inequality;
namely

Yt >0, Vary(P;f) < e ?*Var,(f) & Var,(f) < /Ffdﬂ'

See Wang (2003), Chen (2004), Ollivier (2010), Hairer-Stuart-Vollmer
(2011), Veysseire (2012).
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Poissonian concentration

Theorem (Joulin 2007)

If p > 0 and there exist A, B > 0 such that
B sup,od(Xe—, X;) < Aas,

W [(f,f) < B|fl,

then for all y and t > 0,
P (|f(Xe) — B[f(X:)]| > y) < Cem 2 'oe1+)

where a, b > 0 are some constants.
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Poissonian concentration

Theorem (Joulin 2007)
If p > 0 and there exist A, B > 0 such that
B sup,od(Xe—, X;) < Aas,
W [(f,f) < B|fl,
then for all y and t > 0,

P(IF(X,) ~ BIF(X)]| > y) < Cemostian)

where a, b > 0 are some constants.

B Under the same assumptions, Joulin (2007) gives a concentration for
the empirical measure.

B See also Ollivier, Joulin, ...
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Examples of curvature

Deterministic Markov processes

Let (x¢):>0 be the solution of
Vit >0, x{ = F(x¢).

It is a Markov process. What is its Wasserstein curvature with the usual
distance 7
It is the largest constant p > 0 such that

Vx,y (x =y, F(x) = F(y)) < —pllx — y|*.
If p > 0 then Ix* s.t.

Yt >0, |[x — x> < e Pt|x0 — x|
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Lf(n) = bl,—o(f(1) — £(0)) + d1,-1(F(0) — £(1)).
Only one choice for the distance :
Vx,y € {0,1} d(x,y) = clyzy.

Wasserstein curvature is
p=bAnd
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Theorem (Chafai and Joulin, 2012)

The Wasserstein curvature associated to the distance d, defined by
anyENa d(X,y):| X = y|7

is given by

p = ’Igf;) (d(n +1) —d(n) + b(n) — b(n+1) ) .
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LFf(n) = b(n)(f(n+1)—f(n)) +d(n)(f(n—1) = f(n)).

Theorem (Chafai and Joulin, 2012)

The Wasserstein curvature associated to the distance d, defined by

Vx,y €N, d(x,y) = |u(x) — u(y)l,

is given by

= in n = n—u(n—l) n) — b(n —u(n+1)
pla) = if (1) = el 2t b = -+ )2

By MChen, there exists u s.t. p(u) = Ag is the spectral gap
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Examples of curvature

Ornstein-Uhlenbeck process

Let (X;) be solution to
dX; = —AX,dt +/2dB;.
It is known that
Pif(x) = Bx [F(X0)] = Ex [fxe ™ + Nv/1—e )],
and then
Pif(x) = Pef(y)

=E, [f(xe—“ + NV1— e 2M) — f(ye ™ + N1 - e—%t)}

< e M| flluipllx -yl
We have p = A
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Kolmogorov-Langevin diffusion

Let us consider that E = R? and

L=A-VV. V.

Lemma

If HessV > k then p > k.

Theorem (Eberle 2011)

If there exist K, L > 0 such that HessV > K outside a ball and
HessV > —L then there exists a distance df such that its Wasserstein
curvature, associated to dy, is positive.

B Proof by mirror (or reflexion) coupling + concave transformation of
the usual distance.

B Almost optimal.
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TCP process

Theorem (C. 12)
If (X¢)e>0 is generated by

Wx 20, £(x) = ')+ (F(3) = ).

where r > 0 is non decreasing then

p=5 Inf(r0x) = xr'(x)).
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Problem

Let us consider :

B an irreducible CT Markov chain /, on a finite space F = {1, ..., N},
with an invariant distribution v,

B for each j € F, a Markov process (X(i))tzo, with Wasserstein
curvature p(i), on a Polish space (E, d).

We consider the Markov process (X, /) such that X moves according to
(Xt(l‘))tzo. This couple is generated by

Lf(x, 1) = £Of(x, ) + /F (F(x.J) — F(x, 1)) QU dj)-

Under which conditions X admits an invariant distribution and converges
exponentially fast to it ? What happens if @ depends on x 7
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Motivations

Applications :
B Chemostat (Collet, Martinez, Méléard, San Martin, 2012)
B Gene Network (Crudu, Debussche, Muller, Radulescu, 2012)
B Storage modelling (Boxma, Kaspi, Kella, Perry, 2005)
B Neuronal activity (Genadot, Pakdaman, Thieullen, Wainrib, 2012)
B Molecular biology (Faggionato, Gabrielli, Crivellari, 2008)
B Finance (Herrmann, Vallois, 2010)
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Problem

Motivations

Applications :
B Chemostat (Collet, Martinez, Méléard, San Martin, 2012)
B Gene Network (Crudu, Debussche, Muller, Radulescu, 2012)
B Storage modelling (Boxma, Kaspi, Kella, Perry, 2005)
B Neuronal activity (Genadot, Pakdaman, Thieullen, Wainrib, 2012)
B Molecular biology (Faggionato, Gabrielli, Crivellari, 2008)
B Finance (Herrmann, Vallois, 2010)

See a series of papers of Benaim, Le Borgne, Malrieu, Zitt in the special
case L) = F) . v,
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FIGURE: First vector field : FD : x 74, - x
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FICURE: Second vector field : F® : x+3 Ay <x
19/ 33



Wasserstein curvature of Markov processes

Markov processes with random switching

Examples

An explosive switched vector fields

Let a > 0, we consider the following generator :
Lf(x,i) = A; - Vif(x, i) + a(f(x,1 — i) — f(x, 1)),

where x € R?, i € {0,1} and f is smooth.

20/ 33



Wasserstein curvature of Markov processes

Markov processes with random switching

Examples

An explosive switched vector fields

Let a > 0, we consider the following generator :
Lf(x,i) = A; - Vif(x, i) + a(f(x,1 — i) — f(x, 1)),

where x € R?, i € {0,1} and f is smooth. If we fix i € {0,1} then the
solutions of
YVt Z O, 8tyt = Aiyt

satisfy
lyell < Ce™"llyoll-

20/ 33



Wasserstein curvature of Markov processes

Markov processes with random switching

Examples

An explosive switched vector fields

Let a > 0, we consider the following generator :
Lf(x,i) = A; - Vif(x, i) + a(f(x,1 — i) — f(x, 1)),

where x € R?, i € {0,1} and f is smooth. If we fix i € {0,1} then the
solutions of
YVt Z O, 8tyt = Aiyt

satisfy
lyell < Ce™"llyoll-

Nevertheless if a is large enough then

lim X; = +o0.

t—+4o00

See (Benaim, Le Borgne, Malrieu, Zitt 12) and (Lawley, Mattingly, Reed
13).
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FIGURE: A trajectory of the second example
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component belongs to R and satisfies

8tXt == _ltXt'

We have .
1
X, = e—txtﬁ] I,ds

Birkhoff's ergodic theorem gives that
X, —0if)>,iv(i)=v(l)-v(-1) >0,
B X, = +ooif Y, iv(i)=v(1) —v(-1) <0.

— Rates of convergence ? What is the distance ?
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Examples

Non convergence with the usual distances
If Xo # 0 then X; # 0, Vt > 0. In particular,
Yt >0, ||L(X,) — ol 7v = B(To > t) = 1.

In general
lim E[X¢] = 400,
t—-+4o0

and then there is no convergence in L!—norm and

lim W(L(X¢), o) = +o0.

t——+o0

— We have to modify the distance!
Convergence of the moment ?

E[XF] = E [e fot"’sﬂ . pe(0,1)
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We have \p =0 and

OpAp|po = > ().

ieF

Hence
> iv(i)>0= 3p>0, ), >0
ieF

B See (Bardet, Guerin, Malrieu, 2010).
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Examples

Moments properties
Feynman-Kac formula :

E [e IN Plst} = et API)] oot

We have \p =0 and
OpAp| e = > iv(i).
icF

Hence
> iv(i)>0= 3p>0, ), >0
ieF

B See (Bardet, Guerin, Malrieu, 2010).

B Convergence in "LP-norm" and in a weaker Wasserstein distance.
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Wasserstein exponential ergodicity

Theorem (C. and Hairer, 2012)

If
> v()al) >0,

J

then (X, 1) admits an invariant probability measure and it converges
exponentially fast to it in a Wasserstein distance.
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Wasserstein exponential ergodicity

Theorem (C. and Hairer, 2012)

If
> v()al) >0,

J

then (X, 1) admits an invariant probability measure and it converges
exponentially fast to it in a Wasserstein distance.

Here the Wasserstein distance is associated to a concave transformation
(x — xP,p € (0,1)) of the usual distance.
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Wasserstein exponential ergodicity in the non-constant
case
If F={-1,1} and
Lf(x, i) = LOF(x, i)+ a(x, i))(F(x, —i) — f(x, ),
where we consider p(1) > 0, p(—1) < 0 and
a(l) = ir)(f a(x,1) and a(—1) = sup a(x,—1)

Theorem (C. and Hairer, 2013)
If a is Lipschitz and

a(—1)p(1) +a(1)p(-1) >0

then X admits an invariant probability measure and converges
exponentially fast to it in a Wasserstein distance.
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A weak form of Harris theorem

Proof based on
Theorem (Hairer, Mattingly, Scheutzow, 09)

Let (Pt)¢>0 be a Markov semigroup over a Polish space E that admits a
Lyapunov function V. Assume furthermore that there exists t, sufficiently
large and a lower semi-continuous metric d : E x E — [0, 1] such that

B d? is contracting for P;
B /evel sets of V' are d—small for P;.

Then there exists a unique invariant measure 7 for P; and the
convergence is exponential.
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Others limit theorems

If one of the two assumptions is satisfied :
B 3/ s.t. the process associated to £() "creates density",

B Vi, L) = F() .V and the family (F()); verifies an Hérmander-type
condition,

then it is enough to find a Lyapunov function to have an exponential
decay. And we have

Lemma

If there exists V s.t.
LOV < =NV + K,

where

Z )\,'V(I') >0,

i€F
then (X, ) admits a Lyapunov function (and thus converges in total
variation distance to an invariant measure).
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Thank you for your attention !
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