
Wasserstein curvature of Markov processes

Wasserstein curvature of Markov processes

Bertrand Cloez

Université Paul Sabatier

Young European Probabilists

1/ 33



Wasserstein curvature of Markov processes

1 Wasserstein curvature
Wasserstein distance
Definition of the curvature
Properties of the curvature
Examples of curvature

2 Markov processes with random switching
Problem
Examples
Results

2/ 33



Wasserstein curvature of Markov processes
Wasserstein curvature

Wasserstein distance

Markov processes

Let (Xt)t≥0 be a Markov process on a polish space (E , d).

� Its semigroup (Pt)t≥0 is defined by

∀x ∈ E , ∀t ≥ 0, Pt f (x) = E [f (Xt) | X0 = x ] ,

� Its generator L is defined by

Lf (x) = lim
t→0+

Pt f (x)− f (x)

t = ∂tPt t=0f (x)

Natural questions :
� Convergence : Pt f → π ?
� Exponential convergence δ(µPt , π) ≤ Ce−λt ?
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Wasserstein distance

� For any probability measures µ1, µ2 on (E , d) :

W(µ1, µ2) = inf
Π

∫
E×E

d(x , y)Π(dx , dy)

= inf
X1∼µ1,X2∼µ2

E [d(X1,X2)]

= sup
Lip(f )≤1

∫
fdµ1 −

∫
fdµ2.

� if d is bounded then Convergence with W ⇔ Convergence in law.
� Also called Kantorovich, Mallows, Monge, Fréchet, optimal

transport, coupling, minimum-L1...
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Wasserstein curvature

Definition of the curvature

Wasserstein curvature

Definition
The Wasserstein curvature of a Markov semigroup (Pt)t≥0 is the largest
constant ρ such that

W(µPt , νPt) ≤ e−ρtW(µ, ν),

for any probability measure µ, ν and any t ≥ 0.

� introduced independently by Joulin (2007), Ollivier (2007) and
Sammer (2005).

� Motivated by generalizing Bakry-Emery curvature of diffusion
processes or Ricci curvature of Riemannian Manifold.
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Wasserstein curvature of Markov processes
Wasserstein curvature

Definition of the curvature

Brownian motion and curvature
Let (M, g) be a smooth Riemannian manifold and (Pt)t≥0 be solution to
the heat equation

∀t ≥ 0, ∂tPt f = ∆Pt f ,

Theorem (Sturm, Von Renesse, 05)

The two following assertions are equivalent :

∀x ∈ M,∀v ∈ Rn,Riccix (v , v) ≥ k‖v‖2

∀t ≥ 0, Wd (µPt , νPt) ≤ e−ktd(x , y).

� if M is a sphere with radius r and dimension n then ρ = (n − 1)/r .
� Also equivalent to the convexity of the entropy, Bakry-Emery

curvature, W2 contraction . . .
� Others definitions of curvature, see Sturm-Lott-Villani(06,09),

Erbar-Maas (2011), Gozlan-Roberto-Samson-Tetali (2012)...
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Wasserstein curvature

Properties of the curvature

Convergence to equilibrium

Lemma (Convergence in Wasserstein distance)

If ρ > 0 then there exists a unique invariant probability measure π, and

∀t ≥ 0, W(µPt , π) ≤ e−ρtW(µ, π).

Theorem (Spectral gap / Poincaré inequality)

If ρ > 0 and π is reversible then (Pt)t≥0 verifies a Poincaré inequality ;
namely

∀t ≥ 0, Varπ(Pt f ) ≤ e−2ρtVarπ(f )

⇔ Varπ(f ) ≤
∫

Γfdπ

See Wang (2003), Chen (2004), Ollivier (2010), Hairer-Stuart-Vollmer
(2011), Veysseire (2012).
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Wasserstein curvature

Properties of the curvature

Poissonian concentration

Theorem (Joulin 2007)

If ρ > 0 and there exist A,B > 0 such that
� supt≥0 d(Xt−,Xt) ≤ A a.s.,
� Γ(f , f ) ≤ B‖f ‖2Lip,

then for all y and t ≥ 0,

P (|f (Xt)− E[f (Xt)]| ≥ y) ≤ Ce−ay log(1+by))

where a, b > 0 are some constants.

� Under the same assumptions, Joulin (2007) gives a concentration for
the empirical measure.

� See also Ollivier, Joulin, . . .
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Wasserstein curvature of Markov processes
Wasserstein curvature

Examples of curvature

Deterministic Markov processes

Let (xt)t≥0 be the solution of

∀t ≥ 0, x ′t = F (xt).

It is a Markov process.

What is its Wasserstein curvature with the usual
distance ?
It is the largest constant ρ > 0 such that

∀x , y 〈x − y ,F (x)− F (y)〉 ≤ −ρ‖x − y‖2.

If ρ > 0 then ∃x∗ s.t.

∀t ≥ 0, ‖xt − x∗‖2 ≤ e−ρt‖x0 − x∗‖2.
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Wasserstein curvature

Examples of curvature

Two point space

Markov processes generated by

Lf (n) = b1n=0(f (1)− f (0)) + d1n=1(f (0)− f (1)).

Only one choice for the distance :

∀x , y ∈ {0, 1} d(x , y) = c1x 6=y .

Wasserstein curvature is
ρ = b ∧ d
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Wasserstein curvature of Markov processes
Wasserstein curvature

Examples of curvature

Birth and death processes
Markov processes generated by

Lf (n) = b(n)(f (n + 1)− f (n)) + d(n)(f (n − 1)− f (n)).

Theorem (Chafaï and Joulin, 2012)

The Wasserstein curvature associated to the distance d, defined by

∀x , y ∈ N, d(x , y) = |

u(

x

)

−

u(

y

)

|,

is given by

ρ

(u)

= inf
n≥0

(
d(n + 1)− d(n)

u(n − 1)

u(n)

+ b(n)− b(n + 1)

u(n + 1)

u(n)

)
.

By MChen, there exists u s.t. ρ(u) = λ0 is the spectral gap
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Wasserstein curvature

Examples of curvature

Ornstein-Uhlenbeck process

Let (Xt) be solution to

dXt = −λXtdt +
√
2dBt .

It is known that

Pt f (x) = Ex [f (Xt)] = Ex

[
f (xe−λt + N

√
1− e−2λt)

]
,

and then

Pt f (x)− Pt f (y)

= Ex

[
f (xe−λt + N

√
1− e−2λt)− f (ye−λt + N

√
1− e−2λt)

]
≤ e−λt‖f ‖Lip‖x − y‖.

We have ρ = λ.
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Wasserstein curvature

Examples of curvature

Kolmogorov-Langevin diffusion
Let us consider that E = Rd and

L = ∆−∇V · ∇.

Lemma
If HessV ≥ κ then ρ ≥ κ.

Theorem (Eberle 2011)

If there exist K , L > 0 such that HessV ≥ K outside a ball and
HessV ≥ −L then there exists a distance df such that its Wasserstein
curvature, associated to df , is positive.

� Proof by mirror (or reflexion) coupling + concave transformation of
the usual distance.

� Almost optimal.
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Examples of curvature

TCP process

Theorem (C. 12)

If (Xt)t≥0 is generated by

∀x ≥ 0, Lf (x) = f ′(x) + r
(
f (
(x
2

)
− f (x)

)
,

where r > 0 is non decreasing then

ρ =
1
2 inf

x≥0
(r(x)− xr ′(x)).
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Problem

Let us consider :
� an irreducible CT Markov chain I, on a finite space F = {1, ...,N},

with an invariant distribution ν,

� for each i ∈ F , a Markov process (X (i))t≥0, with Wasserstein
curvature ρ(i), on a Polish space (E , d).

We consider the Markov process (X , I) such that X moves according to
(X (It )

t )t≥0. This couple is generated by

Lf (x , i) = L(i)f (x , i) +

∫
F

(f (x , j)− f (x , i))Q(i , dj).

Under which conditions X admits an invariant distribution and converges
exponentially fast to it ? What happens if Q depends on x ?
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Problem

Motivations

Applications :
� Chemostat (Collet, Martinez, Méléard, San Martin, 2012)
� Gene Network (Crudu, Debussche, Muller, Radulescu, 2012)
� Storage modelling (Boxma, Kaspi, Kella, Perry, 2005)
� Neuronal activity (Genadot, Pakdaman, Thieullen, Wainrib, 2012)
� Molecular biology (Faggionato, Gabrielli, Crivellari, 2008)
� Finance (Herrmann, Vallois, 2010)

See a series of papers of Benaïm, Le Borgne, Malrieu, Zitt in the special
case L(i) = F (i) · ∇.
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Examples

An explosive switched vector fields

Figure: First vector field : F (1) : x 7→ A1 · x
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Examples

2. An explosive switched vector fields

Figure: Second vector field : F (2) : x 7→ A2 · x
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Examples

An explosive switched vector fields

Let a > 0, we consider the following generator :

Lf (x , i) = Ai · ∇x f (x , i) + a(f (x , 1− i)− f (x , i)),

where x ∈ R2, i ∈ {0, 1} and f is smooth.

If we fix i ∈ {0, 1} then the
solutions of

∀t ≥ 0, ∂tyt = Aiyt

satisfy
‖yt‖ ≤ Ce−t‖y0‖.

Nevertheless if a is large enough then

lim
t→+∞

Xt = +∞.

See (Benaïm, Le Borgne, Malrieu, Zitt 12) and (Lawley, Mattingly, Reed
13).
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An explosive switched vector fields

Figure: A typical trajectory
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Examples

The most elementary example

Figure: A trajectory of the second example
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Examples

The most elementary example

Let us consider that I is a Markov Chain on {−1, 1}, the continuous
component belongs to R and satisfies

∂tXt = −ItXt .

We have
Xt = e−

t× 1
t

∫ t

0
Is ds

Birkhoff’s ergodic theorem gives that
� Xt → 0 if

∑
i iν(i) = ν(1)− ν(−1) > 0,

� Xt → +∞ if
∑

i iν(i) = ν(1)− ν(−1) < 0.

→ Rates of convergence ? What is the distance ?
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Examples

Non convergence with the usual distances
If X0 6= 0 then Xt 6= 0, ∀t ≥ 0.

In particular,

∀t ≥ 0, ‖L(Xt)− δ0‖TV = P(T0 > t) = 1.

In general
lim

t→+∞
E [Xt ] = +∞,

and then there is no convergence in L1−norm and

lim
t→+∞

W(L(Xt), δ0) = +∞.

→ We have to modify the distance !
Convergence of the moment ?

E [X p
t ] = E

[
e−
∫ t

0
pIs ds

]
, p ∈ (0, 1).
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Examples

Moments properties

Feynman-Kac formula :

E
[
e−
∫ t

0
pIs ds

]
= µ0et(A−pId)1

≈ e−λpt .

We have λ0 = 0 and

∂pλp p=0 =
∑
i∈F

iν(i).

Hence ∑
i∈F

iν(i) > 0⇒ ∃p > 0, λp > 0.

� See (Bardet, Guerin, Malrieu, 2010).
� Convergence in "Lp-norm" and in a weaker Wasserstein distance.

28/ 33



Wasserstein curvature of Markov processes
Markov processes with random switching

Examples

Moments properties

Feynman-Kac formula :

E
[
e−
∫ t

0
pIs ds

]
= µ0et(A−pId)1 ≈ e−λpt .

We have λ0 = 0 and

∂pλp p=0 =
∑
i∈F

iν(i).

Hence ∑
i∈F

iν(i) > 0⇒ ∃p > 0, λp > 0.

� See (Bardet, Guerin, Malrieu, 2010).
� Convergence in "Lp-norm" and in a weaker Wasserstein distance.

28/ 33



Wasserstein curvature of Markov processes
Markov processes with random switching

Examples

Moments properties

Feynman-Kac formula :

E
[
e−
∫ t

0
pIs ds

]
= µ0et(A−pId)1 ≈ e−λpt .

We have λ0 = 0

and

∂pλp p=0 =
∑
i∈F

iν(i).

Hence ∑
i∈F

iν(i) > 0⇒ ∃p > 0, λp > 0.

� See (Bardet, Guerin, Malrieu, 2010).
� Convergence in "Lp-norm" and in a weaker Wasserstein distance.

28/ 33



Wasserstein curvature of Markov processes
Markov processes with random switching

Examples

Moments properties

Feynman-Kac formula :

E
[
e−
∫ t

0
pIs ds

]
= µ0et(A−pId)1 ≈ e−λpt .

We have λ0 = 0 and

∂pλp p=0 =
∑
i∈F

iν(i).

Hence ∑
i∈F

iν(i) > 0⇒ ∃p > 0, λp > 0.

� See (Bardet, Guerin, Malrieu, 2010).
� Convergence in "Lp-norm" and in a weaker Wasserstein distance.

28/ 33



Wasserstein curvature of Markov processes
Markov processes with random switching

Examples

Moments properties

Feynman-Kac formula :

E
[
e−
∫ t

0
pIs ds

]
= µ0et(A−pId)1 ≈ e−λpt .

We have λ0 = 0 and

∂pλp p=0 =
∑
i∈F

iν(i).

Hence ∑
i∈F

iν(i) > 0⇒ ∃p > 0, λp > 0.

� See (Bardet, Guerin, Malrieu, 2010).
� Convergence in "Lp-norm" and in a weaker Wasserstein distance.

28/ 33



Wasserstein curvature of Markov processes
Markov processes with random switching

Examples

Moments properties

Feynman-Kac formula :

E
[
e−
∫ t

0
pIs ds

]
= µ0et(A−pId)1 ≈ e−λpt .

We have λ0 = 0 and

∂pλp p=0 =
∑
i∈F

iν(i).

Hence ∑
i∈F

iν(i) > 0⇒ ∃p > 0, λp > 0.

� See (Bardet, Guerin, Malrieu, 2010).

� Convergence in "Lp-norm" and in a weaker Wasserstein distance.

28/ 33



Wasserstein curvature of Markov processes
Markov processes with random switching

Examples

Moments properties

Feynman-Kac formula :

E
[
e−
∫ t

0
pIs ds

]
= µ0et(A−pId)1 ≈ e−λpt .

We have λ0 = 0 and

∂pλp p=0 =
∑
i∈F

iν(i).

Hence ∑
i∈F

iν(i) > 0⇒ ∃p > 0, λp > 0.

� See (Bardet, Guerin, Malrieu, 2010).
� Convergence in "Lp-norm" and in a weaker Wasserstein distance.

28/ 33



Wasserstein curvature of Markov processes
Markov processes with random switching

Results

Wasserstein exponential ergodicity

Theorem (C. and Hairer, 2012)

If ∑
j
ν(j)α(j) > 0,

then (X , I) admits an invariant probability measure and it converges
exponentially fast to it in a Wasserstein distance.

Here the Wasserstein distance is associated to a concave transformation
(x 7→ xp, p ∈ (0, 1)) of the usual distance.
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Results

Wasserstein exponential ergodicity in the non-constant
case

If F = {−1, 1} and

Lf (x , i) = L(i)f (x , i) + a(x , i)(f (x ,−i)− f (x , i)),

where we consider ρ(1) > 0, ρ(−1) < 0 and

a(1) = inf
x
a(x , 1) and ā(−1) = sup

x
a(x ,−1)

Theorem (C. and Hairer, 2013)

If a is Lipschitz and

ā(−1)ρ(1) + a(1)ρ(−1) > 0

then X admits an invariant probability measure and converges
exponentially fast to it in a Wasserstein distance.
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A weak form of Harris theorem

Proof based on

Theorem (Hairer, Mattingly, Scheutzow, 09)

Let (Pt)t≥0 be a Markov semigroup over a Polish space E that admits a
Lyapunov function V . Assume furthermore that there exists t∗ sufficiently
large and a lower semi-continuous metric d : E × E 7→ [0, 1] such that
� d2 is contracting for Pt

� level sets of V are d−small for Pt .
Then there exists a unique invariant measure π for Pt and the
convergence is exponential.
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Results

Others limit theorems
If one of the two assumptions is satisfied :
� ∃i s.t. the process associated to L(i) "creates density",
� ∀i , L(i) = F (i) · ∇ and the family (F (i))i verifies an Hörmander-type

condition,
then it is enough to find a Lyapunov function to have an exponential
decay. And we have

Lemma
If there exists V s.t.

L(i)V ≤ −λiV + Ki ,

where ∑
i∈F

λiν(i) > 0,

then (X , I) admits a Lyapunov function (and thus converges in total
variation distance to an invariant measure).
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Results

Thank you for your attention !
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