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Introduction and results

Introduction

Plan of the talk:
@ Description of the multi marginal problem and physical motivation;
@ Classical results with 2 marginals in dimension 1;

@ Symmetric multimarginal case in dimension 1: existence of an
optimal map and uniqueness of the symmetric optimal plan.
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Density Functional Theory: Strictly Correlated Elecrons

General minimization problem

We are interested in the following minimum problem:

min / (VAP + Vie|F? + Vet FI2) dx,
fEL2(RI)™C), [Ifll2=1 ./ (Rd)n
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Density Functional Theory: Strictly Correlated Elecrons

General minimization problem

We are interested in the following minimum problem:

min / (VAP + Vie|F? + Vet FI2) dx,
fEL2(RI)™C), [Ifll2=1 ./ (Rd)n

where

@ V.. is the Coulombian interaction potential between the electrons:

1
Vee(X17~-~7Xn): Z I

1<i<j<n xi = x|

@ V. is an external potential (due to the nucleus), which is the same
for every electron: Viex(x1,...,%,) = V(x1) + -+ + V(x,);
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Density Functional Theory: Strictly Correlated Elecrons

nberg e Kohn formulation(HK)

The wave function f gives us the density p of the (identical) electrons,
that is, the marginals of the measure |f|?dx are always p.
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Density Functional Theory: Strictly Correlated Elecrons

Hohenberg e Kohn formulation(HK)

The wave function f gives us the density p of the (identical) electrons,
that is, the marginals of the measure |f|?dx are always p.

In order to solve the previous problem, the idea is to fix the density p and
minimize only the (kinetic + interaction) part under the density
constraint. Then one tries to solve the main problem as

in 4 F(p)+ /v dp b
pe’g'(ﬁd){ (p)+n [ V(x) p}
where
F(p) = min/ (C|Vf|2+ Vee|f|2)dx,
(Re)n

p<f
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Density Functional Theory: Strictly Correlated Elecrons

Hohenberg e Kohn formulation(HK)

The wave function f gives us the density p of the (identical) electrons,
that is, the marginals of the measure |f|?dx are always p.

In order to solve the previous problem, the idea is to fix the density p and
minimize only the (kinetic + interaction) part under the density
constraint. Then one tries to solve the main problem as

pe’%d) {F(p) +n / V(x) dp}7

where

p<f

F(p) = min/ (c|Vf|2 + Vee|f|2) dx,
(R)"

If now we take the semiclassical limit ¢ — 0, we have convergence of F
to another minimum problem (Cotar - Friesecke - Kliippelberg). We are
left is our multimarginal optimal transport problem.
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Density Functional Theory: Strictly Correlated Elecrons

Hohenberg e Kohn formulation(HK)

The wave function f gives us the density p of the (identical) electrons,
that is, the marginals of the measure |f|?dx are always p.

In order to solve the previous problem, the idea is to fix the density p and
minimize only the (kinetic + interaction) part under the density
constraint. Then one tries to solve the main problem as

pe’%d) {F(p) +n / V(x) dp}7

where

p<f

F(p) = min/ (C|Vf|2 + Vee|f|2) dx,
(R)"

If now we take the semiclassical limit ¢ — 0, we have convergence of F
to another minimum problem (Cotar - Friesecke - Kliippelberg). We are
left is our multimarginal optimal transport problem.

Another way is to see it as the strictly correlated regime, in which we
neglect the kinetic part (Gori Giorgi).
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Multimarginal Optimal Transport

Mathematical formulation

We are interested in the problem

min / c(x1y ..., xp)dm.

TEN(p11,---54n)

In our case X =RY, yy = ... = pu, = p and c is the sum of the repulsive
Coulombian potentials.
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We are interested in the problem

min / c(x1y ..., xp)dm.

TEN(p11,---54n)
In our case X =RY, yy = ... = pu, = p and c is the sum of the repulsive
Coulombian potentials.

@ When n = 2 we obtain the Kantorovich formulation of optimal
transport;
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Multimarginal Optimal Transport

Mathematical formulation

We are interested in the problem

min / c(x1y ..., xp)dm.

TEN(p11,---54n)

In our case X =RY, yy = ... = pu, = p and c is the sum of the repulsive
Coulombian potentials.

@ When n = 2 we obtain the Kantorovich formulation of optimal
transport;
@ this isn't exactly a trasport problem but more a coupling problem;

@ symmetries: impossibility for uniqueness.
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Multimarginal Optimal Transport

Multimarginal optimal transport

Notations:
@ given g € 5, define o : X" — X" as

o (Xt Xn) P (Xo(1)s - - Xo(n)):

@ [sym(p) is the set of probabilities 7 which have all marginals equal to
p and such that oym = 7 for all ¢ € S,. The natural projection into

symmetric plans is
s_ 1 .
T = o oy,
® Tom(p) is the set of Borel maps T : X — X such that Typ=p e
T (x) = x for p-almost every x.
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Multimarginal Optimal Transport

Multimarginal optimal transport

Notations:
@ given g € 5, define o : X" — X" as

o (Xt Xn) P (Xo(1)s - - Xo(n)):

@ [sym(p) is the set of probabilities 7 which have all marginals equal to
p and such that oym = 7 for all ¢ € S,. The natural projection into

symmetric plans is
1
R —— g O3,
n!
og€ES,

® Tom(p) is the set of Borel maps T : X — X such that Typ=p e
T (x) = x for p-almost every x.
From now on we'll call (Ksym) e (Msym) the following two problems:

min / c(x1,. ..y xp)dm

m€lgym(p) S x

in c(x, T(x X)), ..., T=(x
pinf [ el TOO T T 0
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Multimarginal Optimal Transport

Existence of the map

There exists an optimal symmetric map, in particular (Ms,p,) is a
minimum. Furthermore this minimum is equal to (Ksym).
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Multimarginal Optimal Transport
Existence of the map

There exists an optimal symmetric map, in particular (Ms,p,) is a
minimum. Furthermore this minimum is equal to (Ksym).

The goal of this studies is to investigate the equality (Ksym) = (Msym),
the presence of an optimal map and eventually the characterization of

optimal (symmetric) plans.
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Multimarginal Optimal Transport

Known results

@ (Colombo - D.M.) In the symmetric case is true in general that
(Ksym) = (Msym), in every complete and separable metric space,
with a symmetric |.s.c. cost, continuous in its finiteness domain,
when p is without atoms;
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Multimarginal Optimal Transport
Known results

@ (Colombo - D.M.) In the symmetric case is true in general that
(Ksym) = (Msym), in every complete and separable metric space,
with a symmetric |.s.c. cost, continuous in its finiteness domain,
when p is without atoms;

o (Pass, Pass - Kim ) in the non-symmetric case, if a modifed twist
condition on the cost holds true and p is absolutely continuous with
respect to Lebesgue measure, then there exists a unique optimal
plan, which is induced by an optimal map (as in the two marginal
case);
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Multimarginal Optimal Transport
Known results

@ (Colombo - D.M.) In the symmetric case is true in general that
(Ksym) = (Msym), in every complete and separable metric space,
with a symmetric |.s.c. cost, continuous in its finiteness domain,
when p is without atoms;

o (Pass, Pass - Kim ) in the non-symmetric case, if a modifed twist
condition on the cost holds true and p is absolutely continuous with
respect to Lebesgue measure, then there exists a unique optimal
plan, which is induced by an optimal map (as in the two marginal
case);

o (Cotar - Friesecke - Kliippelberg) In the case N = 2 there is
existence of the map, in any dimension (radial case);

Theorem (Buttazzo - De Pascale - Gori Giorgi)

There exists a minimizer of (Ksym). Furthermore, the following duality
formula holds true

(Ksym)—nsup{/x¢dp : ¢(xl)+...+¢(xn)Sc(xl,...,xn)}
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Let X =R, and let c(xi,...,Xn) = D21 <;cj<, O(Ixi — Xj[), where ¢ is a
convex and decreasing function on R*.
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Let X =R, and let c(xi,...,Xn) = D21 <;cj<, O(Ixi — Xj[), where ¢ is a
convex and decreasing function on R*.

Theorem

Let p be a diffuse probability measure on R (such that (K) < co0). Let
—00=dy < d <...<dy=+00 be such that

p([d,',d,'+1])= 1/N VI':O,...,N—].. (1)

Let T : R — R be the unique function (up to p-null sets) that is
increasing on every interval [d;, d;i11], i =0, ..., N — 1, and such that

Tﬁl[d,-,d,-H]P = 1[d,-+1,d,-+2]p Vi= 0, ey N—1. (2)
Then T is an admissible map for (Ms,m) and

(K) = /R c(x, T(x), T3(x), ..., TN "N(x)) dp. (3)

Moreover there exists a unique symmetric optimal plan, that is the
symmetrization of the one induced by T.
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Unidimensional case with two marginals

c-monotonicity

Definition (c-monotonicity)

A set A C X x X is c-monotone if for every two points
(x1, 1), (X2, ¥2) € A we have

c(x1,y1) + c(x2, y2) < c(x1,y2) + c(x2, 1)
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Unidimensional case with two marginals

c-monotonicity

Definition (c-monotonicity)

A set A C X x X is c-monotone if for every two points
(x1, 1), (X2, ¥2) € A we have

c(x1,y1) + c(x2, y2) < c(x1,y2) + c(x2, 1)

Theorem (Gangbo)

Let ¢ be a nonnegative l.s.c. cost, continuous in its finiteness domain;
then if the optimal cost is finite, the support of every optimal plan is
c-monotone.
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Unidimensional case with two marginals

c-monotonicity

Definition (c-monotonicity)

A set A C X x X is c-monotone if for every two points
(x1, 1), (X2, ¥2) € A we have

c(x1,y1) + c(x2, y2) < c(x1,y2) + c(x2, 1)

Theorem (Gangbo)

Let ¢ be a nonnegative l.s.c. cost, continuous in its finiteness domain;
then if the optimal cost is finite, the support of every optimal plan is
c-monotone.

Proof.

Consider neighborhoods of the points where inequality fails and rearrange
the plan. O

o’
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Unidimensional case with two marginals

ic characterization in R, convex cost

In dimension 1, in the case c(x,y) = ¢(x — y), with ¢ strictly convex function
we have: if A is c-monotone, the for every couple (xi1, y1), (x2, y2) € A, if
x1 < x2 then y; < yo.
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ase with two marginals

Geometric characterization in R, convex cost

In dimension 1, in the case c(x,y) = ¢(x — y), with ¢ strictly convex function
we have: if A is c-monotone, the for every couple (xi1, y1), (x2, y2) € A, if
x1 < x2 then y; < yo.

Proof.

Suppose y1 > y». Then we have that x1 — y1 < x2 — y1 < x2 — y», so there
exists t € (0,1) such that

xo—y1=tlxa—y1) + (1 —t)(x2 — y2)

Simone Di Marino Multimarginal optimal transportation: the one dimensional symmetric case



ase with two marginals

Geometric characterization in R, convex cost

In dimension 1, in the case c(x,y) = ¢(x — y), with ¢ strictly convex function
we have: if A is c-monotone, the for every couple (xi1, y1), (x2, y2) € A, if
x1 < x2 then y; < yo.

Proof.

Suppose y1 > y». Then we have that x1 — y1 < x2 — y1 < x2 — y», so there
exists t € (0,1) such that

xo—y1=tlxa—y1) + (1 —t)(x2 — y2)

xi—y» = (1= t)(x1 — y1) + t(e — y2)
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Unidimensional case with two marginals

Geometric characterization in R, convex cost

In dimension 1, in the case c(x,y) = ¢(x — y), with ¢ strictly convex function
we have: if A is c-monotone, the for every couple (xi1, y1), (x2, y2) € A, if
x1 < x2 then y; < yo.

Proof.

Suppose y1 > y». Then we have that x1 — y1 < x2 — y1 < x2 — y», so there
exists t € (0,1) such that

d(x2 — y1) < td(xi — y1) + (1 — t)d(x2 — y2)

P — y2) < (1 = t)p(xa — y1) + td(xe — y2)
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Unidimensional case with two marginals

Geometric characterization in R, convex cost

In dimension 1, in the case c(x,y) = ¢(x — y), with ¢ strictly convex function
we have: if A is c-monotone, the for every couple (xi1, y1), (x2, y2) € A, if
x1 < x2 then y; < yo.

Proof.

Suppose y1 > y». Then we have that x1 — y1 < x2 — y1 < x2 — y», so there
exists t € (0,1) such that

d(x2 — y1) < td(xi — y1) + (1 — t)d(x2 — y2)
P — y2) < (1 = t)p(xa — y1) + td(xe — y2)
B2 — y1) + d(x1 — x2) < d(x1 — y1) + B2 — y2)

O
Corollary

The support of an optimal plan is "monotone”.If p1 and p, are diffuse then an
optimal plan is induced by a map.
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The onde dimensional multimarginal problem

multimarginal c-monotonicity

We can adapt the definition to the multi marginal case. Given P C {1,...,n}
and two points x,y € X" we define the P-mixing as

Xi ifieP Yi ifieP

yi  otherwise. x;  otherwise.

(P(x,y))i = { (P ¥))i = {

Definition (c-monotonicity)

A set A C X" is c-monotone if for every x,y € A and every P C {1, ..., n} one
has

c(x) + cly) < c(P(x,¥)) + c(P*(x, ¥))
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The onde dimensional multimarginal problem

multimarginal c-monotonicity

We can adapt the definition to the multi marginal case. Given P C {1,...,n}
and two points x,y € X" we define the P-mixing as

Xi ifieP

. (Pc(x7y))i={yi trep
yi  otherwise.

x;  otherwise.

(P(x,¥))i = {

Definition (c-monotonicity)

A set A C X" is c-monotone if for every x,y € A and every P C {1, ..., n} one
has
c(x) + c(y) < c(P(x,y)) + c(P(x,y))

A

Theorem (Pass)

Let c be a nonnegative l.s.c. cost, continuous in its finiteness domain; then the
support of an optimal plan with finite cost is necessarily c-monotone.

v

The proof uses Gangbo theorem applied to the spaces XIPl e XIPCI,
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The onde dimensional multimarginal problem

symmetric c-m onicity

If we add symmetry we can define c-monotonicity in the following
equivalent way. We first define the " cumulative coordinate” of two points
x,y € X" as

C(va) = Z 5Xi + 6)/;
i=1

Definition (c-monotonicity)

A symmetric set A C X" is c-monotone if for every points x,y € A and
every points x', y’ such that C(x,y) = C(x’,y’) we have that

c(x) + c(y) < c(x) + c(y")
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The onde dimensional multimarginal problem

From now on we'll have X =R and c(x) = >_,_; ¢(|x; — x;|). The
crucial geometrical characterization is:
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The onde dimensional multimarginal problem

From now on we'll have X =R and c(x) = >_,_; ¢(|x; — x;|). The
crucial geometrical characterization is:

Lemma

Given a set T consisting of 2n coordinates counted with multiplicities,
i.e., there exist t; < tp < --- < tp, such that T = 0, let x,y be
points in X" that minimize the problem

min{c(x') +c(y’) : C(X,y')=T}.

Then, up to swap x and y and up to re-arrange the coordinates
increasingly, we have that x; = ty; and y; = to;_1.
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The onde dimensional multimarginal problem

From now on we'll have X =R and c(x) = >_,_; ¢(|x; — x;|). The
crucial geometrical characterization is:

Lemma

Given a set T consisting of 2n coordinates counted with multiplicities,
i.e., there exist t; < tp < --- < tp, such that T = 0, let x,y be
points in X" that minimize the problem

min{c(x’) +c(y’) : C(xX',y')=T}.

Then, up to swap x and y and up to re-arrange the coordinates
increasingly, we have that x; = ty; and y; = to;_1.

Equivalently, x, y are minimizers iff, defining x*, y* the increasing
rearrangement of the coordinates, one has

XS <<

in this case the points are well ordered.
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The onde dimensional multimarginal problem
How to conclude

Given the lemma, we can conclude the proof of the theorem:
@ prove that the support of an optimal plan doesn't intersect x; = x;;
@ reduce the analysis to the zone x; < x - -+ < x, = O;

@ consider the numbers

df = max{x; : x € O Nsptr} d” = min{x; : x € O Nsptr},

1 1

and prove d" < d7; and consequently p([d;", d\;]) = 1/n;

@ conclude as in the 2 dimensional case, with monotone maps.
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The onde dimensional multimarginal problem
Case with 3 marginals: by hands

We have 6 points on the real line (that represent T). In what way | can
group in two groups of three points such that the interaction potential is

minimal? ($)/2 = 10 cases.
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We have 6 points on the real line (that represent T). In what way | can
group in two groups of three points such that the interaction potential is

minimal? ($)/2 = 10 cases.
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The onde dimensional multimarginal problem
Case with 3 marginals: by hands

We have 6 points on the real line (that represent T). In what way | can
group in two groups of three points such that the interaction potential is
minimal? ($)/2 = 10 cases.

e o —
v ee oo « oo e s

Simone Di Marino Multimarginal optimal transportation: the one dimensional symmetric case



The onde dimensional multimarginal problem
Case with 3 marginals: by hands

We have 6 points on the real line (that represent T). In what way | can
group in two groups of three points such that the interaction potential is
minimal? ($)/2 = 10 cases.

o oo —
«e e ee « oo e
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The onde dimensional multimarginal problem

n-marginals symmetric case

Given 2n points on the real line, what is the best way of separate them in
two group of n points such that the energy interaction is minimal?
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The onde dimensional multimarginal problem
n-marginals symmetric case

Given 2n points on the real line, what is the best way of separate them in
two group of n points such that the energy interaction is minimal? Let us
consider k-neighborhoods:

X1 Y1 Y2 X2)3 X3
—o—0—0 0 —0

s1_—vicini

*——o
*—=0
*r—0
2-vicini °
—0
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The onde dimensional multimarginal problem

n-marginals symmetric case

Given 2n points on the real line, what is the best way of separate them in
two group of n points such that the energy interaction is minimal? Let us
consider k-neighborhoods:

X1 Y1 Y2 X2)3 X3 X1 Y1 X2 Y2Xx3 y3
e S e ¢ ——— S

-vicini -vicini
*—0

*——o
*—=0 *—a
*r—0 *r—0
2-vicini _ g—vicini
—0 [ L ]

Multimarginal optimal transportation: the one dimensional symmetric case

Simone Di Marino




The onde dimensional multimarginal problem
n-marginals symmetric case

Given 2n points on the real line, what is the best way of separate them in
two group of n points such that the energy interaction is minimal? Let us
consider k-neighborhoods:

X1 Y1 Y2 X2)3 X3 X1 Y1 X2 Y2Xx3 y3
e S e ¢ ——— S

-vicini -vicini
*—0

*——o
*—=0 *—a
*r—0 *r—0
2-vicini _ g—vicini
—0 [ L ]

@ Step 1 (convexity of ¢): use the one-dimensional result for 2
marginals on k-neighbors (with fixed k);
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The onde dimensional multimarginal problem
n-marginals symmetric case

Given 2n points on the real line, what is the best way of separate them in
two group of n points such that the energy interaction is minimal? Let us
consider k-neighborhoods:

X1 Y1 Y2 X2)3 X3 X1 Y1 X2 Y2Xx3 y3
e S e ¢ ——— S

-vicini -vicini
*—0

*——o
*—=0 *—a
*r—0 *r—0
2-vicini _ g—vicini
—0 [ L ]

@ Step 1 (convexity of ¢): use the one-dimensional result for 2
marginals on k-neighbors (with fixed k);

@ Step 2 (monotonicity of ¢): stretch in the right way the segments to
get the "well ordered” situation.
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The onde dimensional multimarginal problem

Future development

@ one-dimensional symmetric case with a cost that is concave or
concave-convex;
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The onde dimensional multimarginal problem

Future development

@ one-dimensional symmetric case with a cost that is concave or
concave-convex;

@ symmetric case for X = R?, with radial marginal and Coulombian
cost;
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The onde dimensional multimarginal problem

Future development

@ one-dimensional symmetric case with a cost that is concave or
concave-convex;

@ symmetric case for X = R?, with radial marginal and Coulombian
cost;

o sufficiency of multimarginal c-monotonicity (other possible
definitions?).

Simone Di Marino Multimarginal optimal transportation: the one dimensional symmetric case



The onde arginal problem

Thanks for the attention
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