Curvature effects for infinite particle systems via optimal transport

Matthias Erbar
joint work with M. Huesmann
Scuola Normale Superiore, Pisa

Eindhoven, 13 March, 2014

An infinite particle system

Consider a system of interacting Brownian motions [Osada '11-'13] in \mathbb{R}^{d} :

$$
\mathrm{d} X_{t}^{i}=\mathrm{d} B_{t}^{i}+\frac{\beta}{2} \lim _{R \rightarrow \infty} \sum_{\left|X_{t}^{i}-X_{t}^{j}\right|<R} \frac{X_{t}^{i}-X_{t}^{j}}{\left|X_{t}^{i}-X_{t}^{j}\right|^{2}} \mathrm{~d} t, \quad i=1,2, \ldots
$$

An infinite particle system

Consider a system of interacting Brownian motions [Osada '11-'13] in \mathbb{R}^{d} :

$$
\mathrm{d} X_{t}^{i}=\mathrm{d} B_{t}^{i}+\frac{\beta}{2} \lim _{R \rightarrow \infty} \sum_{\left|X_{t}^{i}-X_{t}^{j}\right|<R} \frac{X_{t}^{i}-X_{t}^{j}}{\left|X_{t}^{i}-X_{t}^{j}\right|^{2}} \mathrm{~d} t, \quad i=1,2, \ldots
$$

For finitely many particles, OT gives powerful tools : Otto calculus, gradient flow structure, asymptotic behaviour, stability...

An infinite particle system

Consider a system of interacting Brownian motions [Osada '11-'13] in \mathbb{R}^{d} :

$$
\mathrm{d} X_{t}^{i}=\mathrm{d} B_{t}^{i}+\frac{\beta}{2} \lim _{R \rightarrow \infty} \sum_{\left|X_{t}^{i}-X_{t}^{j}\right|<R} \frac{X_{t}^{i}-X_{t}^{j}}{\left|X_{t}^{i}-X_{t}^{j}\right|^{2}} \mathrm{~d} t, \quad i=1,2, \ldots
$$

For finitely many particles, OT gives powerful tools :
Otto calculus, gradient flow structure, asymptotic behaviour, stability...
Aim: Develop analoguous tools for infinite systems

An infinite particle system

Consider a system of interacting Brownian motions [Osada '11-'13] in \mathbb{R}^{d} :

$$
\mathrm{d} X_{t}^{i}=\mathrm{d} B_{t}^{i}+\frac{\beta}{2} \lim _{R \rightarrow \infty} \sum_{\left|X_{t}^{i}-X_{t}^{j}\right|<R} \frac{X_{t}^{i}-X_{t}^{j}}{\left|X_{t}^{i}-X_{t}^{j}\right|^{2}} \mathrm{~d} t, \quad i=1,2, \ldots
$$

For finitely many particles, OT gives powerful tools :
Otto calculus, gradient flow structure, asymptotic behaviour, stability...
Aim: Develop analoguous tools for infinite systems
As first step, understand non-interacting system of independent particles and its geometry!

Question: What is the natural state space for the particle system?

The configuration space

Setting: the base space

- $(M,\langle\cdot, \cdot\rangle)$ Riemannian manifold
- $d: M \times M \rightarrow \mathbb{R}_{+}$Riemannian distance
- m volume measure

The configuration space

Setting: the base space

- $(M,\langle\cdot, \cdot\rangle)$ Riemannian manifold
- $d: M \times M \rightarrow \mathbb{R}_{+}$Riemannian distance
- m volume measure
- The configuration space Υ over M is the set of locally finite counting measures on M, i.e.

$$
\Upsilon=\left\{\gamma \in \mathcal{M}(M): \gamma(K) \in \mathbb{N}_{0} \text { for all } K \subset M \text { compact }\right\}
$$

The configuration space

Setting: the base space

- ($M,\langle\cdot, \cdot\rangle$) Riemannian manifold
- $d: M \times M \rightarrow \mathbb{R}_{+}$Riemannian distance
- m volume measure
- The configuration space Υ over M is the set of locally finite counting measures on M, i.e.

$$
\Upsilon=\left\{\gamma \in \mathcal{M}(M): \gamma(K) \in \mathbb{N}_{0} \text { for all } K \subset M \text { compact }\right\}
$$

- Any configuration $\gamma \in \Upsilon$ can be represented by a labelling:

$$
\gamma=\sum_{i=1}^{n} \delta_{x_{i}}
$$

for $x_{1}, \ldots, x_{n} \in M$ and $n \in \mathbb{N} \cup\{\infty\}$.

The configuration space

Setting: the base space

- ($M,\langle\cdot, \cdot\rangle$) Riemannian manifold
- $d: M \times M \rightarrow \mathbb{R}_{+}$Riemannian distance
- m volume measure
- The configuration space Υ over M is the set of locally finite counting measures on M, i.e.

$$
\Upsilon=\left\{\gamma \in \mathcal{M}(M): \gamma(K) \in \mathbb{N}_{0} \text { for all } K \subset M \text { compact }\right\}
$$

- Any configuration $\gamma \in \Upsilon$ can be represented by a labelling:

$$
\gamma=\sum_{i=1}^{n} \delta_{x_{i}}
$$

for $x_{1}, \ldots, x_{n} \in M$ and $n \in \mathbb{N} \cup\{\infty\}$.

- We equip Υ with vague topology (duality with $C_{c}(M)$)

Υ as an infinite-dimensional manifold

```
Albeverio-Kondratiev-Röckner '98:
natural Riemannian structure on }\Upsilon\mathrm{ via lifting from M
```


Υ as an infinite-dimensional manifold

Albeverio-Kondratiev-Röckner '98: natural Riemannian structure on \uparrow via lifting from M

- Tangent space: $T_{\gamma} \Upsilon=\left\{V: M \rightarrow T M: \int|V|_{x}^{2} \mathrm{~d} \gamma(x)<\infty\right\}$ equipped with inner product: $\left\langle V_{1}, V_{2}\right\rangle_{\gamma}=\int\left\langle V_{1}, V_{2}\right\rangle_{x} \mathrm{~d} \gamma(x)$

Υ as an infinite-dimensional manifold

Albeverio-Kondratiev-Röckner '98:

 natural Riemannian structure on \uparrow via lifting from M- Tangent space: $T_{\gamma} \Upsilon=\left\{V: M \rightarrow T M: \int|V|_{x}^{2} \mathrm{~d} \gamma(x)<\infty\right\}$ equipped with inner product: $\left\langle V_{1}, V_{2}\right\rangle_{\gamma}=\int\left\langle V_{1}, V_{2}\right\rangle_{x} \mathrm{~d} \gamma(x)$
- Gradient: for a cylinder function $F(\gamma)=g\left(\gamma\left(\varphi_{1}\right), \cdots, \gamma\left(\varphi_{n}\right)\right)$ with $g \in C^{\infty}\left(\mathbb{R}^{n}\right)$ and $\varphi_{i} \in C_{c}^{\infty}(M)$ define

$$
\nabla^{\Upsilon} F(\gamma)=\sum_{i=1}^{n} \partial_{i} g\left(\gamma\left(\varphi_{1}\right), \cdots, \gamma\left(\varphi_{n}\right)\right) \nabla \varphi_{i}
$$

Υ as an infinite-dimensional manifold

Albeverio-Kondratiev-Röckner '98:

natural Riemannian structure on \uparrow via lifting from M

- Tangent space: $T_{\gamma} \Upsilon=\left\{V: M \rightarrow T M: \int|V|_{x}^{2} \mathrm{~d} \gamma(x)<\infty\right\}$ equipped with inner product: $\left\langle V_{1}, V_{2}\right\rangle_{\gamma}=\int\left\langle V_{1}, V_{2}\right\rangle_{x} \mathrm{~d} \gamma(x)$
- Gradient: for a cylinder function $F(\gamma)=g\left(\gamma\left(\varphi_{1}\right), \cdots, \gamma\left(\varphi_{n}\right)\right)$ with $g \in C^{\infty}\left(\mathbb{R}^{n}\right)$ and $\varphi_{i} \in C_{c}^{\infty}(M)$ define

$$
\nabla^{\Upsilon} F(\gamma)=\sum_{i=1}^{n} \partial_{i} g\left(\gamma\left(\varphi_{1}\right), \cdots, \gamma\left(\varphi_{n}\right)\right) \nabla \varphi_{i}
$$

- Divergence: for cylindrical vector field $W(\gamma)=\sum_{i=1}^{n} F_{i}(\gamma) V_{i}$ with $F_{i} \in \mathrm{Cyl}^{\infty}(\Upsilon)$ and $V_{i}: M \rightarrow T M$ vector fields define

$$
\operatorname{div}^{\Upsilon} W(\gamma)=\sum_{i=1}^{n}\left\langle\nabla^{\Upsilon} F_{i}, V_{i}\right\rangle_{\gamma}+F_{i}(\gamma)\left\langle\operatorname{div} V_{i}, \gamma\right\rangle
$$

Υ as an infinite-dimensional manifold

Albeverio-Kondratiev-Röckner '98:

natural Riemannian structure on \uparrow via lifting from M

- Tangent space: $T_{\gamma} \Upsilon=\left\{V: M \rightarrow T M: \int|V|_{x}^{2} \mathrm{~d} \gamma(x)<\infty\right\}$ equipped with inner product: $\left\langle V_{1}, V_{2}\right\rangle_{\gamma}=\int\left\langle V_{1}, V_{2}\right\rangle_{x} \mathrm{~d} \gamma(x)$
- Gradient: for a cylinder function $F(\gamma)=g\left(\gamma\left(\varphi_{1}\right), \cdots, \gamma\left(\varphi_{n}\right)\right)$ with $g \in C^{\infty}\left(\mathbb{R}^{n}\right)$ and $\varphi_{i} \in C_{c}^{\infty}(M)$ define

$$
\nabla^{\Upsilon} F(\gamma)=\sum_{i=1}^{n} \partial_{i} g\left(\gamma\left(\varphi_{1}\right), \cdots, \gamma\left(\varphi_{n}\right)\right) \nabla \varphi_{i}
$$

- Divergence: for cylindrical vector field $W(\gamma)=\sum_{i=1}^{n} F_{i}(\gamma) V_{i}$ with $F_{i} \in \mathrm{Cyl}^{\infty}(\Upsilon)$ and $V_{i}: M \rightarrow T M$ vector fields define

$$
\operatorname{div}^{\Upsilon} W(\gamma)=\sum_{i=1}^{n}\left\langle\nabla^{\Upsilon} F_{i}, V_{i}\right\rangle_{\gamma}+F_{i}(\gamma)\left\langle\operatorname{div} V_{i}, \gamma\right\rangle
$$

- Laplace opterator: $\Delta^{\Upsilon} F(\gamma)=\operatorname{div}^{\Upsilon} \nabla^{\Upsilon} F(\gamma)$

Υ as ∞-dim. mfd: distance

Define a distance on Υ via

$$
d_{\curlyvee}^{2}\left(\gamma_{1}, \gamma_{2}\right)=\inf \left\{\sum_{i=1}^{n} d^{2}\left(x_{i}, y_{i}\right): \gamma_{1}=\sum_{i=1}^{n} \delta_{x_{i}}, \gamma_{2}=\sum_{i=1}^{n} \delta_{y_{i}}\right\}
$$

\uparrow as ∞-dim. mfd: distance

Define a distance on Υ via

$$
d_{\curlyvee}^{2}\left(\gamma_{1}, \gamma_{2}\right)=\inf \left\{\sum_{i=1}^{n} d^{2}\left(x_{i}, y_{i}\right): \gamma_{1}=\sum_{i=1}^{n} \delta_{x_{i}}, \gamma_{2}=\sum_{i=1}^{n} \delta_{y_{i}}\right\}
$$

- L2-transportation distance for non-normalized measures.

\uparrow as ∞-dim. mfd: distance

Define a distance on Υ via

$$
d_{\curlyvee}^{2}\left(\gamma_{1}, \gamma_{2}\right)=\inf \left\{\sum_{i=1}^{n} d^{2}\left(x_{i}, y_{i}\right): \gamma_{1}=\sum_{i=1}^{n} \delta_{x_{i}}, \gamma_{2}=\sum_{i=1}^{n} \delta_{y_{i}}\right\}
$$

- L2 2 -transportation distance for non-normalized measures.
- It is a pseudo distance, typically $d_{\curlyvee}\left(\gamma_{1}, \gamma_{2}\right)=+\infty$

\uparrow as ∞-dim. mfd: distance

Define a distance on Υ via

$$
d_{\curlyvee}^{2}\left(\gamma_{1}, \gamma_{2}\right)=\inf \left\{\sum_{i=1}^{n} d^{2}\left(x_{i}, y_{i}\right): \gamma_{1}=\sum_{i=1}^{n} \delta_{x_{i}}, \gamma_{2}=\sum_{i=1}^{n} \delta_{y_{i}}\right\}
$$

- L2 2 -transportation distance for non-normalized measures.
- It is a pseudo distance, typically $d_{\curlyvee}\left(\gamma_{1}, \gamma_{2}\right)=+\infty$
- It is the induced Riemannian distance on Υ :

$$
d_{\curlyvee}^{2}\left(\gamma_{0}, \gamma_{1}\right)=\inf \left\{\int_{0}^{1}\left|V_{t}\right|_{\gamma_{t}}^{2} \mathrm{~d} t: \gamma_{t}=\sum_{i} \delta_{x_{i}(t)}, \dot{x}_{i}(t)=V_{t}\left(x_{i}\right)\right\}
$$

\uparrow as ∞-dim. mfd: measure

The natural reference measure on γ (in the independent case $\beta=0$) is the Poisson measure π with intensity measure m :

Υ as ∞-dim. mfd: measure

The natural reference measure on Υ (in the independent case $\beta=0$) is the Poisson measure π with intensity measure m :

Under $\pi \gamma$ becomes a Υ-valued random variable, s.t.

- $\gamma(A) \sim \operatorname{Poi}(m(A))$ for all $A \subset M$, i.e. $\pi_{\mu}[\gamma(A)=n]=\mathrm{e}^{-m(A)} m(A)^{n} / n!$
- $\gamma\left(A_{1}\right), \ldots, \gamma\left(A_{n}\right)$ independent for all $A_{1}, \ldots, A_{n} \subset M$ disjoint

Υ as ∞-dim. mfd: measure

The natural reference measure on γ (in the independent case $\beta=0$) is the Poisson measure π with intensity measure m :

Under $\pi \gamma$ becomes a Υ-valued random variable, s.t.

- $\gamma(A) \sim \operatorname{Poi}(m(A))$ for all $A \subset M$, i.e.

$$
\pi_{\mu}[\gamma(A)=n]=\mathrm{e}^{-m(A)} m(A)^{n} / n!
$$

- $\gamma\left(A_{1}\right), \ldots, \gamma\left(A_{n}\right)$ independent for all $A_{1}, \ldots, A_{n} \subset M$ disjoint
π is the unique probability measure on Υ (up to mixtures) such that ∇^{Υ} and $\operatorname{div}^{\Upsilon}$ are adjoint in $L^{2}(\pi)$ (AKR '98), i.e.

$$
\int F(\gamma) \operatorname{div}^{\Upsilon} W(\gamma) \mathrm{d} \pi(\gamma)=-\int\left\langle\nabla^{\Upsilon} F, W\right\rangle_{\gamma} \mathrm{d} \pi(\gamma)
$$

Dirichlet form and particle process on Υ

Define a Dirichlet form on Υ with domain $\mathrm{Cyl}^{\infty}(\Upsilon)$ via

$$
\mathcal{E}(F)=\int\left\langle\nabla^{\Upsilon} F, \nabla^{\Upsilon} F\right\rangle_{\gamma} \mathrm{d} \pi(\gamma)=-\int F(\gamma) \Delta^{\Upsilon} F(\gamma) \mathrm{d} \pi(\gamma)
$$

associated semigroup: $P_{t}^{\Upsilon}=\mathrm{e}^{t \Delta^{\Upsilon}}$

Dirichlet form and particle process on Υ

Define a Dirichlet form on Υ with domain $\mathrm{Cyl}^{\infty}(\Upsilon)$ via

$$
\mathcal{E}(F)=\int\left\langle\nabla^{\Upsilon} F, \nabla^{\Upsilon} F\right\rangle_{\gamma} \mathrm{d} \pi(\gamma)=-\int F(\gamma) \Delta^{\Upsilon} F(\gamma) \mathrm{d} \pi(\gamma)
$$

associated semigroup: $P_{t}^{\Upsilon}=\mathrm{e}^{t \Delta^{\Upsilon}}$
\mathcal{E} gives rise to a canonical diffusion process $\left(\mathbf{B}_{t}^{\gamma}\right)_{t \geq 0}$ starting in a.e. $\gamma \in \Upsilon$.

Dirichlet form and particle process on Υ

Define a Dirichlet form on Υ with domain $\mathrm{Cyl}^{\infty}(\Upsilon)$ via

$$
\mathcal{E}(F)=\int\left\langle\nabla^{\Upsilon} F, \nabla^{\Upsilon} F\right\rangle_{\gamma} \mathrm{d} \pi(\gamma)=-\int F(\gamma) \Delta^{\Upsilon} F(\gamma) \mathrm{d} \pi(\gamma)
$$

associated semigroup: $P_{t}^{\Upsilon}=\mathrm{e}^{t \Delta^{\Upsilon}}$
\mathcal{E} gives rise to a canonical diffusion process $\left(\mathbf{B}_{t}^{\gamma}\right)_{t \geq 0}$ starting in a.e. $\gamma \in \Upsilon$.
Lemma (Identification with the independent particle system):
If $\operatorname{Ric}_{M} \geq K$, there ex. $\Theta \subset \Upsilon$ with $\pi_{\mu}(\Theta)=1$ s.t. $\left(\mathbf{B}_{t}\right)$ is realized on Θ as $\mathbf{B}_{t}^{\gamma}=\sum_{i} \delta_{B_{t}^{x_{i}}}$, where $\gamma=\sum_{i} \delta_{x_{i}}$ and $B_{t}^{x_{i}}$ are independent BMs starting in x_{i}.
Explicit representation of the semigroup:

$$
\widetilde{P}_{t}^{\Upsilon} F(\gamma)=E\left[F\left(\sum_{i} \delta_{B_{t}^{x_{i}}}\right)\right]=\int F\left(\sum_{i} \delta_{y_{i}}\right) \Pi_{i} p_{t}\left(x_{i}, \mathrm{~d} y_{i}\right), \gamma=\sum_{i} \delta_{x_{i}}
$$

Goal

Question:

Can we say more about the geometry of the configuration space Υ ? In particular, what are its curvature properties?

Sectional curvature bounds

A lower bound on the sectional curvature, $\sec (M) \geq K$, is equivalent to:

Sectional curvature bounds

A lower bound on the sectional curvature, $\sec (M) \geq K$, is equivalent to:

- Alexandrov triangle comparison: triangles in M are "fatter" than triangles in the model space of constant sectional curvature K, $S^{2}(\sqrt{K}), \mathbb{R}^{2}, H^{2}(\sqrt{-K})$

Sectional curvature bounds

A lower bound on the sectional curvature, $\sec (M) \geq K$, is equivalent to:

- Alexandrov triangle comparison: triangles in M are "fatter" than triangles in the model space of constant sectional curvature K, $S^{2}(\sqrt{K}), \mathbb{R}^{2}, H^{2}(\sqrt{-K})$
- Quadruple comparison: For all $x_{0}, x_{1}, x_{2}, x_{3} \in M$ we have:

$$
\begin{array}{rlr}
\sum_{i=1}^{3} d^{2}\left(x_{0}, x_{i}\right) \geq \frac{1}{6} \sum_{i, j=1}^{3} d^{2}\left(x_{i}, x_{j}\right), & (K=0), \\
\sum_{i=1}^{3} \cos \left(\sqrt{K} d\left(x_{0}, x_{i}\right)\right) \leq \sum_{i, j=1}^{3} \cos \left(\sqrt{K} d\left(x_{i}, x_{j}\right)\right), & (K>0), \\
\sum_{i=1}^{3} \cosh \left(\sqrt{-K} d\left(x_{0}, x_{i}\right)\right) \geq \sum_{i, j=1}^{3} \cosh \left(\sqrt{-K} d\left(x_{i}, x_{j}\right)\right), & (K<0) .
\end{array}
$$

Ricci curvature bounds

A lower bound on the Ricci curvature, $\operatorname{Ric}_{M} \geq K$, is equivalent to:

Ricci curvature bounds

A lower bound on the Ricci curvature, $\operatorname{Ric}_{M} \geq K$, is equivalent to:

- Bochner's inequality: for all $u: M \rightarrow \mathbb{R}$ smooth:

$$
\frac{1}{2} \Delta|\nabla u|^{2}-\langle\nabla u, \Delta \nabla u\rangle=\operatorname{Ric}[\nabla u]+\| \text { Hess } u \|_{H S}^{2} \geq K|\nabla u|^{2}
$$

Ricci curvature bounds

A lower bound on the Ricci curvature, $\operatorname{Ric}_{M} \geq K$, is equivalent to:

- Bochner's inequality: for all $u: M \rightarrow \mathbb{R}$ smooth:

$$
\frac{1}{2} \Delta|\nabla u|^{2}-\langle\nabla u, \Delta \nabla u\rangle=\operatorname{Ric}[\nabla u]+\|\operatorname{Hess} u\|_{H S}^{2} \geq K|\nabla u|^{2}
$$

- Gradient estimates for the heat semigroup $P_{t}=\mathrm{e}^{t \Delta}$:

$$
\left|\nabla P_{t} u\right|^{2} \leq \mathrm{e}^{-2 K t} P_{t}|\nabla u|^{2}
$$

Ricci curvature bounds

A lower bound on the Ricci curvature, $\operatorname{Ric}_{M} \geq K$, is equivalent to:

- Bochner's inequality: for all $u: M \rightarrow \mathbb{R}$ smooth:

$$
\frac{1}{2} \Delta|\nabla u|^{2}-\langle\nabla u, \Delta \nabla u\rangle=\operatorname{Ric}[\nabla u]+\|\operatorname{Hess} u\|_{H S}^{2} \geq K|\nabla u|^{2}
$$

- Gradient estimates for the heat semigroup $P_{t}=\mathrm{e}^{t \Delta}$:

$$
\left|\nabla P_{t} u\right|^{2} \leq \mathrm{e}^{-2 K t} P_{t}|\nabla u|^{2}
$$

(proof: look at $\varphi(s)=\mathrm{e}^{-2 K s} P_{s}\left|\nabla P_{t-s} u\right|^{2}$ and derivate in s)

Ricci curvature bounds and OT

Cordero-McCann-Schmuckenschläger '01, vRenesse-Sturm '05
$\operatorname{Ric}_{M} \geq K \Leftrightarrow$ Entropy K-convex along L^{2}-transport geodesics

Ricci curvature bounds and OT

Cordero-McCann-Schmuckenschläger '01, vRenesse-Sturm '05

$\operatorname{Ric}_{M} \geq K \Leftrightarrow$ Entropy K-convex along L^{2}-transport geodesics

- Relative entropy:

$$
\operatorname{Ent}(\rho \mid m)= \begin{cases}\int u \log u \mathrm{~d} m, & \rho=u m \ll \mathrm{vol} \\ +\infty, & \text { else }\end{cases}
$$

- L2 ${ }^{2}$-transport distance between probability measures ρ_{0}, ρ_{1} :

$$
W_{2}^{2}\left(\rho_{0}, \rho_{1}\right)=\inf \left\{\int_{M \times M} d(x, y)^{2} \mathrm{~d} \gamma(x, y): \gamma \text { coupling } \rho_{0}, \rho_{1}\right\}
$$

Ricci curvature bounds and OT

Cordero-McCann-Schmuckenschläger '01, vRenesse-Sturm '05
$\operatorname{Ric}_{M} \geq K \Leftrightarrow$ Entropy K-convex along L^{2}-transport geodesics

Heuristics: Transport on the sphere

Ricci curvature bounds and OT II

A lower bound on the Ricci curvature, $\operatorname{Ric}(M) \geq K$ is also equivalent to:

Ricci curvature bounds and OT II

A lower bound on the Ricci curvature, $\operatorname{Ric}(M) \geq K$ is also equivalent to:

- Wasserstein expansion bounds: for all $\rho_{1}, \rho_{2} \in \mathcal{P}_{2}(M)$ and $t>0$

$$
W_{2}\left(P_{t} \rho_{1}, P_{t} \rho_{2}\right) \leq \mathrm{e}^{-K t} W_{2}\left(\rho_{1}, \rho_{2}\right)
$$

Ricci curvature bounds and OT II

A lower bound on the Ricci curvature, $\operatorname{Ric}(M) \geq K$ is also equivalent to:

- Wasserstein expansion bounds: for all $\rho_{1}, \rho_{2} \in \mathcal{P}_{2}(M)$ and $t>0$

$$
W_{2}\left(P_{t} \rho_{1}, P_{t} \rho_{2}\right) \leq \mathrm{e}^{-K t} W_{2}\left(\rho_{1}, \rho_{2}\right)
$$

- Pathwise expansion bounds: for all $x, y \in M$ there ex. a coupling $\left(B_{t}^{x}, B_{t}^{y}\right)$ of Brownian motions starting in x, y s.t. almost surely

$$
d\left(B_{t}^{x}, B_{t}^{y}\right) \leq \mathrm{e}^{-K t} d(x, y) \forall t>0
$$

Ricci curvature bounds and OT II

A lower bound on the Ricci curvature, $\operatorname{Ric}(M) \geq K$ is also equivalent to:

- Wasserstein expansion bounds: for all $\rho_{1}, \rho_{2} \in \mathcal{P}_{2}(M)$ and $t>0$

$$
W_{2}\left(P_{t} \rho_{1}, P_{t} \rho_{2}\right) \leq \mathrm{e}^{-K t} W_{2}\left(\rho_{1}, \rho_{2}\right)
$$

- Pathwise expansion bounds: for all $x, y \in M$ there ex. a coupling $\left(B_{t}^{x}, B_{t}^{y}\right)$ of Brownian motions starting in x, y s.t. almost surely

$$
d\left(B_{t}^{x}, B_{t}^{y}\right) \leq \mathrm{e}^{-K t} d(x, y) \forall t>0
$$

- Evolution Variational Inequality: for all $\rho, \eta \in \mathcal{P}_{2}(M)$ and $t>0$

$$
\frac{\mathrm{d}}{\mathrm{~d} t} \frac{1}{2} W_{2}^{2}\left(P_{t} \rho, \eta\right)-\frac{K}{2} W_{2}^{2}\left(P_{t} \rho, \eta\right) \leq \operatorname{Ent}(\eta \mid m)-\operatorname{Ent}\left(P_{t} \rho \mid m\right)
$$

EVI encodes simultanuously convexity of the entropy, contraction and that P_{t} is the gradient flow of Ent w.r.t. W_{2}

Ricci bounds for metric measure spaces

Let (X, d, m) be a geodesic mms. Synthetic notion of (Riemannian) Ricci curvature bound:

Ricci bounds for metric measure spaces

Let (X, d, m) be a geodesic mms. Synthetic notion of (Riemannian) Ricci curvature bound:

- CD (K, ∞) (Sturm '06, Lott-Villani '09): $\forall \rho_{0}, \rho_{1} \in \mathcal{P}_{2}(X)$ ex. W_{2}-geodesic $\left(\rho_{t}\right)_{t \in[0,1]}$ s.t.:

$$
\operatorname{Ent}\left(\rho_{t} \mid m\right) \leq(1-t) \operatorname{Ent}\left(\rho_{0} \mid m\right)+t \operatorname{Ent}\left(\rho_{1} \mid m\right)-\frac{K}{2} t(1-t) W_{2}^{2}\left(\rho_{0}, \rho_{1}\right)
$$

Ricci bounds for metric measure spaces

Let (X, d, m) be a geodesic mms. Synthetic notion of (Riemannian) Ricci curvature bound:

- $\mathrm{CD}(K, \infty)$ (Sturm '06, Lott-Villani '09): $\forall \rho_{0}, \rho_{1} \in \mathcal{P}_{2}(X)$ ex. W_{2}-geodesic $\left(\rho_{t}\right)_{t \in[0,1]}$ s.t.:
$\operatorname{Ent}\left(\rho_{t} \mid m\right) \leq(1-t) \operatorname{Ent}\left(\rho_{0} \mid m\right)+t \operatorname{Ent}\left(\rho_{1} \mid m\right)-\frac{K}{2} t(1-t) W_{2}^{2}\left(\rho_{0}, \rho_{1}\right)$.
- $\operatorname{RCD}(K, \infty)$ (Ambrosio-Gigli-Savaré '11):
$\forall \rho_{0} \in \mathcal{P}_{2}(X)$ ex. solution $\left(\rho_{t}\right)_{t \geq 0}$ to the EVI, i.e. $\forall \eta \in \mathcal{P}_{2}(X), t>0$:

$$
\frac{\mathrm{d}}{\mathrm{~d} t} \frac{1}{2} W_{2}^{2}\left(\rho_{t}, \eta\right)-\frac{K}{2} W_{2}^{2}\left(\rho_{t}, \eta\right) \leq \operatorname{Ent}(\eta \mid m)-\operatorname{Ent}\left(\rho_{t} \mid m\right)
$$

Ricci bounds for metric measure spaces

Let (X, d, m) be a geodesic mms. Synthetic notion of (Riemannian) Ricci curvature bound:

- $\mathrm{CD}(K, \infty)$ (Sturm '06, Lott-Villani '09): $\forall \rho_{0}, \rho_{1} \in \mathcal{P}_{2}(X)$ ex. W_{2}-geodesic $\left(\rho_{t}\right)_{t \in[0,1]}$ s.t.:
$\operatorname{Ent}\left(\rho_{t} \mid m\right) \leq(1-t) \operatorname{Ent}\left(\rho_{0} \mid m\right)+t \operatorname{Ent}\left(\rho_{1} \mid m\right)-\frac{K}{2} t(1-t) W_{2}^{2}\left(\rho_{0}, \rho_{1}\right)$.
- $\operatorname{RCD}(K, \infty)$ (Ambrosio-Gigli-Savaré '11): $\forall \rho_{0} \in \mathcal{P}_{2}(X)$ ex. solution $\left(\rho_{t}\right)_{t \geq 0}$ to the EVI, i.e. $\forall \eta \in \mathcal{P}_{2}(X), t>0$:

$$
\frac{\mathrm{d}}{\mathrm{~d} t} \frac{1}{2} W_{2}^{2}\left(\rho_{t}, \eta\right)-\frac{K}{2} W_{2}^{2}\left(\rho_{t}, \eta\right) \leq \operatorname{Ent}(\eta \mid m)-\operatorname{Ent}\left(\rho_{t} \mid m\right) .
$$

$\mathrm{RCD}(K, \infty)$ is equivalent to a suitable form of Bochner inequality and to gradient estimates

Ricci bounds for metric measure spaces

Let (X, d, m) be a geodesic mms. Synthetic notion of (Riemannian) Ricci curvature bound:

- $\mathrm{CD}(K, \infty)$ (Sturm '06, Lott-Villani '09): $\forall \rho_{0}, \rho_{1} \in \mathcal{P}_{2}(X)$ ex. W_{2}-geodesic $\left(\rho_{t}\right)_{t \in[0,1]}$ s.t.:
$\operatorname{Ent}\left(\rho_{t} \mid m\right) \leq(1-t) \operatorname{Ent}\left(\rho_{0} \mid m\right)+t \operatorname{Ent}\left(\rho_{1} \mid m\right)-\frac{K}{2} t(1-t) W_{2}^{2}\left(\rho_{0}, \rho_{1}\right)$.
- $\operatorname{RCD}(K, \infty)$ (Ambrosio-Gigli-Savaré '11): $\forall \rho_{0} \in \mathcal{P}_{2}(X)$ ex. solution $\left(\rho_{t}\right)_{t \geq 0}$ to the EVI, i.e. $\forall \eta \in \mathcal{P}_{2}(X), t>0$:

$$
\frac{\mathrm{d}}{\mathrm{~d} t} \frac{1}{2} W_{2}^{2}\left(\rho_{t}, \eta\right)-\frac{K}{2} W_{2}^{2}\left(\rho_{t}, \eta\right) \leq \operatorname{Ent}(\eta \mid m)-\operatorname{Ent}\left(\rho_{t} \mid m\right) .
$$

$\mathrm{RCD}(K, \infty)$ is equivalent to a suitable form of Bochner inequality and to gradient estimates

Problem: The configuration space $\left(\Upsilon, d_{\Upsilon}, \pi\right)$ is only an extended mms

Sectional curvature bounds for Υ

Recall the distance on Υ :

$$
d_{\curlyvee}^{2}(\gamma, \sigma)=\inf \left\{\sum_{i} d^{2}\left(x_{i}, y_{i}\right): \gamma=\sum_{i} \delta_{x_{i}}, \sigma=\sum_{i} \delta_{y_{i}}\right\}
$$

Sectional curvature bounds for Υ

Recall the distance on Υ :

$$
d_{\gamma}^{2}(\gamma, \sigma)=\inf \left\{\sum_{i} d^{2}\left(x_{i}, y_{i}\right): \gamma=\sum_{i} \delta_{x_{i}}, \sigma=\sum_{i} \delta_{y_{i}}\right\}
$$

Theorem (Alexandrov bounds):
If $\sec (M) \geq K$, then we have $\sec (\Upsilon) \geq K \wedge 0$ in the Alexandrov sense, i.e. for all $\gamma_{0}, \gamma_{1}, \gamma_{2}, \gamma_{3}$ with $d_{\Upsilon}\left(\gamma_{0}, \gamma_{i}\right)<\infty$:

$$
\sum_{i=1}^{3} d_{\curlyvee}^{2}\left(\gamma_{0}, \gamma_{i}\right) \geq \frac{1}{6} \sum_{i, j=1}^{3} d_{\curlyvee}^{2}\left(\gamma_{i}, \gamma_{j}\right)
$$

(if $K=0$, analogous quadruple comparison for $K \neq 0$)

Sectional curvature bounds for Υ

Recall the distance on Υ :

$$
d_{\curlyvee}^{2}(\gamma, \sigma)=\inf \left\{\sum_{i} d^{2}\left(x_{i}, y_{i}\right): \gamma=\sum_{i} \delta_{x_{i}}, \sigma=\sum_{i} \delta_{y_{i}}\right\}
$$

Theorem (Alexandrov bounds):
If $\sec (M) \geq K$, then we have $\sec (\Upsilon) \geq K \wedge 0$ in the Alexandrov sense, i.e. for all $\gamma_{0}, \gamma_{1}, \gamma_{2}, \gamma_{3}$ with $d_{\Upsilon}\left(\gamma_{0}, \gamma_{i}\right)<\infty$:

$$
\sum_{i=1}^{3} d_{\curlyvee}^{2}\left(\gamma_{0}, \gamma_{i}\right) \geq \frac{1}{6} \sum_{i, j=1}^{3} d_{\curlyvee}^{2}\left(\gamma_{i}, \gamma_{j}\right)
$$

(if $K=0$, analogous quadruple comparison for $K \neq 0$)

Note:

If $K<0$ the Wasserstein space $\left(\mathcal{P}_{2}(M), W_{2}\right)$ does NOT have a Alexandrov curvature bound!

Bochner and Gradient estimates on Υ

Recall gradient of cylinder function $F(\gamma)=g\left(\gamma\left(\varphi_{1}\right), \cdots, \gamma\left(\varphi_{n}\right)\right)$: $\nabla^{\Upsilon} F(\gamma)=\sum_{i=1}^{n} \partial_{i} g\left(\gamma\left(\varphi_{1}\right), \cdots, \gamma\left(\varphi_{n}\right)\right) \nabla \varphi_{i}$

Bochner and Gradient estimates on Υ

Recall gradient of cylinder function $F(\gamma)=g\left(\gamma\left(\varphi_{1}\right), \cdots, \gamma\left(\varphi_{n}\right)\right)$: $\nabla^{\Upsilon} F(\gamma)=\sum_{i=1}^{n} \partial_{i} g\left(\gamma\left(\varphi_{1}\right), \cdots, \gamma\left(\varphi_{n}\right)\right) \nabla \varphi_{i}$

Proposition (Bochner inequ.):

If $\operatorname{Ric}(M) \geq K$, then Bochner's inequality holds on Υ, i.e. for all $F \in C y l^{\infty}(\Upsilon)$ and $\gamma \in \Upsilon$:

$$
\frac{1}{2} \Delta^{\Upsilon}\left|\nabla^{\Upsilon} F\right|^{2}(\gamma)-\left\langle\nabla^{\Upsilon} F, \Delta^{\Upsilon} \nabla^{\Upsilon} F\right\rangle_{\gamma} \geq K\left|\nabla^{\Upsilon} F\right|_{\gamma}^{2} .
$$

Bochner and Gradient estimates on Υ

Recall gradient of cylinder function $F(\gamma)=g\left(\gamma\left(\varphi_{1}\right), \cdots, \gamma\left(\varphi_{n}\right)\right)$: $\nabla^{\Upsilon} F(\gamma)=\sum_{i=1}^{n} \partial_{i} g\left(\gamma\left(\varphi_{1}\right), \cdots, \gamma\left(\varphi_{n}\right)\right) \nabla \varphi_{i}$

Proposition (Bochner inequ.):

If $\operatorname{Ric}(M) \geq K$, then Bochner's inequality holds on Υ, i.e. for all $F \in C y l^{\infty}(\Upsilon)$ and $\gamma \in \Upsilon$:

$$
\frac{1}{2} \Delta^{\Upsilon}\left|\nabla^{\Upsilon} F\right|^{2}(\gamma)-\left\langle\nabla^{\Upsilon} F, \Delta^{\Upsilon} \nabla^{\Upsilon} F\right\rangle_{\gamma} \geq K\left|\nabla^{\Upsilon} F\right|_{\gamma}^{2} .
$$

Theorem (gradient estimate):
If $\operatorname{Ric}(M) \geq K$, then for all $G \in \mathcal{D}(\mathcal{E})$ and π-a.e. γ :

$$
\left|\nabla^{\Upsilon} P_{t}^{\Upsilon} G\right|_{\gamma}^{2} \leq \mathrm{e}^{-2 K t} P_{t}^{\Upsilon}\left|\nabla^{\Upsilon} G\right|^{2}(\gamma) .
$$

Bochner and Gradient estimates on Υ

Recall gradient of cylinder function $F(\gamma)=g\left(\gamma\left(\varphi_{1}\right), \cdots, \gamma\left(\varphi_{n}\right)\right)$: $\nabla^{\Upsilon} F(\gamma)=\sum_{i=1}^{n} \partial_{i} g\left(\gamma\left(\varphi_{1}\right), \cdots, \gamma\left(\varphi_{n}\right)\right) \nabla \varphi_{i}$

Proposition (Bochner inequ.):

If $\operatorname{Ric}(M) \geq K$, then Bochner's inequality holds on Υ, i.e. for all $F \in C y l^{\infty}(\Upsilon)$ and $\gamma \in \Upsilon$:

$$
\frac{1}{2} \Delta^{\Upsilon}\left|\nabla^{\Upsilon} F\right|^{2}(\gamma)-\left\langle\nabla^{\Upsilon} F, \Delta^{\Upsilon} \nabla^{\Upsilon} F\right\rangle_{\gamma} \geq K\left|\nabla^{\Upsilon} F\right|_{\gamma}^{2} .
$$

Theorem (gradient estimate):
If $\operatorname{Ric}(M) \geq K$, then for all $G \in \mathcal{D}(\mathcal{E})$ and π-a.e. γ :

$$
\left|\nabla^{\Upsilon} P_{t}^{\Upsilon} G\right|_{\gamma}^{2} \leq \mathrm{e}^{-2 K t} P_{t}^{\Upsilon}\left|\nabla^{\Upsilon} G\right|^{2}(\gamma) .
$$

(proof uses representation of P_{t}^{Υ} as infinite product of 1 part. semigroups)

Expansion bounds

Wasserstein (pseudo-)distance: for $\rho_{1}, \rho_{2} \in \mathcal{P}(\Upsilon)$ define

$$
W_{2}^{2}\left(\rho_{1}, \rho_{2}\right)=\inf \left\{\int d_{\curlyvee}^{2}\left(\gamma_{1}, \gamma_{2}\right) \mathrm{d} q\left(\gamma_{1}, \gamma_{2}\right): q \text { coupling of } \rho_{1}, \rho_{2}\right\}
$$

We denote the fiber of π by $\mathcal{P}_{\pi}(\Upsilon)=\left\{\rho \in \mathcal{P}(\Upsilon): W_{2}(\rho, \pi)<\infty\right\}$. For $\rho=F \pi_{\mu}$ define $P_{t}^{\Upsilon} \rho=\left(P_{t}^{\Upsilon} F\right) \pi$.

Expansion bounds

Wasserstein (pseudo-)distance: for $\rho_{1}, \rho_{2} \in \mathcal{P}(\Upsilon)$ define

$$
W_{2}^{2}\left(\rho_{1}, \rho_{2}\right)=\inf \left\{\int d_{\gamma}^{2}\left(\gamma_{1}, \gamma_{2}\right) \mathrm{d} q\left(\gamma_{1}, \gamma_{2}\right): q \text { coupling of } \rho_{1}, \rho_{2}\right\}
$$

We denote the fiber of π by $\mathcal{P}_{\pi}(\Upsilon)=\left\{\rho \in \mathcal{P}(\Upsilon): W_{2}(\rho, \pi)<\infty\right\}$. For $\rho=F \pi_{\mu}$ define $P_{t}^{\Upsilon} \rho=\left(P_{t}^{\Upsilon} F\right) \pi$.

Theorem (expansion):
If $\operatorname{Ric}(M) \geq K$, then for all $\rho_{1}, \rho_{2} \in \mathcal{P}(\Upsilon)$ with $\rho_{i} \ll \pi_{\mu}$:

$$
W_{2}\left(P_{t}^{\Upsilon} \rho_{1}, P_{t}^{\Upsilon} \rho_{2}\right) \leq \mathrm{e}^{-K t} W_{2}\left(\rho_{1}, \rho_{2}\right)
$$

Moreover, for all $\gamma_{1}, \gamma_{2} \in \Theta \subset \Upsilon$ ex. a coupling of the infinite independent particle processes s.t. a.s.:

$$
d_{\Upsilon}\left(\mathbf{B}_{t}^{\gamma_{1}}, \mathbf{B}_{t}^{\gamma_{2}}\right) \leq \mathrm{e}^{-K t} d_{\Upsilon}\left(\gamma_{1}, \gamma_{2}\right) \forall t>0 .
$$

Expansion bounds

Wasserstein (pseudo-)distance: for $\rho_{1}, \rho_{2} \in \mathcal{P}(\Upsilon)$ define

$$
W_{2}^{2}\left(\rho_{1}, \rho_{2}\right)=\inf \left\{\int d_{\gamma}^{2}\left(\gamma_{1}, \gamma_{2}\right) \mathrm{d} q\left(\gamma_{1}, \gamma_{2}\right): q \text { coupling of } \rho_{1}, \rho_{2}\right\}
$$

We denote the fiber of π by $\mathcal{P}_{\pi}(\Upsilon)=\left\{\rho \in \mathcal{P}(\Upsilon): W_{2}(\rho, \pi)<\infty\right\}$. For $\rho=F \pi_{\mu}$ define $P_{t}^{\Upsilon} \rho=\left(P_{t}^{\Upsilon} F\right) \pi$.

Theorem (expansion):
If $\operatorname{Ric}(M) \geq K$, then for all $\rho_{1}, \rho_{2} \in \mathcal{P}(\Upsilon)$ with $\rho_{i} \ll \pi_{\mu}$:

$$
W_{2}\left(P_{t}^{\Upsilon} \rho_{1}, P_{t}^{\Upsilon} \rho_{2}\right) \leq \mathrm{e}^{-K t} W_{2}\left(\rho_{1}, \rho_{2}\right)
$$

Moreover, for all $\gamma_{1}, \gamma_{2} \in \Theta \subset \Upsilon$ ex. a coupling of the infinite independent particle processes s.t. a.s.:

$$
d_{\curlyvee}\left(\mathbf{B}_{t}^{\gamma_{1}}, \mathbf{B}_{t}^{\gamma_{2}}\right) \leq \mathrm{e}^{-K t} d_{\curlyvee}\left(\gamma_{1}, \gamma_{2}\right) \forall t>0
$$

Under $\operatorname{Ric}(M) \geq K, \mathcal{P}_{\pi}(\Upsilon)$ belongs to closure of $\{\rho \ll \pi\}$ w.r.t W_{2}

Synthetic Ricci bounds for Υ

Theorem (EVI on Υ):
If $\operatorname{Ric}(M) \geq K$, then for all $\rho, \eta \in \mathcal{P}_{\pi}(\Upsilon)$:

$$
\frac{\mathrm{d}}{\mathrm{~d} t} \frac{1}{2} W_{2}^{2}\left(P_{t}^{\Upsilon} \rho, \eta\right)-\frac{K}{2} W_{2}^{2}\left(P_{t}^{\Upsilon} \rho, \eta\right) \leq \operatorname{Ent}(\eta \mid \pi)-\operatorname{Ent}\left(P_{t} \rho \mid \pi\right)
$$

Synthetic Ricci bounds for Υ

Theorem (EVI on Υ):
If $\operatorname{Ric}(M) \geq K$, then for all $\rho, \eta \in \mathcal{P}_{\pi}(\Upsilon)$:

$$
\frac{\mathrm{d}}{\mathrm{~d} t} \frac{1}{2} W_{2}^{2}\left(P_{t}^{\Upsilon} \rho, \eta\right)-\frac{K}{2} W_{2}^{2}\left(P_{t}^{\Upsilon} \rho, \eta\right) \leq \operatorname{Ent}(\eta \mid \pi)-\operatorname{Ent}\left(P_{t} \rho \mid \pi\right)
$$

Corollary (geodesic convexity of entropy):
If $\operatorname{Ric}(M) \geq K$, then for any W_{2}-geodesic $\left(\rho_{t}\right)_{t \in[0,1]}$ in $\mathcal{P}_{\pi}(\Upsilon)$:

$$
\operatorname{Ent}\left(\rho_{t} \mid \pi\right) \leq(1-t) \operatorname{Ent}\left(\rho_{0} \mid \pi\right)+t \operatorname{Ent}\left(\rho_{1} \mid \pi\right)-\frac{K}{2} t(1-t) W_{2}^{2}\left(\rho_{0}, \rho_{1}\right)
$$

Synthetic Ricci bounds for Υ

Theorem (EVI on Υ):
If $\operatorname{Ric}(M) \geq K$, then for all $\rho, \eta \in \mathcal{P}_{\pi}(\Upsilon)$:

$$
\frac{\mathrm{d}}{\mathrm{~d} t} \frac{1}{2} W_{2}^{2}\left(P_{t}^{\Upsilon} \rho, \eta\right)-\frac{K}{2} W_{2}^{2}\left(P_{t}^{\Upsilon} \rho, \eta\right) \leq \operatorname{Ent}(\eta \mid \pi)-\operatorname{Ent}\left(P_{t} \rho \mid \pi\right) .
$$

Corollary (geodesic convexity of entropy):
If $\operatorname{Ric}(M) \geq K$, then for any W_{2}-geodesic $\left(\rho_{t}\right)_{t \in[0,1]}$ in $\mathcal{P}_{\pi}(\Upsilon)$:

$$
\operatorname{Ent}\left(\rho_{t} \mid \pi\right) \leq(1-t) \operatorname{Ent}\left(\rho_{0} \mid \pi\right)+t \operatorname{Ent}\left(\rho_{1} \mid \pi\right)-\frac{K}{2} t(1-t) W_{2}^{2}\left(\rho_{0}, \rho_{1}\right) .
$$

- In this sense $\left(\Upsilon, d_{\curlyvee}, \pi\right)$ is an extended (R$) \mathrm{CD}(K, \infty)$ mms
- Dirichlet form \mathcal{E} coincides with Cheeger energy $\mathrm{Ch}_{d_{r}}$
- proof starts from gradient estimate

Gradient flow structure of the particle system

Observation

Let $\varphi: \mathbb{R}^{d} \rightarrow \mathbb{R}$ smooth and convex. For $u: \mathbb{R}_{+} \rightarrow \mathbb{R}^{d}$ TFAE:
(1) u solves the gradient flow equation $u^{\prime}(t)=-\nabla \varphi(u(t))$,
(2) u solves the evolution variational inequality

$$
\frac{1}{2} \frac{d}{d t}|u(t)-y|^{2} \leq \varphi(y)-\varphi(u(t)) \quad \forall y \in \mathbb{R}^{d}
$$

Gradient flow structure of the particle system

Observation

Let $\varphi: \mathbb{R}^{d} \rightarrow \mathbb{R}$ smooth and convex. For $u: \mathbb{R}_{+} \rightarrow \mathbb{R}^{d}$ TFAE:
(1) u solves the gradient flow equation $u^{\prime}(t)=-\nabla \varphi(u(t))$,
(2) u solves the evolution variational inequality

$$
\frac{1}{2} \frac{d}{d t}|u(t)-y|^{2} \leq \varphi(y)-\varphi(u(t)) \quad \forall y \in \mathbb{R}^{d}
$$

Corollary

The semigroup of the infinite independent particle sytem P_{t}^{Υ} is the W_{2}-gradient flow of the entropy:

$$
\frac{\mathrm{d}}{\mathrm{~d} t} \frac{1}{2} W_{2}^{2}\left(P_{t}^{\Upsilon} \rho, \eta\right)-\frac{K}{2} W_{2}^{2}\left(P_{t}^{\Upsilon} \rho, \eta\right) \leq \operatorname{Ent}(\eta \mid \pi)-\operatorname{Ent}\left(P_{t} \rho \mid \pi\right)
$$

Future goals

Study the interacting infinite particle systems in \mathbb{R}^{n} with a pair interaction potential $\Phi: \mathbb{R}^{n} \rightarrow \mathbb{R}$

$$
\mathrm{d} X_{t}^{i}=\mathrm{d} B_{t}^{i}+\lim _{R \rightarrow \infty} \sum_{\left|X_{t}^{i}-X_{t}^{j}\right|<R} \nabla \Phi\left(X_{t}^{i}-X_{t}^{j}\right) \mathrm{d} t, \quad i=1,2, \ldots
$$

Future goals

Study the interacting infinite particle systems in \mathbb{R}^{n} with a pair interaction potential $\Phi: \mathbb{R}^{n} \rightarrow \mathbb{R}$

$$
\mathrm{d} X_{t}^{i}=\mathrm{d} B_{t}^{i}+\lim _{R \rightarrow \infty} \sum_{\left|X_{t}^{i}-X_{t}^{j}\right|<R} \nabla \Phi\left(X_{t}^{i}-X_{t}^{j}\right) \mathrm{d} t, \quad i=1,2, \ldots
$$

Associated to Dirichlet form

$$
\mathcal{E}(F)=\int\left|\nabla^{\Upsilon} F\right|_{\gamma}^{2} \mathrm{~d} \pi_{\Phi}(\gamma)
$$

for a Gibbs measure π_{Φ}

Future goals

Study the interacting infinite particle systems in \mathbb{R}^{n} with a pair interaction potential $\Phi: \mathbb{R}^{n} \rightarrow \mathbb{R}$

$$
\mathrm{d} X_{t}^{i}=\mathrm{d} B_{t}^{i}+\lim _{R \rightarrow \infty} \sum_{\left|X_{t}^{i}-X_{t}^{j}\right|<R} \nabla \Phi\left(X_{t}^{i}-X_{t}^{j}\right) \mathrm{d} t, \quad i=1,2, \ldots
$$

Associated to Dirichlet form

$$
\mathcal{E}(F)=\int\left|\nabla^{\Upsilon} F\right|_{\gamma}^{2} \mathrm{~d} \pi_{\Phi}(\gamma)
$$

for a Gibbs measure π_{Φ}

Question

Can we extract curvature bounds on $\left(\Upsilon, d_{\Upsilon}, \pi_{\Phi}\right)$ from properties of Φ ?

Thank you for your attention!

