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An infinite particle system
Consider a system of interacting Brownian motions [Osada '11-'13] in R¢:

, i Xi _ XJ
dXt’:dBH—é lim Y StCtar, i=12,...
2 Rooo =~ \XI_ X]|2
IXi—Xxi|<r "t t
For finitely many particles, OT gives powerful tools :
Otto calculus, gradient flow structure, asymptotic behaviour, stability...

Aim: Develop analoguous tools for infinite systems

As first step, understand non-interacting system of independent particles
and its geometry!

Question: What is the natural state space for the particle system?
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The configuration space

Setting: the base space
e (M, (-,-)) Riemannian manifold
e d: M x M — R, Riemannian distance

@ m volume measure

@ The configuration space T over M is the set of locally finite counting
measures on M, i.e.

T ={yeM(M):~vK)eNg for all K C M compact} .

@ Any configuration v € T can be represented by a labelling:

n
7= 0%
i—1

for x1,...,x, € M and n € NU {o0}.
e We equip T with vague topology (duality with C.(M))
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T as an infinite-dimensional manifold

Albeverio—Kondratiev—Rockner '98:

natural Riemannian structure on T via lifting from M

e Tangent space: T,T={V:M— TM: [|V|2dy(x) < oo}
equipped with inner product: (Vq, Vo), = [(V4, Vo) dy(x)

e Gradient: for a cylinder function F(v) = g(7v(¢1), -+ ,7(¢n)) with
g € C°(R") and ¢; € C°(M) define

VTF(y) = Z&-g(v(w), o y(en)) Vi

e Divergence: for cylindrical vector field W(y) = > ; Fi(v)V; with
Fi € Cyl*°(T) and V; : M — TM vector fields define
div' W(y) = (VTF, Vi)y + Fi(7)(div Vi, 7)
i=1

o Laplace opterator: ATF(y) = div’ VTF(y)
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T as oo-dim. mfd: distance

Define a distance on T via
d¥(71,72) = mf{Zd XiyYi) i = Z5x,,72—z5,}
i=1

o [2-transportation distance for non-normalized measures.
@ It is a pseudo distance, typically dv(y1,72) = +o0
@ It is the induced Riemannian distance on T:

1
d3(v0,71) = inf{/ Vel dt cye =) G %i(t) = Vt(x,-)}
0 i
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T as co-dim. mfd: measure

The natural reference measure on T (in the independent case = 0) is
the Poisson measure w with intensity measure m:

Under m v becomes a T-valued random variable, s.t.

@ Y(A) ~ Poi(m(A)) for all AC M, i.e.
T [1(A) = n] = e=™A) m(A)"/n!
e v(A1),...,7(Ap) independent for all Ay,..., A, C M disjoint

7 is the unique probability measure on T (up to mixtures) such that V'
and div" are adjoint in L2(7) (AKR '98), i.e.

[ F@) T W) = - [(97F,w)dn(s)
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Dirichlet form and particle process on T

Define a Dirichlet form on T with domain Cyl°°(T) via
&F) = [(VTEVTF)dn() = - [ FO)ATFG)iA(G)

. . T
associated semigroup: P, = etA

& gives rise to a canonical diffusion process (B]):>o starting in a.e. v € T.

Lemma (ldentification with the independent particle system):

If Ricpy > K, there ex. © C T with 7,(©) =1 s.t. (B;) is realized on ©
as By =}, 0gv, where v = 37, 6, and By are independent BMs starting
n x;.

Explicit representation of the semigroup:

PT 25 / 25 M;p: Xnd)/l) _Zéxi

i




Goal

Question:

Can we say more about the geometry of the configuration space T7 In
particular, what are its curvature properties?
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Sectional curvature bounds

A lower bound on the sectional curvature, sec(M) > K, is equivalent to:

@ Alexandrov triangle comparison: triangles in M are “fatter” than
triangles in the model space of constant sectional curvature K,
52( \ K)asz H2( \% _K)

@ Quadruple comparison: For all xg, x1, X2, x3 € M we have:

3
Z (x0,X;) > = Z d*( (i, Xj) (K=0),
i=1 ij=1
3 3
Zcos (\/Rd(xo,x,-)) < Z cos (\/Rd(x,-,xj)) ) (K>0),
i=1 i,j—l

Zcosh (V—-Kd(x0,xi)) Z cosh (V—Kd(xi,x;)) , (K <0).

ij=1



Ricci curvature bounds

A lower bound on the Ricci curvature, Ricys > K, is equivalent to:



Ricci curvature bounds

A lower bound on the Ricci curvature, Ricys > K, is equivalent to:

@ Bochner's inequality: for all v : M — R smooth:

1
§A|Vu]2 — (Vu, AVu) = Ric[Vu] + || Hess u[|3s > K|V u|?



Ricci curvature bounds

A lower bound on the Ricci curvature, Ricys > K, is equivalent to:

@ Bochner's inequality: for all v : M — R smooth:

1
§A|Vu]2 — (Vu, AVu) = Ric[Vu] + || Hess u[|3s > K|V u|?
o Gradient estimates for the heat semigroup P; = et®:

IV Pru? < e 2Kt p |V uf?



Ricci curvature bounds

A lower bound on the Ricci curvature, Ricys > K, is equivalent to:

@ Bochner's inequality: for all v : M — R smooth:

1
§A|Vu]2 — (Vu, AVu) = Ric[Vu] + || Hess u[|3s > K|V u|?
o Gradient estimates for the heat semigroup P; = et®:

IV Pru? < e 2Kt p |V uf?

(proof: look at ¢(s) = e=2K¢ Pg|V P;_su|? and derivate in s)
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Ricci curvature bounds and OT

Cordero—-McCann—-Schmuckenschlager '01, vRenesse-Sturm '05

Ricyy > K < Entropy K-convex along L?-transport geodesics

@ Relative entropy:

Julogudm, p=um<<vol,

Ent(p|m) = {

400 , else .

@ [2-transport distance between probability measures pg, p1:

W3 (po, p1) = inf{/ d(x,y)?dy(x,y) : 7 coupling po,pl}
MxM

£0 Pt P1



Ricci curvature bounds and OT

Cordero—McCann-Schmuckenschlager '01, vRenesse—Sturm '05

Ricyy > K < Entropy K-convex along L2-transport geodesics

Heuristics: Transport on the sphere

Entropie
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Ricci curvature bounds and OT I

A lower bound on the Ricci curvature, Ric(M) > K is also equivalent to:

@ Wasserstein expansion bounds: for all p1, p2 € Po(M) and t >0

Wa(Pep1, Pep2) < e Kt Wa(p, p2)

@ Pathwise expansion bounds: for all x,y € M there ex. a coupling
(BX, BY) of Brownian motions starting in x, y s.t. almost surely

d(BX,BY) < e Ktd(x,y) Vt >0
@ Evolution Variational Inequality: for all p,n € Po(M) and t > 0

d1 K
12 W3 (Pep,n) — §W22(Pt,07 n) < Ent(n|m) — Ent(Pep|m)
EVI encodes simultanuously convexity of the entropy, contraction and that

P; is the gradient flow of Ent w.r.t. W5
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Ricci bounds for metric measure spaces

Let (X, d, m) be a geodesic mms. Synthetic notion of (Riemannian) Ricci
curvature bound:

e CD(K,o0) (Sturm '06, Lott—Villani '09):
Vpo, p1 € P2(X) ex. Wa-geodesic (pt)ecpo,1) S-t-:

K
Ent(pe|m) < (1 ) Ent(po|m) + t Ent(p1|m) — =-t(1— ) W3 (po, p1) -
e RCD(K, 00) (Ambrosio—Gigli-Savaré '11):
Vpo € Pa(X) ex. solution (pt)e>o to the EVI, i.e. Vi € Pp(X),t > 0:

a1,

K
a§W2 (pe;m) — EWS(PM?) < Ent(n|m) — Ent(p¢|m) .

RCD(K, c0) is equivalent to a suitable form of Bochner inequality and to
gradient estimates

Problem: The configuration space (T, dv, ) is only an extended mms
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Sectional curvature bounds for T

Recall the distance on T:

d3 (v, o mf{Zd Xi, Vi) Zéxl 0—25,}

Theorem (Alexandrov bounds):
If sec(M) > K, then we have sec(T) > K A0 in the Alexandrov sense, i.e.
for all 70,71, 72,73 with dv (70, 7i) < oo

3

Zd'% 707’71 £ Z d’Y‘ %a%
=il

I,J 1
(if K =0, analogous quadruple comparison for K # 0)

Note:

If K < 0 the Wasserstein space (P»(M), W>) does NOT have a
Alexandrov curvature bound!
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Bochner and Gradient estimates on T
Recall gradient of cylinder function F(v) = g(v(¢1), -+ ,v(¢n)):
V() =7 0ig(v(e1), -+ s v(en)) Vi

Proposition (Bochner inequ.):

If Ric(M) > K, then Bochner's inequality holds on 7T, i.e. for all
F e Cyl*(T)and v € T:

1
5AT|VTIE|2(fy) —(VTF,AVTF), > K;VTFﬁ .

Theorem (gradient estimate):
If Ric(M) > K, then for all G € D(£) and 7-a.e. v:

VTP Gl < e 2 PYIVTGR(y) .

(proof uses representation of P;r as infinite product of 1 part. semigroups)
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Expansion bounds

Wasserstein (pseudo-)distance: for p1, po € P(T) define

W2(p1, p2) = inf{/d%(’n,'yz)dq('nryz) : g coupling of m,pz} :

We denote the fiber of m by Pr(T) = {p € P(T): Wa(p,7) < o0}.
For p = Fr, define PYp= (PfF)r.

Theorem (expansion):
If Ric(M) > K, then for all p1, po € P(T) with p; << 7,

Wa(P, p1, P p2) < e X Wa(p1, p2) -

Moreover, for all v1,72 € © C T ex. a coupling of the infinite independent
particle processes s.t. a.s.:

dvr(BY*,BY?) < e Kt dy(y1,72) Vt > 0.

Under Ric(M) > K, Pr(T) belongs to closure of {p << 7} w.r.t Wa




Synthetic Ricci bounds for T

Theorem (EVI on T):
If Ric(M) > K, then for all p,n € P(T):

d1

K
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Synthetic Ricci bounds for T

Theorem (EVI on T):
If Ric(M) > K, then for all p,n € Pr(7T):

d1

K
S SWR(PT p,n) — o WR(PT p,n) < Ent(n|m) — Ent(Pepl)

Corollary (geodesic convexity of entropy):

If Ric(M) > K, then for any W>-geodesic (pt):ejo,1] in Pr(T):

Ent(pel) < (1~ ) Ent(pol) + tEnt(pr[) — 5 £(1 — )WE(po, pn) .

@ In this sense (T, dy,7) is an extended (R)CD(K, co) mms
@ Dirichlet form &£ coincides with Cheeger energy Chg.,

@ proof starts from gradient estimate



Gradient flow structure of the particle system

Observation
Let ¢ : RY — R smooth and convex. For u: R, — R? TFAE:
@ u solves the gradient flow equation u'(t) = —V(u(t)),

@ u solves the evolution variational inequality
1d

Sl =y <oly) —e(u(t) vy eR?.




Gradient flow structure of the particle system

Observation

Let ¢ : RY — R smooth and convex. For u: R, — R? TFAE:
© u solves the gradient flow equation u/(t) = —V(u(t)),

© u solves the evolution variational inequality

%% u(t) — y[* < o(y) — e(u(t))  VyeRY.

Corollary

The semigroup of the infinite independent particle sytem P,_T is the
Wh-gradient flow of the entropy:
AL pepr, oy Kty ) <E — Ent(P
373 V2 (Pr p.n) = 5 W5 (Py p,) < Ent(n|m) — Ent(Pep|m)
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Future goals

Study the interacting infinite particle systems in R” with a pair interaction
potential ® : R" - R

dX; = dB] + li [ Xi =1,2,...
{ =dB{+ lim_ Z VO(X) — X)dt, i=1,2,
|Xt"—X{|<R

Associated to Dirichlet form

&(F) = [ 97 FRdno(r)

for a Gibbs measure 7¢

Question

Can we extract curvature bounds on (T, dy,7e) from properties of ®7




Thank you for your attention!



