Curvature effects for infinite particle systems via optimal transport

Matthias Erbar joint work with M. Huesmann

Scuola Normale Superiore, Pisa

Eindhoven, 13 March, 2014

Consider a system of interacting Brownian motions [Osada '11–'13] in \mathbb{R}^d :

$$dX_{t}^{i} = dB_{t}^{i} + \frac{\beta}{2} \lim_{R \to \infty} \sum_{|X_{t}^{i} - X_{t}^{j}| \le R} \frac{X_{t}^{i} - X_{t}^{j}}{|X_{t}^{i} - X_{t}^{j}|^{2}} dt , \quad i = 1, 2, \dots$$

Consider a system of interacting Brownian motions [Osada '11–'13] in \mathbb{R}^d :

$$dX_{t}^{i} = dB_{t}^{i} + \frac{\beta}{2} \lim_{R \to \infty} \sum_{|X_{t}^{i} - X_{t}^{j}| < R} \frac{X_{t}^{i} - X_{t}^{J}}{|X_{t}^{i} - X_{t}^{j}|^{2}} dt , \quad i = 1, 2, ...$$

For finitely many particles, OT gives powerful tools : Otto calculus, gradient flow structure, asymptotic behaviour, stability...

Consider a system of interacting Brownian motions [Osada '11–'13] in \mathbb{R}^d :

$$dX_{t}^{i} = dB_{t}^{i} + \frac{\beta}{2} \lim_{R \to \infty} \sum_{|X_{t}^{i} - X_{t}^{j}| < R} \frac{X_{t}^{i} - X_{t}^{J}}{|X_{t}^{i} - X_{t}^{j}|^{2}} dt , \quad i = 1, 2, ...$$

For finitely many particles, OT gives powerful tools: Otto calculus, gradient flow structure, asymptotic behaviour, stability...

Aim: Develop analoguous tools for infinite systems

Consider a system of interacting Brownian motions [Osada '11–'13] in \mathbb{R}^d :

$$dX_{t}^{i} = dB_{t}^{i} + \frac{\beta}{2} \lim_{R \to \infty} \sum_{|X_{t}^{i} - X_{t}^{j}| < R} \frac{X_{t}^{i} - X_{t}^{j}}{|X_{t}^{i} - X_{t}^{j}|^{2}} dt , \quad i = 1, 2, ...$$

For finitely many particles, OT gives powerful tools : Otto calculus, gradient flow structure, asymptotic behaviour, stability...

Aim: Develop analoguous tools for infinite systems

As first step, understand non-interacting system of independent particles and its geometry!

Question: What is the natural state space for the particle system?

Setting: the base space

- ullet $(M,\langle\cdot,\cdot
 angle)$ Riemannian manifold
- ullet $d:M imes M o \mathbb{R}_+$ Riemannian distance
- m volume measure

Setting: the base space

- $(M, \langle \cdot, \cdot \rangle)$ Riemannian manifold
- $d: M \times M \to \mathbb{R}_+$ Riemannian distance
- m volume measure
- The configuration space Υ over M is the set of locally finite counting measures on M, i.e.

$$\Upsilon = \{ \gamma \in \mathcal{M}(M) : \gamma(K) \in \mathbb{N}_0 \text{ for all } K \subset M \text{ compact} \}.$$

Setting: the base space

- $(M, \langle \cdot, \cdot \rangle)$ Riemannian manifold
- $d: M \times M \to \mathbb{R}_+$ Riemannian distance
- m volume measure
- The configuration space Υ over M is the set of locally finite counting measures on M, i.e.

$$\Upsilon = \{ \gamma \in \mathcal{M}(M) : \gamma(K) \in \mathbb{N}_0 \text{ for all } K \subset M \text{ compact} \}$$
.

• Any configuration $\gamma \in \Upsilon$ can be represented by a *labelling*:

$$\gamma = \sum_{i=1}^{n} \delta_{x_i}$$

for $x_1, \ldots, x_n \in M$ and $n \in \mathbb{N} \cup \{\infty\}$.

Setting: the base space

- $(M, \langle \cdot, \cdot \rangle)$ Riemannian manifold
- $d: M \times M \to \mathbb{R}_+$ Riemannian distance
- m volume measure
- The configuration space Υ over M is the set of locally finite counting measures on M, i.e.

$$\Upsilon = \{ \gamma \in \mathcal{M}(M) : \gamma(K) \in \mathbb{N}_0 \text{ for all } K \subset M \text{ compact} \}.$$

• Any configuration $\gamma \in \Upsilon$ can be represented by a *labelling*:

$$\gamma = \sum_{i=1}^{n} \delta_{\mathsf{x}_i}$$

for $x_1, \ldots, x_n \in M$ and $n \in \mathbb{N} \cup \{\infty\}$.

• We equip Υ with vague topology (duality with $C_c(M)$)

Υ as an infinite-dimensional manifold

Albeverio-Kondratiev-Röckner '98:

natural Riemannian structure on Υ via $\mathit{lifting}$ from M

Υ as an infinite-dimensional manifold

Albeverio-Kondratiev-Röckner '98:

natural Riemannian structure on Υ via $\mathit{lifting}$ from M

• Tangent space: $T_{\gamma} \Upsilon = \{ V : M \to TM : \int |V|_{x}^{2} d\gamma(x) < \infty \}$ equipped with inner product: $\langle V_{1}, V_{2} \rangle_{\gamma} = \int \langle V_{1}, V_{2} \rangle_{x} d\gamma(x)$

T as an infinite-dimensional manifold

Albeverio-Kondratiev-Röckner '98:

natural Riemannian structure on Υ via *lifting* from M

- Tangent space: $T_{\gamma} \Upsilon = \{ V : M \to TM : \int |V|_{x}^{2} d\gamma(x) < \infty \}$ equipped with inner product: $\langle V_{1}, V_{2} \rangle_{\gamma} = \int \langle V_{1}, V_{2} \rangle_{x} d\gamma(x)$
- Gradient: for a cylinder function $F(\gamma) = g(\gamma(\varphi_1), \dots, \gamma(\varphi_n))$ with $g \in C^{\infty}(\mathbb{R}^n)$ and $\varphi_i \in C^{\infty}(M)$ define

$$\nabla^{\Upsilon} F(\gamma) = \sum_{i=1}^{n} \partial_{i} g(\gamma(\varphi_{1}), \cdots, \gamma(\varphi_{n})) \nabla \varphi_{i}$$

T as an infinite-dimensional manifold

Albeverio-Kondratiev-Röckner '98:

natural Riemannian structure on Υ via *lifting* from M

- Tangent space: $T_{\gamma} \Upsilon = \{ V : M \to TM : \int |V|_{x}^{2} d\gamma(x) < \infty \}$ equipped with inner product: $\langle V_{1}, V_{2} \rangle_{\gamma} = \int \langle V_{1}, V_{2} \rangle_{x} d\gamma(x)$
- Gradient: for a cylinder function $F(\gamma) = g(\gamma(\varphi_1), \dots, \gamma(\varphi_n))$ with $g \in C^{\infty}(\mathbb{R}^n)$ and $\varphi_i \in C^{\infty}(M)$ define

$$\nabla^{\Upsilon} F(\gamma) = \sum_{i=1}^{n} \partial_{i} g(\gamma(\varphi_{1}), \cdots, \gamma(\varphi_{n})) \nabla \varphi_{i}$$

• Divergence: for cylindrical vector field $W(\gamma) = \sum_{i=1}^{n} F_i(\gamma) V_i$ with $F_i \in \text{Cyl}^{\infty}(\Upsilon)$ and $V_i : M \to TM$ vector fields define

$$\operatorname{\mathsf{div}}^{\Upsilon} W(\gamma) = \sum_{i=1}^n \langle \nabla^{\Upsilon} F_i, V_i \rangle_{\gamma} + F_i(\gamma) \langle \operatorname{\mathsf{div}} V_i, \gamma \rangle$$

Υ as an infinite-dimensional manifold

Albeverio-Kondratiev-Röckner '98:

natural Riemannian structure on Υ via *lifting* from M

- Tangent space: $T_{\gamma} \Upsilon = \{ V : M \to TM : \int |V|_x^2 d\gamma(x) < \infty \}$ equipped with inner product: $\langle V_1, V_2 \rangle_{\gamma} = \int \langle V_1, V_2 \rangle_x d\gamma(x)$
- Gradient: for a cylinder function $F(\gamma) = g(\gamma(\varphi_1), \dots, \gamma(\varphi_n))$ with $g \in C^{\infty}(\mathbb{R}^n)$ and $\varphi_i \in C^{\infty}(M)$ define

$$\nabla^{\Upsilon} F(\gamma) = \sum_{i=1}^{n} \partial_{i} g(\gamma(\varphi_{1}), \cdots, \gamma(\varphi_{n})) \nabla \varphi_{i}$$

• Divergence: for cylindrical vector field $W(\gamma) = \sum_{i=1}^n F_i(\gamma) V_i$ with $F_i \in \text{Cyl}^{\infty}(\Upsilon)$ and $V_i : M \to TM$ vector fields define

$$\operatorname{\mathsf{div}}^{\Upsilon} W(\gamma) = \sum_{i=1}^{n} \langle \nabla^{\Upsilon} F_{i}, V_{i} \rangle_{\gamma} + F_{i}(\gamma) \langle \operatorname{\mathsf{div}} V_{i}, \gamma \rangle$$

• Laplace opterator: $\Delta^{\Upsilon} F(\gamma) = \text{div}^{\Upsilon} \nabla^{\Upsilon} F(\gamma)$

Define a distance on Υ via

$$d_{\Upsilon}^{2}(\gamma_{1}, \gamma_{2}) = \inf \left\{ \sum_{i=1}^{n} d^{2}(x_{i}, y_{i}) : \gamma_{1} = \sum_{i=1}^{n} \delta_{x_{i}}, \gamma_{2} = \sum_{i=1}^{n} \delta_{y_{i}} \right\}$$

Define a distance on Υ via

$$d_{\Upsilon}^{2}(\gamma_{1},\gamma_{2}) = \inf \left\{ \sum_{i=1}^{n} d^{2}(x_{i},y_{i}) : \gamma_{1} = \sum_{i=1}^{n} \delta_{x_{i}}, \gamma_{2} = \sum_{i=1}^{n} \delta_{y_{i}} \right\}$$

• L^2 -transportation distance for non-normalized measures.

Define a distance on Υ via

$$d_{\Upsilon}^{2}(\gamma_{1}, \gamma_{2}) = \inf \left\{ \sum_{i=1}^{n} d^{2}(x_{i}, y_{i}) : \gamma_{1} = \sum_{i=1}^{n} \delta_{x_{i}}, \gamma_{2} = \sum_{i=1}^{n} \delta_{y_{i}} \right\}$$

- L^2 -transportation distance for non-normalized measures.
- It is a pseudo distance, typically $d_{\Upsilon}(\gamma_1, \gamma_2) = +\infty$

Define a distance on Υ via

$$d_{\Upsilon}^{2}(\gamma_{1}, \gamma_{2}) = \inf \left\{ \sum_{i=1}^{n} d^{2}(x_{i}, y_{i}) : \gamma_{1} = \sum_{i=1}^{n} \delta_{x_{i}}, \gamma_{2} = \sum_{i=1}^{n} \delta_{y_{i}} \right\}$$

- L²-transportation distance for non-normalized measures.
- It is a pseudo distance, typically $d_{\Upsilon}(\gamma_1, \gamma_2) = +\infty$
- It is the induced Riemannian distance on Υ :

$$d_{\Upsilon}^2(\gamma_0, \gamma_1) = \inf \left\{ \int_0^1 |V_t|_{\gamma_t}^2 \mathrm{d}t : \gamma_t = \sum_i \delta_{x_i(t)}, \dot{x}_i(t) = V_t(x_i) \right\}$$

Υ as ∞ -dim. mfd: measure

The natural reference measure on Υ (in the independent case $\beta=0$) is the *Poisson measure* π with intensity measure m:

 Υ as ∞ -dim. mfd: measure

The natural reference measure on Υ (in the independent case $\beta=0$) is the *Poisson measure* π with intensity measure m:

Under $\pi \gamma$ becomes a Υ -valued random variable, s.t.

- $\gamma(A) \sim Poi(m(A))$ for all $A \subset M$, i.e. $\pi_{\mu} [\gamma(A) = n] = e^{-m(A)} m(A)^{n}/n!$
- $\gamma(A_1), \ldots, \gamma(A_n)$ independent for all $A_1, \ldots, A_n \subset M$ disjoint

 Υ as ∞ -dim. mfd: measure

The natural reference measure on Υ (in the independent case $\beta=0$) is the *Poisson measure* π with intensity measure m:

Under $\pi \gamma$ becomes a Υ -valued random variable, s.t.

- $\gamma(A) \sim Poi(m(A))$ for all $A \subset M$, i.e. $\pi_{\mu} [\gamma(A) = n] = e^{-m(A)} m(A)^{n}/n!$
- $\gamma(A_1), \ldots, \gamma(A_n)$ independent for all $A_1, \ldots, A_n \subset M$ disjoint

 π is the unique probability measure on Υ (up to mixtures) such that ∇^{Υ} and $\operatorname{div}^{\Upsilon}$ are adjoint in $L^2(\pi)$ (AKR '98), i.e.

$$\int F(\gamma)\operatorname{div}^{\Upsilon}W(\gamma)\mathrm{d}\pi(\gamma) = -\int \langle \nabla^{\Upsilon}F,W\rangle_{\gamma}\mathrm{d}\pi(\gamma)$$

Dirichlet form and particle process on Υ

Define a Dirichlet form on Υ with domain $\operatorname{Cyl}^\infty(\Upsilon)$ via

$$\mathcal{E}(F) = \int \langle \nabla^{\Upsilon} F, \nabla^{\Upsilon} F \rangle_{\gamma} \mathrm{d}\pi(\gamma) = -\int F(\gamma) \Delta^{\Upsilon} F(\gamma) \mathrm{d}\pi(\gamma)$$

associated semigroup: $P_t^{\Upsilon} = e^{t\Delta^{\Upsilon}}$

Dirichlet form and particle process on Υ

Define a Dirichlet form on Υ with domain $\operatorname{Cyl}^\infty(\Upsilon)$ via

$$\mathcal{E}(F) = \int \langle \nabla^{\Upsilon} F, \nabla^{\Upsilon} F \rangle_{\gamma} d\pi(\gamma) = -\int F(\gamma) \Delta^{\Upsilon} F(\gamma) d\pi(\gamma)$$

associated semigroup: $P_t^{\Upsilon} = e^{t\Delta^{\Upsilon}}$

$$\mathcal E$$
 gives rise to a canonical diffusion process $(\mathbf B_t^\gamma)_{t\geq 0}$ starting in a.e. $\gamma\in \Upsilon$.

Dirichlet form and particle process on Υ

Define a Dirichlet form on Υ with domain $\operatorname{Cyl}^\infty(\Upsilon)$ via

$$\mathcal{E}(F) = \int \langle \nabla^{\Upsilon} F, \nabla^{\Upsilon} F \rangle_{\gamma} \mathrm{d}\pi(\gamma) = -\int F(\gamma) \Delta^{\Upsilon} F(\gamma) \mathrm{d}\pi(\gamma)$$

associated semigroup: $P_t^{\Upsilon} = e^{t\Delta^{\Upsilon}}$

 $\mathcal E$ gives rise to a canonical diffusion process $(\mathbf B_t^\gamma)_{t\geq 0}$ starting in a.e. $\gamma\in \Upsilon.$

Lemma (Identification with the independent particle system):

If $Ric_M \geq K$, there ex. $\Theta \subset \Upsilon$ with $\pi_\mu(\Theta) = 1$ s.t. (\mathbf{B}_t) is realized on Θ as $\mathbf{B}_t^\gamma = \sum_i \delta_{B_t^{x_i}}$, where $\gamma = \sum_i \delta_{x_i}$ and $B_t^{x_i}$ are independent BMs starting in x_i .

Explicit representation of the semigroup:

$$\widetilde{P}_t^{\Upsilon}F(\gamma) = E[F(\sum_i \delta_{B_t^{x_i}})] = \int F(\sum_i \delta_{y_i}) \Pi_i p_t(x_i, dy_i), \ \gamma = \sum_i \delta_{x_i}$$

Goal

Question:

Can we say more about the geometry of the configuration space Υ ? In particular, what are its curvature properties?

Sectional curvature bounds

A lower bound on the sectional curvature, $sec(M) \ge K$, is equivalent to:

Sectional curvature bounds

A lower bound on the sectional curvature, $sec(M) \ge K$, is equivalent to:

• Alexandrov triangle comparison: triangles in M are "fatter" than triangles in the model space of constant sectional curvature K, $S^2(\sqrt{K}), \mathbb{R}^2, H^2(\sqrt{-K})$

Sectional curvature bounds

A lower bound on the sectional curvature, $sec(M) \ge K$, is equivalent to:

- Alexandrov triangle comparison: triangles in M are "fatter" than triangles in the model space of constant sectional curvature K, $S^2(\sqrt{K}), \mathbb{R}^2, H^2(\sqrt{-K})$
- Quadruple comparison: For all $x_0, x_1, x_2, x_3 \in M$ we have:

$$\sum_{i=1}^{3} d^{2}(x_{0}, x_{i}) \geq \frac{1}{6} \sum_{i,j=1}^{3} d^{2}(x_{i}, x_{j}), \qquad (K = 0),$$

$$\sum_{i=1}^{3} \cos \left(\sqrt{K} d(x_0, x_i) \right) \leq \sum_{i=1}^{3} \cos \left(\sqrt{K} d(x_i, x_i) \right) , \qquad (K > 0) ,$$

$$\sum_{i=1}^{3} \cosh\left(\sqrt{-K}d(x_0,x_i)\right) \geq \sum_{i=1}^{3} \cosh\left(\sqrt{-K}d(x_i,x_j)\right), \quad (K<0).$$

A lower bound on the Ricci curvature, $Ric_M \ge K$, is equivalent to:

A lower bound on the Ricci curvature, $Ric_M \geq K$, is equivalent to:

• Bochner's inequality: for all $u: M \to \mathbb{R}$ smooth:

$$\frac{1}{2}\Delta |\nabla u|^2 - \langle \nabla u, \Delta \nabla u \rangle = \mathsf{Ric}[\nabla u] + \|\operatorname{\mathsf{Hess}} u\|_{\mathit{HS}}^2 \geq \mathcal{K} |\nabla u|^2$$

A lower bound on the Ricci curvature, $Ric_M \ge K$, is equivalent to:

• Bochner's inequality: for all $u: M \to \mathbb{R}$ smooth:

$$\frac{1}{2}\Delta|\nabla u|^2 - \langle \nabla u, \Delta \nabla u \rangle = \text{Ric}[\nabla u] + \|\operatorname{Hess} u\|_{HS}^2 \ge K|\nabla u|^2$$

• Gradient estimates for the heat semigroup $P_t = e^{t\Delta}$:

$$|\nabla P_t u|^2 \le e^{-2Kt} P_t |\nabla u|^2$$

A lower bound on the Ricci curvature, $Ric_M \ge K$, is equivalent to:

• Bochner's inequality: for all $u: M \to \mathbb{R}$ smooth:

$$\frac{1}{2}\Delta|\nabla u|^2 - \langle \nabla u, \Delta \nabla u \rangle = \text{Ric}[\nabla u] + \|\operatorname{Hess} u\|_{HS}^2 \ge K|\nabla u|^2$$

• Gradient estimates for the heat semigroup $P_t = e^{t\Delta}$:

$$|\nabla P_t u|^2 \le e^{-2Kt} P_t |\nabla u|^2$$

(proof: look at $\varphi(s) = e^{-2Ks} P_s |\nabla P_{t-s} u|^2$ and derivate in s)

Ricci curvature bounds and OT

Cordero-McCann-Schmuckenschläger '01, vRenesse-Sturm '05

 $\mathrm{Ric}_{M} \geq K \Leftrightarrow \mathrm{Entropy}\ K\text{-convex along}\ L^2\text{-transport geodesics}$

Ricci curvature bounds and OT

Cordero-McCann-Schmuckenschläger '01, vRenesse-Sturm '05

 $Ric_M \ge K \Leftrightarrow Entropy K$ -convex along L^2 -transport geodesics

Relative entropy:

$$\operatorname{Ent}(\rho|m) = \begin{cases} \int u \log u dm , & \rho = um << \operatorname{vol}, \\ +\infty , & \operatorname{else}. \end{cases}$$

• L^2 -transport distance between probability measures ρ_0, ρ_1 :

$$W_2^2(\rho_0, \rho_1) = \inf \left\{ \int_{M \times M} d(x, y)^2 d\gamma(x, y) : \gamma \text{ coupling } \rho_0, \rho_1 \right\}$$

Ricci curvature bounds and OT

Cordero-McCann-Schmuckenschläger '01, vRenesse-Sturm '05

 $Ric_M \ge K \Leftrightarrow Entropy K$ -convex along L^2 -transport geodesics

Heuristics: Transport on the sphere

Ricci curvature bounds and OT II

A lower bound on the Ricci curvature, $Ric(M) \ge K$ is also equivalent to:

Ricci curvature bounds and OT II

A lower bound on the Ricci curvature, $Ric(M) \ge K$ is also equivalent to:

• Wasserstein expansion bounds: for all $\rho_1, \rho_2 \in \mathcal{P}_2(M)$ and t > 0

$$W_2(P_t\rho_1, P_t\rho_2) \le e^{-Kt} W_2(\rho_1, \rho_2)$$

Ricci curvature bounds and OT II

A lower bound on the Ricci curvature, $Ric(M) \ge K$ is also equivalent to:

• Wasserstein expansion bounds: for all $\rho_1, \rho_2 \in \mathcal{P}_2(M)$ and t > 0

$$W_2(P_t\rho_1, P_t\rho_2) \le e^{-Kt} W_2(\rho_1, \rho_2)$$

• Pathwise expansion bounds: for all $x, y \in M$ there ex. a coupling (B_t^x, B_t^y) of Brownian motions starting in x, y s.t. almost surely

$$d(B_t^x, B_t^y) \le e^{-Kt} d(x, y) \ \forall t > 0$$

Ricci curvature bounds and OT II

A lower bound on the Ricci curvature, $Ric(M) \ge K$ is also equivalent to:

• Wasserstein expansion bounds: for all $\rho_1, \rho_2 \in \mathcal{P}_2(M)$ and t > 0

$$W_2(P_t\rho_1, P_t\rho_2) \le e^{-Kt} W_2(\rho_1, \rho_2)$$

• Pathwise expansion bounds: for all $x, y \in M$ there ex. a coupling (B_t^x, B_t^y) of Brownian motions starting in x, y s.t. almost surely

$$d(B_t^x, B_t^y) \le e^{-Kt} d(x, y) \ \forall t > 0$$

ullet Evolution Variational Inequality: for all $ho, \eta \in \mathcal{P}_2(M)$ and t>0

$$\frac{\mathrm{d}}{\mathrm{d}t} \frac{1}{2} W_2^2(P_t \rho, \eta) - \frac{K}{2} W_2^2(P_t \rho, \eta) \leq \mathsf{Ent}(\eta | m) - \mathsf{Ent}(P_t \rho | m)$$

EVI encodes simultanuously convexity of the entropy, contraction and that P_t is the gradient flow of Ent w.r.t. W_2

Let (X, d, m) be a geodesic mms. Synthetic notion of (Riemannian) Ricci curvature bound:

Let (X, d, m) be a geodesic mms. Synthetic notion of (Riemannian) Ricci curvature bound:

• CD(K, ∞) (Sturm '06, Lott-Villani '09): $\forall \rho_0, \rho_1 \in \mathcal{P}_2(X)$ ex. W_2 -geodesic $(\rho_t)_{t \in [0,1]}$ s.t.:

$$\operatorname{Ent}(\rho_t|m) \leq (1-t)\operatorname{Ent}(\rho_0|m) + t\operatorname{Ent}(\rho_1|m) - \frac{K}{2}t(1-t)W_2^2(\rho_0,\rho_1).$$

Let (X, d, m) be a geodesic mms. Synthetic notion of (Riemannian) Ricci curvature bound:

• CD(K, ∞) (Sturm '06, Lott-Villani '09): $\forall \rho_0, \rho_1 \in \mathcal{P}_2(X)$ ex. W_2 -geodesic $(\rho_t)_{t \in [0,1]}$ s.t.:

$$\operatorname{Ent}(\rho_t|m) \leq (1-t)\operatorname{Ent}(\rho_0|m) + t\operatorname{Ent}(\rho_1|m) - \frac{K}{2}t(1-t)W_2^2(\rho_0,\rho_1).$$

• RCD(K, ∞) (Ambrosio–Gigli–Savaré '11): $\forall \rho_0 \in \mathcal{P}_2(X)$ ex. solution $(\rho_t)_{t\geq 0}$ to the EVI, i.e. $\forall \eta \in \mathcal{P}_2(X), t > 0$:

$$\frac{\mathrm{d}}{\mathrm{d}t} \frac{1}{2} W_2^2(\rho_t, \eta) - \frac{K}{2} W_2^2(\rho_t, \eta) \leq \mathsf{Ent}(\eta | m) - \mathsf{Ent}(\rho_t | m) \ .$$

Let (X, d, m) be a geodesic mms. Synthetic notion of (Riemannian) Ricci curvature bound:

• CD(K, ∞) (Sturm '06, Lott-Villani '09): $\forall \rho_0, \rho_1 \in \mathcal{P}_2(X)$ ex. W_2 -geodesic $(\rho_t)_{t \in [0,1]}$ s.t.:

$$\operatorname{Ent}(\rho_t|m) \leq (1-t)\operatorname{Ent}(\rho_0|m) + t\operatorname{Ent}(\rho_1|m) - \frac{K}{2}t(1-t)W_2^2(\rho_0,\rho_1).$$

• RCD(K, ∞) (Ambrosio–Gigli–Savaré '11): $\forall \rho_0 \in \mathcal{P}_2(X)$ ex. solution $(\rho_t)_{t \geq 0}$ to the EVI, i.e. $\forall \eta \in \mathcal{P}_2(X), t > 0$:

$$\frac{\mathrm{d}}{\mathrm{d}t} \frac{1}{2} W_2^2(\rho_t, \eta) - \frac{K}{2} W_2^2(\rho_t, \eta) \leq \mathsf{Ent}(\eta | m) - \mathsf{Ent}(\rho_t | m) .$$

 $\mathsf{RCD}(K,\infty)$ is equivalent to a suitable form of Bochner inequality and to gradient estimates

Let (X, d, m) be a geodesic mms. Synthetic notion of (Riemannian) Ricci curvature bound:

• CD(K, ∞) (Sturm '06, Lott–Villani '09): $\forall \rho_0, \rho_1 \in \mathcal{P}_2(X)$ ex. W_2 -geodesic $(\rho_t)_{t \in [0,1]}$ s.t.:

$$\operatorname{\mathsf{Ent}}(
ho_t|m) \leq (1-t)\operatorname{\mathsf{Ent}}(
ho_0|m) + t\operatorname{\mathsf{Ent}}(
ho_1|m) - rac{K}{2}t(1-t)W_2^2(
ho_0,
ho_1) \ .$$

• RCD(K, ∞) (Ambrosio–Gigli–Savaré '11): $\forall \rho_0 \in \mathcal{P}_2(X)$ ex. solution $(\rho_t)_{t \geq 0}$ to the EVI, i.e. $\forall \eta \in \mathcal{P}_2(X), t > 0$:

$$\frac{\mathrm{d}}{\mathrm{d}t} \frac{1}{2} W_2^2(\rho_t, \eta) - \frac{K}{2} W_2^2(\rho_t, \eta) \leq \mathsf{Ent}(\eta | m) - \mathsf{Ent}(\rho_t | m) \ .$$

 $\mathsf{RCD}(K,\infty)$ is equivalent to a suitable form of Bochner inequality and to gradient estimates

Problem: The configuration space $(\Upsilon, d_{\Upsilon}, \pi)$ is only an extended mms

Sectional curvature bounds for Υ

Recall the distance on Υ :

$$d^2_{\Upsilon}(\gamma,\sigma) = \inf \left\{ \sum_i d^2(x_i,y_i) : \gamma = \sum_i \delta_{x_i}, \sigma = \sum_i \delta_{y_i} \right\}$$

Sectional curvature bounds for Υ

Recall the distance on Υ :

$$d_{\Upsilon}^{2}(\gamma,\sigma) = \inf \left\{ \sum_{i} d^{2}(x_{i},y_{i}) : \gamma = \sum_{i} \delta_{x_{i}}, \sigma = \sum_{i} \delta_{y_{i}} \right\}$$

Theorem (Alexandrov bounds):

If $\sec(M) \geq K$, then we have $\sec(\Upsilon) \geq K \wedge 0$ in the Alexandrov sense, i.e. for all $\gamma_0, \gamma_1, \gamma_2, \gamma_3$ with $d_{\Upsilon}(\gamma_0, \gamma_i) < \infty$:

$$\sum_{i=1}^3 d_{\Upsilon}^2(\gamma_0,\gamma_i) \geq \frac{1}{6} \sum_{i,i=1}^3 d_{\Upsilon}^2(\gamma_i,\gamma_j) .$$

(if K = 0, analogous quadruple comparison for $K \neq 0$)

Sectional curvature bounds for Υ

Recall the distance on Υ :

$$d_{\Upsilon}^2(\gamma,\sigma) = \inf \left\{ \sum_i d^2(x_i,y_i) : \gamma = \sum_i \delta_{x_i}, \sigma = \sum_i \delta_{y_i} \right\}$$

Theorem (Alexandrov bounds):

If $\sec(M) \geq K$, then we have $\sec(\Upsilon) \geq K \wedge 0$ in the Alexandrov sense, i.e. for all $\gamma_0, \gamma_1, \gamma_2, \gamma_3$ with $d_{\Upsilon}(\gamma_0, \gamma_i) < \infty$:

$$\sum_{i=1}^3 d_{\Upsilon}^2(\gamma_0,\gamma_i) \geq rac{1}{6} \sum_{i,j=1}^3 d_{\Upsilon}^2(\gamma_i,\gamma_j) \ .$$

(if K=0, analogous quadruple comparison for $K\neq 0$)

Note:

If K < 0 the Wasserstein space $(\mathcal{P}_2(M), W_2)$ does NOT have a Alexandrov curvature bound!

Bochner and Gradient estimates on Υ

Recall gradient of cylinder function $F(\gamma) = g(\gamma(\varphi_1), \dots, \gamma(\varphi_n))$: $\nabla^{\Upsilon} F(\gamma) = \sum_{i=1}^n \partial_i g(\gamma(\varphi_1), \dots, \gamma(\varphi_n)) \nabla \varphi_i$

Bochner and Gradient estimates on Υ

Recall gradient of cylinder function $F(\gamma) = g(\gamma(\varphi_1), \dots, \gamma(\varphi_n))$: $\nabla^{\Upsilon} F(\gamma) = \sum_{i=1}^{n} \partial_{i} g(\gamma(\varphi_{1}), \cdots, \gamma(\varphi_{n})) \nabla \varphi_{i}$

Proposition (Bochner inequ.):

If
$$Ric(M) \ge K$$
, then Bochner's inequality holds on Υ , i.e. for all $F \in Cyl^{\infty}(\Upsilon)$ and $\gamma \in \Upsilon$:

$$\frac{1}{2}\Delta^{\Upsilon}|\nabla^{\Upsilon}F|^2(\gamma) - \langle\nabla^{\Upsilon}F,\Delta^{\Upsilon}\nabla^{\Upsilon}F\rangle_{\gamma} \geq K|\nabla^{\Upsilon}F|^2_{\gamma}\;.$$

Bochner and Gradient estimates on ↑

Recall gradient of cylinder function $F(\gamma) = g(\gamma(\varphi_1), \dots, \gamma(\varphi_n))$: $\nabla^{\gamma} F(\gamma) = \sum_{i=1}^{n} \partial_i g(\gamma(\varphi_1), \dots, \gamma(\varphi_n)) \nabla \varphi_i$

Proposition (Bochner inequ.):

If $\mathrm{Ric}(M) \geq K$, then Bochner's inequality holds on Υ , i.e. for all $F \in \mathrm{Cyl}^\infty(\Upsilon)$ and $\gamma \in \Upsilon$:

$$\frac{1}{2}\Delta^{\Upsilon}|\nabla^{\Upsilon}F|^2(\gamma) - \langle\nabla^{\Upsilon}F,\Delta^{\Upsilon}\nabla^{\Upsilon}F\rangle_{\gamma} \geq K|\nabla^{\Upsilon}F|^2_{\gamma}\;.$$

Theorem (gradient estimate):

If $Ric(M) \geq K$, then for all $G \in \mathcal{D}(\mathcal{E})$ and π -a.e. γ :

$$|
abla^{\Upsilon} P_t^{\Upsilon} G|_{\gamma}^2 \leq \mathrm{e}^{-2Kt} \, P_t^{\Upsilon} |
abla^{\Upsilon} G|^2(\gamma) \; .$$

Bochner and Gradient estimates on T

Recall gradient of cylinder function $F(\gamma) = g(\gamma(\varphi_1), \dots, \gamma(\varphi_n))$: $\nabla^{\Upsilon} F(\gamma) = \sum_{i=1}^{n} \partial_i g(\gamma(\varphi_1), \dots, \gamma(\varphi_n)) \nabla \varphi_i$

Proposition (Bochner inequ.):

If $Ric(M) \ge K$, then Bochner's inequality holds on Υ , i.e. for all $F \in Cyl^{\infty}(\Upsilon)$ and $\gamma \in \Upsilon$:

$$\frac{1}{2}\Delta^{\Upsilon}|\nabla^{\Upsilon}F|^2(\gamma) - \langle\nabla^{\Upsilon}F,\Delta^{\Upsilon}\nabla^{\Upsilon}F\rangle_{\gamma} \geq K|\nabla^{\Upsilon}F|_{\gamma}^2\;.$$

Theorem (gradient estimate):

If $Ric(M) \geq K$, then for all $G \in \mathcal{D}(\mathcal{E})$ and π -a.e. γ :

$$|\nabla^{\Upsilon} P_t^{\Upsilon} G|_{\gamma}^2 \le e^{-2Kt} P_t^{\Upsilon} |\nabla^{\Upsilon} G|^2(\gamma)$$
.

(proof uses representation of P_t^{Υ} as infinite product of 1 part. semigroups)

Expansion bounds

Wasserstein (pseudo-)distance: for $\rho_1, \rho_2 \in \mathcal{P}(\Upsilon)$ define

$$W_2^2(\rho_1, \rho_2) = \inf \left\{ \int d_{\Upsilon}^2(\gamma_1, \gamma_2) \mathrm{d}q(\gamma_1, \gamma_2) : q \text{ coupling of } \rho_1, \rho_2 \right\} .$$

We denote the fiber of π by $\mathcal{P}_{\pi}(\Upsilon) = \{ \rho \in \mathcal{P}(\Upsilon) : W_2(\rho, \pi) < \infty \}$. For $\rho = F\pi_{\mu}$ define $P_t^{\Upsilon} \rho = (P_t^{\Upsilon} F)\pi$.

Expansion bounds

Wasserstein (pseudo-)distance: for $\rho_1, \rho_2 \in \mathcal{P}(\Upsilon)$ define

$$W_2^2(\rho_1,\rho_2)=\inf\left\{\int d_\Upsilon^2(\gamma_1,\gamma_2)\mathrm{d}q(\gamma_1,\gamma_2): q \text{ coupling of } \rho_1,\rho_2
ight\}\ .$$

We denote the fiber of π by $\mathcal{P}_{\pi}(\Upsilon) = \{ \rho \in \mathcal{P}(\Upsilon) : W_2(\rho, \pi) < \infty \}$. For $\rho = F\pi_{\mu}$ define $P_t^{\Upsilon} \rho = (P_t^{\Upsilon} F)\pi$.

Theorem (expansion):

If $Ric(M) \geq K$, then for all $\rho_1, \rho_2 \in \mathcal{P}(\Upsilon)$ with $\rho_i << \pi_{\mu}$:

$$W_2(P_t^{\Upsilon}\rho_1, P_t^{\Upsilon}\rho_2) \leq e^{-Kt} W_2(\rho_1, \rho_2)$$
.

Moreover, for all $\gamma_1,\gamma_2\in\Theta\subset\Upsilon$ ex. a coupling of the infinite independent particle processes s.t. a.s.:

$$d_{\Upsilon}(\mathsf{B}_t^{\gamma_1},\mathsf{B}_t^{\gamma_2}) \leq \mathrm{e}^{-Kt} d_{\Upsilon}(\gamma_1,\gamma_2) \ \forall t>0 \ .$$

Expansion bounds

Wasserstein (pseudo-)distance: for $\rho_1, \rho_2 \in \mathcal{P}(\Upsilon)$ define

$$W_2^2(
ho_1,
ho_2)=\inf\left\{\int d_\Upsilon^2(\gamma_1,\gamma_2)\mathrm{d}q(\gamma_1,\gamma_2): q ext{ coupling of }
ho_1,
ho_2
ight\}\,.$$

We denote the fiber of π by $\mathcal{P}_{\pi}(\Upsilon) = \{ \rho \in \mathcal{P}(\Upsilon) : W_2(\rho, \pi) < \infty \}$. For $\rho = F\pi_{\mu}$ define $P_t^{\Upsilon} \rho = (P_t^{\Upsilon} F)\pi$.

Theorem (expansion):

If $Ric(M) \geq K$, then for all $\rho_1, \rho_2 \in \mathcal{P}(\Upsilon)$ with $\rho_i << \pi_{\mu}$:

$$W_2(P_t^{\Upsilon} \rho_1, P_t^{\Upsilon} \rho_2) \leq e^{-Kt} W_2(\rho_1, \rho_2)$$
.

Moreover, for all $\gamma_1,\gamma_2\in\Theta\subset\Upsilon$ ex. a coupling of the infinite independent particle processes s.t. a.s.:

$$d_{\Upsilon}(\mathbf{B}_t^{\gamma_1},\mathbf{B}_t^{\gamma_2}) \leq \mathrm{e}^{-Kt}\,d_{\Upsilon}(\gamma_1,\gamma_2)\; orall t>0\;.$$

Under Ric(M) $\geq K$, $\mathcal{P}_{\pi}(\Upsilon)$ belongs to closure of $\{\rho << \pi\}$ w.r.t W_2

Synthetic Ricci bounds for Υ

Theorem (EVI on Υ):

If $Ric(M) \geq K$, then for all $\rho, \eta \in \mathcal{P}_{\pi}(\Upsilon)$:

$$\frac{\mathrm{d}}{\mathrm{d}t} \frac{1}{2} W_2^2(P_t^{\Upsilon} \rho, \eta) - \frac{K}{2} W_2^2(P_t^{\Upsilon} \rho, \eta) \leq \mathsf{Ent}(\eta | \pi) - \mathsf{Ent}(P_t \rho | \pi) \; .$$

Synthetic Ricci bounds for ↑

Theorem (EVI on Υ):

If $Ric(M) \geq K$, then for all $\rho, \eta \in \mathcal{P}_{\pi}(\Upsilon)$:

$$\frac{\mathrm{d}}{\mathrm{d}t}\frac{1}{2}W_2^2(P_t^{\Upsilon}\rho,\eta) - \frac{K}{2}W_2^2(P_t^{\Upsilon}\rho,\eta) \leq \mathsf{Ent}(\eta|\pi) - \mathsf{Ent}(P_t\rho|\pi) \ .$$

Corollary (geodesic convexity of entropy):

If $Ric(M) \geq K$, then for any W_2 -geodesic $(\rho_t)_{t \in [0,1]}$ in $\mathcal{P}_{\pi}(\Upsilon)$:

$$\operatorname{\mathsf{Ent}}(
ho_t|\pi) \leq (1-t)\operatorname{\mathsf{Ent}}(
ho_0|\pi) + t\operatorname{\mathsf{Ent}}(
ho_1|\pi) - rac{{\mathsf K}}{2}t(1-t)W_2^2(
ho_0,
ho_1) \ .$$

Synthetic Ricci bounds for Υ

Theorem (EVI on Υ):

If $Ric(M) \geq K$, then for all $\rho, \eta \in \mathcal{P}_{\pi}(\Upsilon)$:

$$\frac{\mathrm{d}}{\mathrm{d}t} \frac{1}{2} W_2^2(P_t^{\Upsilon} \rho, \eta) - \frac{K}{2} W_2^2(P_t^{\Upsilon} \rho, \eta) \leq \mathsf{Ent}(\eta | \pi) - \mathsf{Ent}(P_t \rho | \pi) \ .$$

Corollary (geodesic convexity of entropy):

If $\mathrm{Ric}(M) \geq K$, then for any W_2 -geodesic $(\rho_t)_{t \in [0,1]}$ in $\mathcal{P}_{\pi}(\Upsilon)$:

$$\operatorname{Ent}(\rho_t|\pi) \leq (1-t)\operatorname{Ent}(\rho_0|\pi) + t\operatorname{Ent}(\rho_1|\pi) - \frac{K}{2}t(1-t)W_2^2(\rho_0,\rho_1)$$
.

- In this sense $(\Upsilon, d_{\Upsilon}, \pi)$ is an extended $(R)CD(K, \infty)$ mms
- ullet Dirichlet form ${\mathcal E}$ coincides with Cheeger energy $\operatorname{Ch}_{d_{\Upsilon}}$
- proof starts from gradient estimate

Gradient flow structure of the particle system

Observation

Let $\varphi : \mathbb{R}^d \to \mathbb{R}$ smooth and convex. For $u : \mathbb{R}_+ \to \mathbb{R}^d$ TFAE:

- **1** u solves the gradient flow equation $u'(t) = -\nabla \varphi(u(t))$,
- 2 u solves the evolution variational inequality

$$\frac{1}{2}\frac{d}{dt}|u(t)-y|^2 \leq \varphi(y)-\varphi(u(t)) \qquad \forall y \in \mathbb{R}^d.$$

Gradient flow structure of the particle system

Observation

Let $\varphi : \mathbb{R}^d \to \mathbb{R}$ smooth and convex. For $u : \mathbb{R}_+ \to \mathbb{R}^d$ TFAE:

- **1** u solves the gradient flow equation $u'(t) = -\nabla \varphi(u(t))$,
- u solves the evolution variational inequality

$$\frac{1}{2}\frac{d}{dt}|u(t)-y|^2 \leq \varphi(y)-\varphi(u(t)) \qquad \forall y \in \mathbb{R}^d.$$

Corollary

The semigroup of the infinite independent particle system P_t^{Υ} is the W_2 -gradient flow of the entropy:

$$\frac{\mathrm{d}}{\mathrm{d}t} \frac{1}{2} W_2^2(P_t^{\Upsilon} \rho, \eta) - \frac{K}{2} W_2^2(P_t^{\Upsilon} \rho, \eta) \leq \mathsf{Ent}(\eta | \pi) - \mathsf{Ent}(P_t \rho | \pi)$$

Future goals

Study the interacting infinite particle systems in \mathbb{R}^n with a pair interaction potential $\Phi: \mathbb{R}^n \to \mathbb{R}$

$$\mathrm{d}X_t^i = \mathrm{d}B_t^i + \lim_{R \to \infty} \sum_{|X_t^i - X_t^j| < R} \nabla \Phi(X_t^i - X_t^j) \mathrm{d}t \;, \quad i = 1, 2, \dots$$

Future goals

Study the interacting infinite particle systems in \mathbb{R}^n with a pair interaction potential $\Phi: \mathbb{R}^n \to \mathbb{R}$

$$\mathrm{d}X_t^i = \mathrm{d}B_t^i + \lim_{R \to \infty} \sum_{|X_t^i - X_t^j| < R} \nabla \Phi(X_t^i - X_t^j) \mathrm{d}t \;, \quad i = 1, 2, \dots$$

Associated to Dirichlet form

$$\mathcal{E}(F) = \int |\nabla^{\Upsilon} F|_{\gamma}^{2} d\pi_{\Phi}(\gamma)$$

for a Gibbs measure π_{Φ}

Future goals

Study the interacting infinite particle systems in \mathbb{R}^n with a pair interaction potential $\Phi: \mathbb{R}^n \to \mathbb{R}$

$$\mathrm{d}X_t^i = \mathrm{d}B_t^i + \lim_{R \to \infty} \sum_{|X_t^i - X_t^j| < R} \nabla \Phi(X_t^i - X_t^j) \mathrm{d}t \;, \quad i = 1, 2, \dots$$

Associated to Dirichlet form

$$\mathcal{E}(F) = \int |\nabla^{\Upsilon} F|_{\gamma}^{2} d\pi_{\Phi}(\gamma)$$

for a Gibbs measure π_{Φ}

Question

Can we extract curvature bounds on $(\Upsilon, d_{\Upsilon}, \pi_{\Phi})$ from properties of Φ ?

Thank you for your attention!