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Hydrodynamic limits

2 possible descriptions of a gas :

e Atomistic description : N particles in interaction (Newton's laws, etc...)

e Continuum description : (system of) PDE(s) (Navier-Stokes, Euler,...)

Hydrodynamic limit : deriving a continuous model as a scaling limit of
discrete models.

In this talk, we shall consider the more simple situation of scaling limits for
stochastic models.
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We are interested in diffusions of the form
dXt = —'l]Z),(Xt)dt + \/EdBt

We consider a large number N of such diffusions, and add a
nearest-neighbor interaction, such that

dxi(t) = N?(¢'(xi41) + ' (xi-1) — 2¢'(x))dt + V2N(dB[* — dB;)

where the B’ are independant Brownian motions. The additional factor N
corresponds to a scaling in time. The quantity

1
N2

is conserved, and the fluctuations around this mean tend to diminish in
time.
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Some assumptions

We can write the dynamic as

The phase state is

XNym = {X eRV; Zx,- = Nm},

which we equip with the usual #? norm. The Hamiltonian H is given by

N
HO) =3 (),
i=1

with
B(x) = xIP + 3(x), p>2, [|8]]c2 < .
Finally, A is the discrete Laplacian
Aij = N?(20;j — 6ij—1 — 0ijs1),

where N2 is a scaling in time of the evolution.
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This dynamic is a reversible stochastic dynamic on an affine Euclidean
subspace X of RV, with an (unique) invariant probability measure

u(dx) := exp(—H(x))dx

The law of this evolution is given by the PDE

0
—(fu) =V - (AVF
5 (f1) =V - (AVFy)
where f is the density with respect to p.
We are interested in the behavior of the probability measure fu when the

dimension N is large.
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Notion of convergence

It will be convenient to see our system as a "‘random function"'. We
associate to each vector x € Xpy a step function x on the torus, defined by

1
x(0) =x;; 0 € [IN’I(I>

We will say a sequence vy converges to a macroscopic profile p € L?(T) if
the quantities

1 . -
LD SN ULIES /T J(0)%(6)do
converge in probability to

/ J(0)p(6)d
T

for every smooth test functions J.
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It has been proven by Guo, Papanicolaou and Varadhan that, if the initial
data converges to a macroscopic profile, then the dynamics behave
deterministically at later times, and the behavior is given by the solution of

the PDE 5 o2
872 = wd(ﬂ)

where ¢ is given by

o

o(m) = sup <0m — log / exp(ox — w(x))dx) .

Useful property : ¢ is uniformly convex
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A gradient flow interpretation

This dynamic is a gradient flow of the entropy with respect to the entropy
Ent,, for the Wasserstein distance associated to the Euclidean distance
<A_1'7 > ,

The PDE is the gradient flow of p — fgo(,o)d@ on the space of functions
on the torus, for the H~1 norm.
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A gradient flow interpretation

This dynamic is a gradient flow of the entropy with respect to the entropy
Ent,, for the Wasserstein distance associated to the Euclidean distance
<A*1-, s

The PDE is the gradient flow of p — [ ¢(p)d6 on the space of functions
on the torus, for the H~1 norm.

We can use gradient flow stability arguments to go from one to the other.
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The functional point of view allows to embed all the spaces Xy into a single
space, which is the space H™!, dual of the Sobolev space H'. Then we have

(A7x, x) = |[x][}-a

=~
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The functional point of view allows to embed all the spaces Xy into a single
space, which is the space H™!, dual of the Sobolev space H'. Then we have

(A7x, x) = |[x][}-a

SEnt,() /go(-)d@ y </ -d9> |

=~

Moreover,
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These statements allow us to show that, for well-prepared initial data that
weakly converge to a deterministic profile p, and such that

1
N Ent,.(fonun) — /@(Po)de — (/ pod9> :

then, at positive times, the solutions fy(t)uyn weakly converge to the
solution of the PDE.
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These statements allow us to show that, for well-prepared initial data that
weakly converge to a deterministic profile p, and such that

1
m Ent,(fo,npn) — /QO(Po)dQ - (/ pod9> 7

then, at positive times, the solutions fy(t)uyn weakly converge to the
solution of the PDE.
We wish for two improvements :

@ Weaken the assumption on the initial data;

@ Obtain explicit quantitative rates of convergence.
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Theorem (Grunewald, Otto, Villani, Westdickenberg, 2009, F.-Menz
2013)

If [, folog fodjin < CN and

/X 1% = poll2y- fon(x)un(dx) —s 0,

then there is a nice step-function approximation 7n(t) of the solution of the
PDE, with mesh size N=Y/2, such that for any T > 0,

1
sup NW2,A—1(f(t)Ma 57,(t))2 —0
te[0, T]

with quantitative bounds of order N=1/2.
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Method of proof

We introduce a macroscopic profile y = Px, by separating the spins into
V/N boxes of v/N neighboring spins, and taking the average on each box.
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Method of proof

We introduce a macroscopic profile y = Px, by separating the spins into
V/N boxes of v/N neighboring spins, and taking the average on each box.
The macroscopic invariant measure ji = P can be written as

exp(—H(y))dy.

For N large enough, H is uniformly convex
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Method of proof

We introduce a macroscopic profile y = Px, by separating the spins into
V/N boxes of v/N neighboring spins, and taking the average on each box.
The macroscopic invariant measure ji = Py can be written as

exp(—H(y))dy.

For N large enough, H is uniformly convex

— functional inequalities in positive curvature (Log-Sobolev,
Talagrand,...)
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We cosnider a time-dependent macroscopic profile 7(t), given by the ODE
dn - -

9 _AVH

7t VH(n)

with A a well-chosen symmetric matrix.

A quantitative approach for hydrodynami March 2014 13 / 17



We cosnider a time-dependent macroscopic profile 7(t), given by the ODE

dn - -
& — “AVA(n)

with A a well-chosen symmetric matrix.

When computing %W27A_1(f(t)u,5n(t))2, we can separate the expression
we obtain into a macroscopic component and a fluctuations component.
The macroscopic component can be handled using functional inequalities,
and the fluctuation component doesn't contribute too much to

1% = nll3-1.
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Local Gibbs behavior

Theorem (F., 2013)

Fr any time t > 0, we have

,b nt (Fu(t MN)—>/ (£))d6 — @(/p(t)d@)

g N

with quantitative bounds of order 2 N1 il

This result means that, even though we didn’t assume the initial data was
well-prepared, we have convergence of the free energy at any positive time.
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Sketch of proof

There exists a sequence of measures of the form

fi(dx) = L exp(A(t) - Px)u(dx) which converge to p(t), and are
well-prepared.
Since the associated macroscopic measures are log-concave, we can use the
HWI inequality at macroscopic level :

Entg(Fii) < Wa(Fii, i)/ 1a(F)-

We have %Wg(?ﬁ,ﬂ)Z < ﬁ and bounds of order N on the

(time- integrated) relative Fisher information.
Convergence of % Ent,,, (fy(t)un) can then be deduced.
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Non-reversible dynamics

The method can be extended to cover non-reversible dynamics of the form

where J is an antisymmetric matrix such that —J? < cA.
In the case where J is a discrete derivation, we obtain the scaling limit

op & , . 0,
5—@¢(p)+%¢(p)-

(Joint work with M.H. Duong)
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Two open problems

Two main questions remain :

@ How can we extend the method to cover genuinely Riemannian
situations 7 We are interested in dynamics of the form

C/Xt A(Xt)VH(Xt)dt - dIV Xt dt + \/ Xt C/Bt,

which are gradient flows of the entropy for the Riemannian metric with
tensor A~%(x). These can lead to hydrodynamic limits of the form

dp
oy (()3990())

with a coefficient a(m) that depends on both A(x) and 1 ;

@ Is there a similar method that works for discrete dynamics, such as
interacting particle systems?
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