
A quantitative approach for hydrodynamic
limits.

Max Fathi

March 2014

A quantitative approach for hydrodynamic limits. March 2014 1 / 17



Hydrodynamic limits

2 possible descriptions of a gas :

Atomistic description : N particles in interaction (Newton’s laws, etc...)
Continuum description : (system of) PDE(s) (Navier-Stokes, Euler,...)

Hydrodynamic limit : deriving a continuous model as a scaling limit of
discrete models.

In this talk, we shall consider the more simple situation of scaling limits for
stochastic models.
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We are interested in diffusions of the form

dxt = −ψ′(xt)dt +
√
2dBt .

We consider a large number N of such diffusions, and add a
nearest-neighbor interaction, such that

dxi (t) = N2(ψ′(xi+1) + ψ′(xi−1)− 2ψ′(xi ))dt +
√
2N(dB i+1

t − dB i
t)

where the B i are independant Brownian motions. The additional factor N
corresponds to a scaling in time. The quantity

1
N

∑
xi

is conserved, and the fluctuations around this mean tend to diminish in
time.
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Some assumptions
We can write the dynamic as

dXt = −A∇H(Xt)dt +
√
2AdBt .

The phase state is

XN,m :=
{

x ∈ RN ;
∑

xi = Nm
}
,

which we equip with the usual `2 norm. The Hamiltonian H is given by

H(x) :=
N∑

i=1

ψ(xi ),

with
ψ(x) = |x |p + δ(x), p ≥ 2, ||δ||C2 <∞.

Finally, A is the discrete Laplacian

Ai ,j := N2(2δi ,j − δi ,j−1 − δi ,j+1),

where N2 is a scaling in time of the evolution.
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This dynamic is a reversible stochastic dynamic on an affine Euclidean
subspace X of RN , with an (unique) invariant probability measure

µ(dx) := exp(−H(x))dx

The law of this evolution is given by the PDE

∂

∂t
(f µ) = ∇ · (A∇f µ)

where f is the density with respect to µ.
We are interested in the behavior of the probability measure f µ when the
dimension N is large.
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Notion of convergence

It will be convenient to see our system as a "‘random function"’. We
associate to each vector x ∈ XN a step function x̄ on the torus, defined by

x̄(θ) := xi ; θ ∈
[
i − 1
N

,
i
N

)
.

We will say a sequence νN converges to a macroscopic profile ρ ∈ L2(T) if
the quantities

1
N

∑
J(i/N)xi ≈

∫
T

J(θ)x̄(θ)dθ

converge in probability to ∫
T

J(θ)ρ(θ)dθ

for every smooth test functions J.
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It has been proven by Guo, Papanicolaou and Varadhan that, if the initial
data converges to a macroscopic profile, then the dynamics behave
deterministically at later times, and the behavior is given by the solution of
the PDE

∂ρ

∂t
=

∂2

∂θ2ϕ
′(ρ)

where ϕ is given by

ϕ(m) := sup
σ

(
σm − log

∫
exp(σx − ψ(x))dx

)
.

Useful property : ϕ is uniformly convex
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A gradient flow interpretation

This dynamic is a gradient flow of the entropy with respect to the entropy
Entµ, for the Wasserstein distance associated to the Euclidean distance
〈A−1·, ·〉 ;
The PDE is the gradient flow of ρ −→

∫
ϕ(ρ)dθ on the space of functions

on the torus, for the H−1 norm.

We can use gradient flow stability arguments to go from one to the other.
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The functional point of view allows to embed all the spaces XN into a single
space, which is the space H−1, dual of the Sobolev space H1. Then we have

1
N
〈A−1x , x〉 ≈ ||x̄ ||2H−1 .

Moreover,
1
N

Entµ(·) Γ−→
∫
ϕ(·)dθ − ϕ

(∫
·dθ
)
.
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These statements allow us to show that, for well-prepared initial data that
weakly converge to a deterministic profile ρ, and such that

1
N

Entµ(f0,NµN) −→
∫
ϕ(ρ0)dθ − ϕ

(∫
ρ0dθ

)
,

then, at positive times, the solutions fN(t)µN weakly converge to the
solution of the PDE.

We wish for two improvements :
Weaken the assumption on the initial data ;
Obtain explicit quantitative rates of convergence.
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Theorem (Grunewald, Otto, Villani, Westdickenberg, 2009, F.-Menz
2013)

If
∫
XN

f0 log f0dµN ≤ CN and∫
X
||x̄ − ρ0||2H−1 f0,N(x)µN(dx) −→ 0,

then there is a nice step-function approximation η(t) of the solution of the
PDE, with mesh size N−1/2, such that for any T > 0,

sup
t∈[0,T ]

1
N

W2,A−1(f (t)µ, δη(t))2 −→ 0

with quantitative bounds of order N−1/2.
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Method of proof

We introduce a macroscopic profile y = Px , by separating the spins into√
N boxes of

√
N neighboring spins, and taking the average on each box.

The macroscopic invariant measure µ̄ = P#µ can be written as
exp(−H̄(y))dy .

For N large enough, H̄ is uniformly convex
−→ functional inequalities in positive curvature (Log-Sobolev,
Talagrand,...)
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We cosnider a time-dependent macroscopic profile η(t), given by the ODE

dη
dt

= −Ā∇H̄(η)

with Ā a well-chosen symmetric matrix.

When computing d
dt W2,A−1(f (t)µ, δη(t))2, we can separate the expression

we obtain into a macroscopic component and a fluctuations component.
The macroscopic component can be handled using functional inequalities,
and the fluctuation component doesn’t contribute too much to
||x̄ − η||2H−1 .
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Local Gibbs behavior

Theorem (F., 2013)
Fr any time t > 0, we have

1
N

EntµN (fN(t)µN) −→
∫
T
ϕ(ρ(t))dθ − ϕ

(∫
ρ(t)dθ

)
with quantitative bounds of order log N

N1/4 .

This result means that, even though we didn’t assume the initial data was
well-prepared, we have convergence of the free energy at any positive time.
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Sketch of proof

There exists a sequence of measures of the form
µ̃(dx) = 1

Z exp(λ(t) · Px)µ(dx) which converge to ρ(t), and are
well-prepared.
Since the associated macroscopic measures are log-concave, we can use the
HWI inequality at macroscopic level :

Entµ̃(f̄ µ̄) ≤W2(f̄ µ̄, µ̃)
√

Iµ̃(f̄ µ̄).

We have 1
N W2(f̄ µ̄, µ̃)2 ≤ C√

N
, and bounds of order N on the

(time-integrated) relative Fisher information.
Convergence of 1

N EntµN (fN(t)µN) can then be deduced.
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Non-reversible dynamics

The method can be extended to cover non-reversible dynamics of the form

dXt = −A∇H(Xt)dt + J∇H(Xt)dt +
√
2AdBt

where J is an antisymmetric matrix such that −J2 ≤ cA.
In the case where J is a discrete derivation, we obtain the scaling limit

∂ρ

∂t
=

∂2

∂θ2ϕ
′(ρ) +

∂

∂θ
ϕ′(ρ).

(Joint work with M.H. Duong)
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Two open problems

Two main questions remain :

How can we extend the method to cover genuinely Riemannian
situations ? We are interested in dynamics of the form

dXt = −A(Xt)∇H(Xt)dt − div(A)(Xt)dt +
√

2A(Xt)dBt ,

which are gradient flows of the entropy for the Riemannian metric with
tensor A−1(x). These can lead to hydrodynamic limits of the form

∂ρ

∂t
=

∂

∂θ
(a(ρ)

∂

∂θ
ϕ′(ρ))

with a coefficient a(m) that depends on both A(x) and ψ ;
Is there a similar method that works for discrete dynamics, such as
interacting particle systems ?
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