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Push forward of a measure

Let
- X ,Y compact metric spaces
- T : X → Y a Borel map
- µ ∈P(X )

The measure T]µ ∈P(Y ) is defined by

T]µ(E) := µ(T−1(E)), ∀E ⊂ Y , Borel

and satisfies ∫
f dT]µ =

∫
f ◦ T dµ

for any Borel function f : X → R



Monge’s formulation of the optimal transport problem

Given:
- X ,Y compact metric spaces
- c : X × Y → R continuous
- µ ∈P(X ) and ν ∈P(Y )

Minimize ∫
c
(
x ,T (x)

)
dµ(x)

among all T : X → Y Borel such that

T]µ = ν



Why this is a bad formulation

I Maybe there is no T such that T]µ = ν

I The infimum can be not attained

I The functional to minimize is not lower semicontinuous w.r.t. any
reasonable weak topology on transport maps



Kantorovich formulation of the optimal transport
problem

With the same data as in Monge’s formulation, minimize∫
c(x , y) dγ(x , y)

among all γ ∈P2(X × X ) such that

π1
]γ = µ

π2
]γ = ν

The set of such admissible transport plans will be denoted Adm(µ, ν)



Why this is a good formulation

I There always exists at least one transport plan: µ× ν

I Transport plans ‘include’ transport maps: if T#µ = ν, then
(Id ,T )#µ is a transport plan

I The set of transport plans is closed w.r.t. the weak topology of
measures

I The map γ 7→
∫

c(x , y)dγ(x , y) is linear and weakly continuous

In particular, minima exist.
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A key example

Let {xi}i ⊂ X , {yi}i ⊂ Y , i = 1, . . . ,N be given points and

µ :=
1
N

∑
i

δxi

ν :=
1
N

∑
i

δyi

Then a plan γ is optimal iff for any n ∈ N, permutation σ of {1, . . . ,n}
and any {(xi , yi )}i=1,...,n ⊂ supp(γ) it holds∑

i

c(xi , yi ) ≤
∑

i

c(xi , yσ(i))
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The general definition

We say that a set Γ ⊂ X × Y is c-cyclically monotone if for any n ∈ N,
permutation σ of {1, . . . ,n} and any {(xi , yi )}i=1,...,n ⊂ Γ it holds∑

i

c(xi , yi ) ≤
∑

i

c(xi , yσ(i))



First characterization of optimal plans

Theorem A transport plan γ is optimal if and only if its support supp(γ)
is c-cyclically monotone.

In particular, being optimal depends only on the support of γ, and not
on how the mass is distributed on the support (!).
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The dual problem

Given the measures µ ∈ P(X ), ν ∈ P(Y ) and the cost function
c : X × Y → R, maximize ∫

ϕ dµ+

∫
ψ dν

among all couples of functions ϕ : X → R and ψ : Y → R such that

ϕ(x) + ψ(y) ≤ c(x , y), ∀x ∈ X , y ∈ Y

We call such a couple of functions admissible potentials



A simple inequality

Let γ be a transport plan from µ to ν and (ϕ,ψ) admissible potentials.
Then ∫

c(x , y) dγ(x , y) ≥
∫
ϕ(x) + ψ(y) dγ(x , y)

=

∫
ϕ(x) dµ(x) +

∫
ψ(y) dν(y).

Thus
inf{transport problem} ≥ sup{dual problem}



c-transform

For given ϕ : X → R define ϕc : Y → R as

ϕc(y) := inf
x

c(x , y)− ϕ(x)

and similarly for given ψ : Y → R define ψc : X → R as

ψc(x) := inf
y

c(x , y)− ψ(y).

Notice that:
I (ϕ,ϕc) is always admissible
I ϕc ≥ ψ for any ψ such that (ϕ,ψ) is admissible
I ϕccc = ϕc for any ϕ.
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c-concavity and c-superdifferential
A function ϕ is c-concave if ϕ = ψc for some function ψ.

Recalling that

ϕ(x) + ϕc(y) ≤ c(x , y) ∀x ∈ X , y ∈ Y

we define the c-superdifferential ∂cϕ ⊂ X × Y as the set of (x , y)
such that

ϕ(x) + ϕc(y) = c(x , y).
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i

c(xi , yi ) =
∑

i

ϕ(xi ) + ϕc(yi )

=
∑

i

ϕ(xi ) + ϕc(yσ(i)) ≤
∑

i

c(xi , yσ(i))



c-concavity and c-superdifferential
A function ϕ is c-concave if ϕ = ψc for some function ψ.

Recalling that

ϕ(x) + ϕc(y) ≤ c(x , y) ∀x ∈ X , y ∈ Y

we define the c-superdifferential ∂cϕ ⊂ X × Y as the set of (x , y)
such that

ϕ(x) + ϕc(y) = c(x , y).

Note that the c-superdifferential is always c-cyclically monotone:∑
i

c(xi , yi ) =
∑

i

ϕ(xi ) + ϕc(yi )

=
∑

i

ϕ(xi ) + ϕc(yσ(i)) ≤
∑

i

c(xi , yσ(i))



c-concavity and c-superdifferential
A function ϕ is c-concave if ϕ = ψc for some function ψ.

Recalling that

ϕ(x) + ϕc(y) ≤ c(x , y) ∀x ∈ X , y ∈ Y

we define the c-superdifferential ∂cϕ ⊂ X × Y as the set of (x , y)
such that

ϕ(x) + ϕc(y) = c(x , y).

Note that the c-superdifferential is always c-cyclically monotone:∑
i

c(xi , yi ) =
∑

i

ϕ(xi ) + ϕc(yi )

=
∑

i

ϕ(xi ) + ϕc(yσ(i)) ≤
∑

i

c(xi , yσ(i))



Second structural theorem

Theorem A set Γ is c-cyclically monotone iff Γ ⊂ ∂cϕ for some ϕ
c-concave.



To summarize

Given µ ∈ P(X ), ν ∈ P(Y ) and a cost function c, for an admissible
plan γ the following three are equivalent:

I γ is optimal

I supp(γ) is c-cyclically monotone

I supp(γ) ⊂ ∂cϕ for some c-concave function ϕ



No duality gap

It holds
inf{transport problem} = sup{dual problem}

Indeed, if γ is optimal, then supp(γ) ⊂ ∂cϕ for some c-concave ϕ.
Thus∫

c(x , y) dγ(x , y) =

∫
ϕ(x) + ϕc(y) dγ(x , y) =

∫
ϕ dµ+

∫
ψ dν

Any such ϕ is called Kantorovich potential from µ to ν



What these results give on Riemannian manifolds

Let M be a compact smooth Riemannian manifold, µ, ν ∈P(M) such
that µ� vol and c = d2.

Then (Brenier-McCann):
- there is only one optimal plan γ

- γ is induced by a map, i.e. there is T : M → M such that
γ = (Id,T )]µ

- T is of the form exp(−∇ϕ), where ϕ is a Kantorovich potential
from µ to ν.
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Definition

Let (X ,d) be a compact metric space and µ, ν ∈P(X ).

The distance W2(µ, ν) is defined as:

W 2
2 (µ, ν) := inf

γ∈Adm(µ,ν)

∫
d2(x , y) dγ(x , y)

It is easy to see that
- W2(µ, ν) ∈ [0,∞) for every µ, ν
- W2(µ, ν) = 0 if and only if µ = ν

- W2(µ, ν) = W2(ν, µ) for every µ, ν
It is less clear that the triangle inequality holds
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(almost) proof of triangle inequality

Let µ, ν, σ ∈P(X ) and T ,S : X → X such that T]µ = σ, S]σ = ν and

W 2
2 (µ, σ) =

∫
d2(x ,T (x)) dµ(x) W 2

2 (σ, ν) =

∫
d2(y ,S(y)) dσ(y)

Then (S ◦ T )]µ = ν and thus

W2(µ, ν) ≤

√∫
d2(x ,S(T (x))) dµ(x)

≤

√∫ (
d(x ,T (x)) + d(T (x),S(T (x)))

)2
dµ(x)

≤

√∫
d2(x ,T (x)) dµ(x) +

√∫
d2(T (x),S(T (x))) dµ(x)

= W2(µ, σ) + W2(σ, ν)
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Embedding of X in P(X )

The map
x 7→ δx

is an isometry from (X ,d) to (P(X ),W2)

In particular, W2 has little to do with the total variation distance and is
more linked to the weak convergence.
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The topology of (P(X ),W2)

Theorem The topology induced by W2 on P(X ) is the same as the
weak topology, i.e. W2(µn, µ)→ 0 if and only if

lim
n→∞

∫
ϕ dµn =

∫
ϕ dµ ∀ϕ ∈ C(X ).

In particular, (P(X ),W2) is compact.
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Geodesic spaces

Let (X ,d) be a metric space. A curve γ : [0,1] → X is a geodesic
provided:

d(γt , γs) = |s − t |d(γ0, γ1) ∀t , s ∈ [0,1].

(X ,d) is said geodesic provided for every x , y ∈ X there exists a
geodesic such that γ0 = x and γ1 = y



A simple geodesic

Let (X ,d) be a geodesic space and notice that since x 7→ δx is an
isometric embedding, if γ is a geodesic from x to y in (X ,d), then

t 7→ δγt

is a geodesic from δx to δy in (P(X ),W2).

Notice that instead the linear interpolation

t 7→ (1− t)δx + tδy

has infinite length as soon as x 6= y .
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The space of geodesics

We denote by Geo(X ) the space of all geodesics on X endowed with
the sup distance.

For t ∈ [0,1] the evaluation map et : Geo(X )→ X is defined as

et (γ) := γt ∀γ ∈ Geo(X )



Measures on Geo(X ) and geodesics in (P(X ),W2)

Let π ∈P(Geo(X )) such that

(e0, e1)]π is an optimal plan

Then

W 2
2
(
(et )]π, (es)]π

)
≤
∫

d2(x , y) d(et , es)]π(x , y)

=

∫
d2(γt , γs) dπ(γ)

= |s − t |2
∫

d2(γ0, γ1) dπ(γ)

= |s − t |2W 2
2
(
(e0)]π, (e1)]π

)
In other words

t 7→ (et )]π

is a geodesic in (P(X ),W2)
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Characterization of geodesics in (P(X ),W2)

Theorem Let (X ,d) be a compact geodesic space.
Then the following are equivalent:

- t 7→ µt is a geodesic in (P(X ),W2)

- there exists π ∈P(Geo(X )) such that

(et )]π = µt for every t ∈ [0,1]

(e0, e1)]π is an optimal plan from µ0 to µ1



What this result gives on Riemannian manifolds

Let µ0, µ1 ∈P(M) be such that µ0 � vol.

Then there is only one geodesic (µt ) from µ0 to µ1 and it satisfies

∂tµt −∇ · (∇ϕtµt ) = 0

where ϕ0 is a Kantorovich potential from µ0 to µ1 and (ϕt ) solves

∂tϕt +
|∇ϕt |2

2
= 0



Thank you


