Nicolas JUILLET

Université de Strasbourg

Eindhoven, March 2014

Outline

2 The model theorem

4 The martingale theorem, examples

・ロ> < 回> < 三> < 三> < 三> < 回> < 回

Notations, convex order

Definition: martingale transport plan

A probability measure π on $\mathbb{R} \times \mathbb{R}$ is termed a martingale transport plan if $\pi = \text{Law}(X, Y)$ where (X, Y) is a two-times martingale process: $\mathbb{E}(Y|X) = X$.

Equivalently if $(\pi_x)_{x\in\mathbb{R}}$ is a disintegration of π (or "conditional laws", or "Markov

kernel"), it has to satisfy

Barycenter
$$(\pi_x) = \int y \, \mathrm{d}\pi_x(y) = x$$

for $(\operatorname{proj}_{\#}^{x} \pi)$ -almost every *x*.

Notations, convex order

Some examples

•
$$\pi = \text{Law}(x, Y)$$
 where $x = \mathbb{E}(Y)$.

•
$$\pi = Law(\mathbb{E}(Y|\mathcal{F}), Y)$$
 for some $\mathcal{F} \subseteq \sigma(Y)$.

• $\pi = \text{Law}(B, B + B')$ where B' is independent from B and $\mathbb{E}(B') = 0$.

• $\pi_{1/2} = \frac{\pi_0 + \pi_1}{2}$ where π_0, π_1 are martingale transport plans.

•
$$\pi_t = \sum_{i=1}^2 \sum_{j=1}^3 a_{i,j}^t \delta_{(x_i,y_j)}$$
 where $x \in \{-1,1\}$ and $y \in \{-2,0,2\}$ and
 $(a_{i,j}^t) = \begin{pmatrix} 1/4 & 1/4 & 0\\ 1/12 & 1/12 & 1/3 \end{pmatrix} + t \begin{pmatrix} 1/12 & -1/6 & 1/12\\ -1/12 & 1/6 & -1/12 \end{pmatrix}$

for some $t \in [0, 1]$.

Notations, convex order

The convex order

Theorem of Strassen

```
For two probability measures \mu and \nu,
```

$$\Pi_M(\mu,\nu) \neq \emptyset \Leftrightarrow \mu \preceq_C \nu.$$

The convex order $\mu \preceq_C \nu$ is defined by

$$\forall \phi \text{ convex}, \int \phi d\mu \leq \int \phi d\nu$$

The model theorem

The model theorem

Model theorem in the classical setting

For μ and ν in \mathcal{P}_2 in the convex order and π a transport plan from μ to ν . The following statements are equivalent:

- 1. The plan π is optimal for the transport problem with $c(x, y) = (y x)^2$,
- 2. The plan π is concentrated on a monotone set Γ ,
- 3. The plan π is the quantile coupling.

We (Mathias and I) have proved a theorem similar to this one in the martingale setting.

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ● ● ● ● ●

Different tools

The extended order and the shadows

Proposition - Definition

• We write $\mu \preceq_E v$ and say that μ is smaller than v in the extended order if

$$F^{\mathsf{v}}_{\mu} := \{ \theta : \mu \preceq_{\mathcal{C}} \theta \text{ and } \theta \leq \mathsf{v} \}$$

is not empty.

• The partially ordered set (F^{v}_{μ}, \leq_{C}) has a minimum. We call it the shadow of μ in v and denote it by $S^{v}(\mu)$.

Different tools

The extended order and the shadows

Proposition

If $\gamma_1 + \gamma_2 \preceq_E \nu$, then

$$\mathcal{S}^{\nu}(\gamma_1 + \gamma_2) = \mathcal{S}^{\nu}(\gamma_1) + \mathcal{S}^{\nu - \mathcal{S}^{\nu}(\gamma_1)}(\gamma_2).$$

As a important consequence, if $\gamma \leq \gamma'$ and $\gamma' \leq_E \nu$,

$$\mathcal{S}^{\mathsf{v}}(\gamma) \leq \mathcal{S}^{\mathsf{v}}(\gamma').$$

Figure : Shadow of μ in v and associativity of the shadow projection.

The variational lemma

This lemma is a kind of *c*-cyclical monotonicity lemma for the martingale setting.

Variational Lemma

Let *P* be optimal, there exists $\Gamma \subseteq \mathbb{R} \times \mathbb{R}$ such that for any finitely supported measure α with $\alpha(\Gamma) = 1$, the minimum of $\alpha' \in \text{Competitor}(\alpha) \mapsto \int c(x, y) \, d\alpha'(x, y)$ over

Competitor(
$$\alpha$$
) =
$$\begin{cases} \alpha' \text{ has the same marginals as } \alpha \\ \alpha' : \\ \text{ and } \forall x \in \mathbb{R}, \int y \, d\alpha_x = \int y \, d\alpha'_x \end{cases}$$

is obtained in α .

The model theorem

Model theorem in the classical setting

For μ and ν in \mathcal{P}_2 in the convex order and π a transport plan from μ to ν . The following statements are equivalent:

- 1. The plan π is optimal for the transport problem with $c(x, y) = (y x)^2$,
- 2. The plan π is concentrated on a monotone set Γ ,
- 3. The plan π is the quantile coupling.

We (Mathias and I) have proved a theorem similar to this one in the martingale setting.

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ● ● ● ● ●

The general problem

The problem

Minimize

$$f:\pi\in \Pi_M(\mu,
u)\mapsto \int c(x,y)\mathrm{d}\pi(x,y)\in\mathbb{R}$$

among the martingale transport plans from μ to ν .

For different cost functions *c* we would like to know:

- How do the minimizers look like?
- What are their properties?
- Is there a unique minimizer?

The martingale theorem, examples

The martingale theorem

Theorem (Beiglboeck-J.)

For μ and ν in \mathcal{P}_3 in the convex order and π a martingale transport plan from μ to ν . The following statements are equivalent:

- 1. The plan π is optimal for the martingale transport problem with cost $c(x, y) = (y x)^3$,
- 2. The plan π is concentrated on a martingale-monotone set Γ (see the figure),
- 3. The plan π is the left-curtain coupling (*i.e.*, transports $\mu_{1-\infty,x}$) to its shadow)

Figure : This configuration of three points (x, y), (x', y^-) and (x', y^+) is forbidden on martingale-monotone sets Γ .

The martingale theorem, examples

One example

Figure : Optimal transport plan between Gaussian measures.

The martingale theorem, examples

Corollary

Corollary for μ continuous

If μ is continuous (=no atom), there are $T_1, T_2 : \mathbb{R} \to \mathbb{R}$ such that the optimal π is concentrated on graph $(T_1) \cup \text{graph}(T_2)$.

The variational lemma is of general use, especially when μ is continuous.

Examples

•
$$c(x,y) = -|y-x|$$

•
$$c(x,y) = |y-x|$$

•
$$c(x,y) = (y-x)^n$$

• c(x,y) = h(y-x) where h'(x) = ax + b has less than *n* solutions.