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Cramers theorem

Theorem
Let X be a random variable on R such that for every X € R:
E[e*] < co. Then we have for a sequence X', X?, ... of

independent copies of X that
1 S X v | a el
n“
i<n
where
I(v) = sup {v)\ - IogIE[e)‘X]} .
A

The =~ symbols should be interpreted as a lower bound:

> — inf I(v)
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and a corresponding upper bound.



Example: Schilders theorem

Theorem

For every i, let t — W/(t), be a standard Brownian motion on R,
W'(0) = 0. Then, we have for a continuous path w € C([0, c0)):

I,
P|<= ! R ~ e MW)
{n E w (t)} w e ,
i=1 tZO

where

() = {; JoS(W/(t))?dt  ifw is absolutely continuous

00 otherwise.



Tilted measure

Theorem (Sanov)

Suppose we have independent realisations Y' from a distribution
on some complete separable metric space E. Then:

L T S
P[n;(s{y:}wl/] ~ e y

where
Wiogdvqy, jfy<<p
H(w ) = 00 48

00 otherwise.



Tilted measure

Theorem (Sanov)

Suppose we have independent realisations Y' from a distribution
on some complete separable metric space E. Then:

1 n
P{- i~ ~ —nH(v | )
where

dv dv :
log §¥d ifv <<
H(V‘/,L): {fdu gdu H :LL
00 otherwise.

Alternatively,

H(v|p) = sup {/fdy—log/efdp}
feC(E)



Dawson-Gartner theorem

Theorem
For every i, let t — Wi(t), be a standard Brownian motion on R,
W'(0) = 0. Then, we have for a path i € Dp(g)([0, 0)):

1 < .
F {nZ(S{W’(f)}} ~ | e,
i=1

t>0

where,

) = 3057 i) — A*u(t)]]i(t) dt ifw is absolutely continuous
o0 otherwise,

Af = %f”. The definition of the norm, is given by
Q: C(R) — C=(R), Qf = (f')? and

1
”a”y = sup <f,04> - §<Qf7 l/>'
feCge



Connection to mass transport

Use this result to study

1 < .,
P [n Z(S{W’(t)} =~ /_,L(t)] ~ e /t(#(f)\fso)’
i=1
where

le(u(t) | 6o) =
inf{/(v) : s — v(t) absolutely continuous, v(0) = do, v(t) = u(t)}.



Large deviations for the trajectory of a general Markov
process

For every fixed time t > 0, the law of large numbers gives
1
=D ey = (),
i<n

and there is a corresponding large deviation result(Sanov's
theorem, next slide).

Goal: A large deviation result for the trajectory
1
e =D iy
i<n

in the Skorokhod space of cadlag measure valued trajectories
Dp(e)([0, 00)).



Notation for general Feller processes
Let t — X(t) be a time-homogeneous Feller process on a compact
metric space (E, d), i.e. the semigroup of conditional expectations
Sif(x) = E[f(X(t))| X(0) = x]

maps C(E) onto C(E). Furthermore, the semigroup is strongly
continuous, i.e. the trajectories t — S;f are continuous in
(C(E),||) for every f € C(E).



Notation for general Feller processes

Let t — X(t) be a time-homogeneous Feller process on a compact
metric space (E, d), i.e. the semigroup of conditional expectations

Sif(x) = E[f(X(t))| X(0) = x]

maps C(E) onto C(E). Furthermore, the semigroup is strongly
continuous, i.e. the trajectories t — S;f are continuous in
(C(E),||) for every f € C(E).

We denote with (A, D(A)) the generator of {S;}+>0,

Af = lim Sif —f
tl0 t

defined for

f € D(A) .= {f € C(E) : the limit in (2.1) exists}



Connection to large deviations

Lemma
We have the two times large deviation principle:

P ,172 Iixioyy = #(0) , ,1,2 Opxi(eyy 2 m(t)
~ exp {—n (H(1(0) | Po) + h(1() | s(0)))}

where

le(u(t) | 1(0)) == sup {(f, pu(t)) — (V(2)f, 1(0))}

feC(E)

and V(t)f = log S(t)e’ and the inner product is defined as
(h,v) = [ hdv.



Connection to large deviations

Lemma
We have the two times large deviation principle:

1 1
P D iy = 1(0) - D iy ~ 1)

~ exp {—n (H(1(0) | Po) + le(1(t) | u(0)))}

where

le(u(t) | 1(0)) == sup {(f, pu(t)) — (V(2)f, 1(0))}

feC(E)

and V(t)f = log S(t)e’ and the inner product is defined as
(h,v) = [ hdv.

Note: V/(t) is a semigroup and Hf = e~ Aef is its generator:
0 AS(t)ef
Tv(t)f‘ = (t)e =e fAef

~f N £




Application of Sanov's theorem on Markov processes

The Markov process X corresponds to a measure P on Dg([0, o0)).
Pick some g € C(E) such that e € D(A). Suppose that we define
the function

G(X) :=exp {g(X(t)) —&(X(0)) - /Ot Hg(X(S))dS} ,

on the complete separable metric space Dg([0, t]), where
Hg = e 8 Ae#, then by Sanov's theorem we need to consider Q,
defined by

dQ _

=G.
dP



Theorem (Palmowski and Rolski, 2002)

The measure Q, corresponds to a Markov process generated by the
generator A8, defined by A8f = e 8A(fe8) — (e 8f)Ae8.
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If X is a jJump process generated by
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Theorem (Palmowski and Rolski, 2002)

The measure Q, corresponds to a Markov process generated by the
generator A8, defined by A8f = e 8A(fe8) — (e 8f)Ae8.

Example: Jump process

If X is a jJump process generated by

Af(x) =22, r(x,y) [f(y) — f(x)], then

A8F(x) = 32, r(x, y)e8D) 8 [f(y) — f(x)] and
Hf (x) = Zy r(x,y) [ef(Y)_f(X) — 1].

Example: Brownian motion

If X is a standard Brownian motion generated by Af(x) = 1f"(x),
then Af(x) = 1f"(x) + f'(x)g’(x) and

Hf (x) = Af(x) + 3(f'(x))>.



Weakly continuous trajectory of measures

As M(E) = (C(E),|-])*, we can denote (f,u) = [ fdu as the
pairing between a space and its dual space.

Let u(t) denote the law of X(t). As
(f, u(t)) = E[f(X(2))] = E[S:F(X(0))] = (S¢f, 1(0)) = (f, 5; 1u(0)),

it follows that p(t) = S/ 14(0). Because t +— S:f is continuous for
every f, the trajectory

t = p(t) = S; u(0)

is weakly continuous. In other words t — p(t) is an element in
Cpg)([0, 00))



Problems with weak differentiability of paths

We would like to have a concept of deriving a path of measures.

20 = in plt+h) = (1)




Problems with weak differentiability of paths

We would like to have a concept of deriving a path of measures.

D e) i P D) — (1)
ot ' ’

Note that
p(t+ h) — p(t) _ Spu(t) — p(t)
h h '

So for f € D(A), we find

i Fo(E+ ) = ()
hlO t

= (Af,u(t)) (=7 (F,Au(t)) ).




A core for a generator

Definition
A linear subspace D C D(A) is called a core for A if it is dense in
D(A) for the norm |f| 4 := |f| + | Af].



A core for a generator

Definition
A linear subspace D C D(A) is called a core for A if it is dense in
D(A) for the norm |f| 4 := |f| + | Af].

Lemma
A linear subspace D C D(A) that is dense in C(E) and that is
invariant under the semigroup S(t) is a core for A.



The Conditions

Condition
We have a core D C C(E) for A that is equipped with some
topology Tp such that
1. D is an algebra, and if f € D, then ef € D.
2. (D, 7p) is a separable barrelled locally convex Hausdorff space.
3. The topology Tp is finer than the sup norm topology
restricted to D.
4. For every g € D, the generator A8 : (D, mp) — (C(E), ||| is
continuous.
5. There is a symmetric neighbourhood N of 0 in (D, 1p) such

that
sup |Hf| = sup He_fAefH <1,
feN feN

and for every ¢ > 0

sup |Hf| < oc.
fecN



Absolutely continuous paths of measures 1

Definition (D*-absolutely continuous paths)

A path s — p(s) is D*-absolutely continuous if there exists a
measurable path s — u(s) in D*, such that for every f € D and
t>0

/ |(f,u(s))|ds < oo
0

and if for every f € D, we have that

(et b)) = (Fp(t)
e Bl

for almost every time t. We denote u(t) = f(t).



Absolutely continuous paths of measures 2

We obtain that a path is in AC if we have for every f and t > 0
that

(F.u0) — (7000 = [ (. ji(s))ds
= (r, [ is)as)

where we use the barrelledness of D to define the integral in the
last line.



The Lagrangian

We define the 'Lagrangian’ £ : P(E) x D* — [0, o], by setting
‘C(Ma U) = SUPfep {<fa U) - <Hf7,u>}

Clearly, L is non-negative and lower semi-continuous with respect
to the weak and weak* topologies.



Compactness of level sets

Lemma
The set {L£ < c} is weak* compact.



Compactness of level sets

Lemma
The set {L£ < c} is weak* compact.

Theorem
For each M > 0 and time T > 0,

T
{(,u, u) € Cpg)([0, t]) x U /0 L(p(s),u(s))ds < Mupe AC, i = u}

is a compact subset of Cp(g)([0, t]) x U.

U is the space of measurable maps v : [0, t] — D*. We say that a
net u® converges to u, where u®, u € U if for every t > 0 and
febD

/Ot (F, u™(s)) — (F, u(s))|ds — .



'proof’ of the lemma

Condition (5): There is a symmetric neighbourhood of 0 in
(D, 7p): N C D such that

sup |Hf| = sup He’fAefH <1,
feN feN

Theorem (Bourbaki-Alaoglu)
Let N be a neighbourhood of 0 in D, then the set

{u: [{(f,u)| <1 forall f e N} C D*

is weak* compact.

proof of compactness of level sets.
Let f € NV from condition (5) and let u € {£ < c}.

[(F, u)| < (HF, p) vV (H(=F), 1) + L(p, u)
<l+c



Rewriting Vf = log S(t)ef

Lemma
Under the main condition, we can write:

veruon = s i) - | L((s). i(s))ds
v(0)=p(0)

Main idea:
d

1V @OF u(t))le=o = sup {(f, u) = L{1(0), u))} = {Hf, u(0))
ueD*



Rewriting the conditional rate function

As a result:

le(u(t) [ 1(0)) := sup {(f, pu(t)) — (V(2)f, n(0))}

feC(E)

:SL;p Vlenjc (f, u(t)) /E s),v(s))d
v(0)=p(0)

— inf /0 L(v(s),v(s))ds

veAC
w(0)=p(0)(£)=(t)



Large deviation principle on the path space

Theorem
The trajectory

1
e =D iy

i<n

satisfies the large deviation principle on Dp(g)([0, 00)) with rate
function

1) = {H(M(O) IPo) + [o° L(1u(s), iu(s))ds if p € AC

00 otherwise.



Closing comments

1. The theorem also holds for locally compact spaces and
generalises the Dawson-Gartner theorem.

2. The extension to Polish spaces is work in progress.

3. It is hard to obtain an explicit formula for £. However, the
the pair £, H resembles the Lagrangian-Hamiltonian
formalism in analytical mechanics, so it gives some intuition.

4. For example: even though this is not rigorous, the solutions to

the Euler-Lagrange equation for £ correspond to the
Doob-transforms of the Markov process.
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