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Motivation-Smooth setting:Comparision geometry

Question: (M, g) smooth Riemannian N-manifold.
If we assume some upper/lower bounds on the sectional or on the
Ricci curvature what can we say on the analysis/geometry of
(M, g)?

I Upper/Lower bounds on the sectional curvature are strong
assumptions with strong implications E.g. Cartan-Hadamard
Theorem (if K ≤ 0 then the universal cover of M is
diffeomorphic to RN), Topogonov triangle comparison
theorem( definition of Alexandrov spaces: non smooth
spaces with upper/lower bounds on the ”sectional
curvature”), etc.

I Upper bounds on the Ricci curvature are very (too) weak
assumption for geometric conclusions. E.g. Lokhamp
theorem: any compact Riemannian manifold carries a metric
with negative Ricci curvature.
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Motivation-Smooth setting:Comparision geometry

Lower bounds on the Ricci curvature: natural framework for
comparison geometry. E.g. Bishop-Gromov volume comparison,
Laplacian Comparison, Cheeger-Gromoll splitting, Li-Yau
inequalities on heat flow, Anderson-Gallot-Gromov bounds on the
topological complexity, etc.

A fundamental tool in the smooth setting is the Bochner identity:
if f ∈ C∞(M) then

1

2
∆|∇f |2 = |Hess f |2 + Ric(∇f ,∇f ) + g(∇∆f ,∇f ).

If dim(M) ≤ N and Ric ≥ K g then Dimensional Bochner
inequality, also called dimensional Bakry-Emery condition BE(K,N)

1

2
∆|∇f |2 ≥ 1

N
|∆f |2 + K |∇f |2 + g(∇∆f ,∇f ).



Motivation-Smooth setting:Comparision geometry

Lower bounds on the Ricci curvature: natural framework for
comparison geometry. E.g. Bishop-Gromov volume comparison,
Laplacian Comparison, Cheeger-Gromoll splitting, Li-Yau
inequalities on heat flow, Anderson-Gallot-Gromov bounds on the
topological complexity, etc.

A fundamental tool in the smooth setting is the Bochner identity:
if f ∈ C∞(M) then

1

2
∆|∇f |2 = |Hess f |2 + Ric(∇f ,∇f ) + g(∇∆f ,∇f ).

If dim(M) ≤ N and Ric ≥ K g then Dimensional Bochner
inequality, also called dimensional Bakry-Emery condition BE(K,N)

1

2
∆|∇f |2 ≥ 1

N
|∆f |2 + K |∇f |2 + g(∇∆f ,∇f ).



Motivation-Smooth setting:Comparision geometry

Lower bounds on the Ricci curvature: natural framework for
comparison geometry. E.g. Bishop-Gromov volume comparison,
Laplacian Comparison, Cheeger-Gromoll splitting, Li-Yau
inequalities on heat flow, Anderson-Gallot-Gromov bounds on the
topological complexity, etc.

A fundamental tool in the smooth setting is the Bochner identity:
if f ∈ C∞(M) then

1

2
∆|∇f |2 = |Hess f |2 + Ric(∇f ,∇f ) + g(∇∆f ,∇f ).

If dim(M) ≤ N and Ric ≥ K g then Dimensional Bochner
inequality, also called dimensional Bakry-Emery condition BE(K,N)

1

2
∆|∇f |2 ≥ 1

N
|∆f |2 + K |∇f |2 + g(∇∆f ,∇f ).



Semi-smooth setting

I Cheeger-Colding 1997 and more recently Colding-Naber:
structure of Gromov-Hausdorff limits of sequences of
Riemannian N-manifolds with Ric ≥ K .

I Extrinsic point of view: define the metric spaces as limits.
Very powerful for local properties.

I Analogy: like defining R as completion of Q.
What is a real number?
It is a limit of rational numbers.

I What would be an intrinsic definition? Like definining the real
numbers via Dedekind sections in an axiomatic way:
What is R? R is a totally ordered, Dedekind complete field.
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Non smooth setting: intrinsic-axiomatic definition. 1

GOAL: define in an intrisic-axiomatic way the G-H limits of
Riemannian manifolds with Ric ≥ K .

Notations:

I (X , d,m) complete separable metric space with a σ-finite
Borel probability measure m (more precisely
m(Br (x)) ≤ ceAr

2
); if we fix a point x̄ ∈ X , (X , d,m, x̄)

denotes the corresponding pointed space.
I (P2(X ),W2): metric space of probability measures on X with

finite second moment endowed with quadratic transportation
distance (Wasserstein)

I Entropy functional UN,m(µ) if µ << m

UN,m(ρm) := −N

∫
ρ1−

1
N dm if 1 ≤ N <∞

U∞,m(ρm) :=

∫
ρ log ρdm

(if µ is not a.c. then if N <∞ the non a.c. part does not
contribute, if N = +∞ then set U∞,m(µ) =∞.)
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Non smooth setting: intrinsic-axiomatic definition. 2

DEF of CD(K ,N) condition [Lott-Sturm-Villani 2006]: fixed
N ∈ [1,+∞] and K ∈ R, (X , d,m) is a CD(K ,N)-space if the
Entropy UN,m is K -convex along geodesics in (P2(X ),W2) (for
finite N is a ”distorted” K -geod. conv.).

Keep in mind:
- CD(K ,N) definition Ricci curvature ≥ K and dimension ≤ N
in an intrinsic/axiomatic way
- the more convex is UN,m along geodesics in (P(X ),W2), the
more the space is positively Ricci curved.

Good properties:

I CONSISTENT: (M, g) satisfies CD(K ,N) iff Ric ≥ K and
dim(M) ≤ N (Sturm-Von Renesse)

I GEOMETRIC PROPERTIES: Brunn-Minkoswski inequality,
Bishop-Gromov volume growth, Bonnet-Myers diameter
bound, Lichnerowictz spectral gap, etc.
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Stability of CD(K ,N), 1: Lott-Villani Vs Sturm

I Framework of proper spaces (i.e. bounded closed sets are
compact), Lott-Villani: CD(K ,N) is stable under pointed
measured Gromov-Hausdorff convergence (i.e. for every R > 0
there is measured Gromov-Hausdorff convergence of balls of
radius R around the given points of the space)

I Framework of probability spaces with finite variance (i.e.
m ∈ P2(X )): Sturm defined a distance

D ((X1, d1,m1), (X2, d2,m2)) := inf W2 ((ι1)]m1, (ι2)]m2) ,

inf among all metric spaces (Z , dZ ) and all isometric
embeddings ιi (supp(mi ), di )→ (Z , dZ ), i = 1, 2. He then
proved that CD(K ,N) is stable w.r.t. D-convergence.
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Stability of CD(K ,N), 2: not satisfactory for N =∞

I CD(K ,N), for N <∞ implies properness of X , so Lott-Villani
fully covers the situation.

I CD(K ,∞) does not imply any sort of compactness, not even
local, so pmGH-convergence is quite unnatural. At least for
normalized spaces with finite variance Sturm’s approach
covers the situation.

I In some geometric situations this is not completely
satisfactory: when studying blow ups (i.e. tangent cone at a
point  Cheeger,Colding,Naber) and blow downs (i.e.
tangent cones at infinity  Cheeger, Colding, Minicozzi,
Tian, etc. ), assuming m ∈ P2 is quite unnatural; problems
also in dealing with sequences of non compact manifolds with
diverging dimensions or more generally with sequences of
spaces with diverging doubling constants.

Q:1) What is a natural notion of convergence in these situations?
2) Is CD(K ,∞) stable w.r.t. this notion?
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Pointed measured Gromov (pmG for short) convergence

DEF:(Gigli-M.-Savaré ’13) (Xn, dn,mn, x̄n)→ (X∞, d∞,m∞, x̄∞)
in pmG-sense if there exist a complete and separable space (Z , dz)
and isometric embeddings ιn : Xn → Z , n ∈ N̄ := N ∪ {∞} s.t.∫

ϕ (.ιn)]mn →
∫
ϕ (.ι∞)]m∞, ∀ϕ ∈ Cbs(Z ), where

Cbs(Z ) := {f : Z → R cont., bounded with bounded support }.

I The definition above is extrinsic but we prove it can be
characterized in a (maybe less immediate) totally intrinsic
way, according various equivalent approaches (via a pointed
version of Gromov reconstruction Theorem or via a
pointed/weighted version of Sturm’s D-distance ).

I On doubling spaces pmG-convergence above is equivalent to
mGH-convergence ( consistent with Lott-Villani).

I On normalized spaces of finite variance pmG-convergence is
equivalent to D-convergence ( consistent with Sturm).

I pmG-convergence no a priori assumption on (Xn, dn,mn).
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CD(K ,∞) is stable under pmG -convergence

THM(Gigli-M.-Savaré ’13): Let (Xn, dn,mn, x̄n), n ∈ N, be a
sequence of CD(K ,∞) p.m.m. spaces converging to
(X∞, d∞,m∞, x̄∞) in the pmG-sense. Then (X∞, d∞,m∞) is a
CD(K ,∞) space as well.

Idea of Proof:

1. prove Γ-convegence of the entropies under pmG -convergence

2. use the compactness of mn to prove compactness of
Wasserstein-geodesics in the converging spaces

3. conclude that K -geodesic convexity is preserved.
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THM(Gigli-M.-Savaré ’13): Let (Xn, dn,mn, x̄n), n ∈ N, be a
sequence of CD(K ,∞) p.m.m. spaces converging to
(X∞, d∞,m∞, x̄∞) in the pmG-sense. Then (X∞, d∞,m∞) is a
CD(K ,∞) space as well.

Idea of Proof:

1. prove Γ-convegence of the entropies under pmG -convergence

2. use the compactness of mn to prove compactness of
Wasserstein-geodesics in the converging spaces

3. conclude that K -geodesic convexity is preserved.

�



CD(K ,∞) is stable under pmG -convergence
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Non completely satisfactiory features of CD(K ,N)

I Problem 1) the class of CD(K ,N) spaces is TOO LARGE:
compact Finsler manifolds satisfy CD(K ,N) for some K ∈ R
and N ≥ 1 [Ohta] (earlier work in this direction by
Cordero-Erasquin, Sturm and Villani), but if smooth Finsler
manifold M is a mGH-limit of Riemannian manifolds with
Ric ≥ K then M is Riemannian.

I Problem 2):LOCAL TO GLOBAL AND TENSORIZATION. It
is not clear wether or not the CD(K ,N) satisfies the local to
global and the tensorization properties
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Solving Problem 1: the RCD(K ,∞) condition

I FACT: on metric measure spaces there is not a clear notion of
gradient of a function but at least one can define the modulus
of the gradient of a function |∇f |w .

I Define the Cheeger energy

Chm(f ) :=
1

2

∫
|∇f |2w dm

I Remark: On a Finsler manifold M, the Cheeger energy is
quadratic (i.e. parallelogram identity holds) iff M is
Riemannian.

I Definition: If Chm is quadratic then (X , d,m) is said
infinitesimally Hilbertian.

I Definition[Ambrosio-Gigli-Savaré 2011, improved by
Ambrosio-Gigli-M.-Rajala 2012]
(X , d,m) is an RCD(K ,∞) space if it an infinitesimally
Hilbertian CD(K ,∞) space.

I Question: is RCD(K ,∞) stable under pmG-convergence?
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Stability of heat flow under pmG-convergence

I Chm : L2(X ,m)→ R is a convex and l.s.c. functional so (by
classical theory of gradient flows, e.g. Brezis) admits a unique
gradient flow (Ht)t≥0 called Heat flow.

I If (Xn, dn,mn, x̄n)→ (X∞, d∞,m∞, x̄∞) in the pmG-sense,
then there is a way to define convergence of a sequence
fn ∈ L2(Xn,mn) to a function f∞ ∈ L2(X∞,m∞)

THM(Gigli’11-Gigli-M-Savaré ’13)[Stability of Heat flows] Let
(Xn, dn,mn, x̄n)→ (X∞, d∞,m∞, x̄∞) in the pmG-sense, Xn are
CD(K ,∞)-spaces. If fn ∈ L2(Xn,mn) strongly L2-converges to
f∞ ∈ L2(X∞,m∞), then

Hn
t (fn)→ H∞t (f∞) strongly in L2 for every t ≥ 0.

Idea of proof: i) Mosco convergence of Cheeger energies under
pmG-convergence (pass via the entropy).
ii) convergence of resolvant maps
iii) approximate the heat flow by iterated resolvant maps to
conclude. �
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Stability of RCD(K ,∞) under pmG-convergence

Fact: (X , d,m) is infinitesimally Hilbertian iff
Ht : L2(X ,m)→ L2(X ,m) is linear for every t > 0.

THM (Gigli-M-Savaré ’13): Let (Xn, dn,mn, x̄n), n ∈ N, be a
sequence of RCD(K ,∞) p.m.m. spaces converging to a limit
space (X∞, d∞,m∞, x̄∞) in the pmG-sense. Then (X∞, d∞,m∞)
is RCD(K ,∞) as well.

Idea of proof:
i) we already know that CD(K ,∞) is stable, so (X∞, d∞,m∞) is a
CD(K ,∞) space.
ii) since the heat flows of Xn are linear, by the stability of heat
flows also the limit heat flow is linear.
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THM (Gigli-M-Savaré ’13): Let (Xn, dn,mn, x̄n), n ∈ N, be a
sequence of RCD(K ,∞) p.m.m. spaces converging to a limit
space (X∞, d∞,m∞, x̄∞) in the pmG-sense. Then (X∞, d∞,m∞)
is RCD(K ,∞) as well.

Idea of proof:
i) we already know that CD(K ,∞) is stable, so (X∞, d∞,m∞) is a
CD(K ,∞) space.
ii) since the heat flows of Xn are linear, by the stability of heat
flows also the limit heat flow is linear.

�



Stability of RCD(K ,∞) under pmG-convergence

Fact: (X , d,m) is infinitesimally Hilbertian iff
Ht : L2(X ,m)→ L2(X ,m) is linear for every t > 0.
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Solving problem 2: the CD∗(K ,N) condition

I The reduced curvature-dimension condition CD∗(K ,N) was
introduced by Bacher-Sturm (2010)

I Modification of CD(K ,N): (a priori) weaker convexity
condition on UN,m

I CD(K ,N)⇒ CD∗(K ,N)⇒ CD(K ∗,N) where K ∗ = K(N−1)
N

I If (X , d) is non branching then (local to global)
CD∗(K ,N)⇔ CD∗loc(K ,N)⇔ CDloc(K−,N).

I In non branching spaces tensorization holds

I Same geometric consequence of CD(K ,N) (Bishop-Gromov,
Bonnet-Myers, Lichnerowicz) but sometimes with slightly
worse constants.
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RCD∗(K ,N) spaces

I define
(X , d,m) is RCD∗(K ,N) iff it is infinit. Hilbertian CD∗(K ,N).

I We say that (X , d,m) has the 1-Lipschitz property if
∀f ∈W 1,2(X ), |∇f |2w ≤ 1⇒ f has a 1-Lipschitz repres.

I RCD(K ,∞) implies the 1-Lipschitz property
(Ambrosio-Gigli-Savaré ’11).

I We say that (X , d,m) satisfies the dimensional Bochner
Inequality, BI (K ,N) for short, if
-it is inf. Hilbert. & 1-Lipschitz property holds,
-∀f ∈W 1,2(X , d,m) with 4f ∈ L2(X ,m) and ∀ψ ∈ LIP(X )
with 4ψ ∈ L∞(X ,m) it holds∫
X

[
1

2
|∇f |2w∆ψ + ∆f div(ψ∇f )

]
dm ≥ K

∫
X
|∇f |2wψdm

+
1

N

∫
X
|∆f |2ψdm.
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RCD∗(K ,N) is equivalent to BI (K ,N)

THM(Erbar-Kuwada-Sturm and Ambrosio-M.-Savaré )
(X , d,m) satisfies the dimensional Bochner ineuality BI (K ,N) iff it
is an RCD∗(K ,N) space.

I the approach of EKS is based on the equivalence of an
entropic curvature condition involving the Boltzman entropy
and uses a weighted heat flow (which is linear)

I the (subsequent and independent) proof by AMS involves non
linear diffusion equations in metric spaces: more precisely the
porous media equation (which is the nonlinear gradient flow of
the Renyi entropy) plays a crucial role in the arguments.

I the case N =∞ was already established by
Ambrosio-Gilgli-Savaré ’12
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Localization-Globalization of Curvature-Dimension
conditions

Curvature- dimension bounds are geometrically local concepts, but
the Lott-Sturm-Villani definition is global in nature. So does global
to local and local to global hold?

GTL: typically needs some strong convexity either of the entropy or
of the domain (Book of Villani)

LTG: has been established under the non-branching assumption for

I CD(K ,∞) spaces [Sturm ’06], CD(0,N) spaces [Villani ’09]
I CD∗(K ,N) spaces [Bacher-Sturm ’10]
I partial results for CD(K ,N) by Cavalletti.

BUT: i) Non Branch + CD(K,N) is NOT stable under mGH-conv.
ii) Rajala ’13: example of a (highly branching) locally
CD∗(0, 4) = CD(0, 4) space but not CD(K ,∞).
Q: how reinforce CD∗(K ,N) to get a stable condition + LTG?
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Consequences of Bochner inequality.
1: Local to Global property for RCD∗(K ,N) without a
priori non-branching assumption

THM[Ambrosio-M.-Savaré ’13] Let (X , d,m) be a locally compact
length space and assume there is a covering {Ui}i∈I of X by non
empty open subsets s.t. (Ūi , d,mxŪi ) satisfy RCD(K ,∞) (resp.
RCD∗(K ,N)).
Then (X , d,m) is an RCD(K ,∞) (resp. RCD∗(K ,N)) space.

IDEA of PROOF
(i) by equivalence with BI (K ,N), for every Ui the dimensional
Bochner inequality holds for functions supported on Ui

(ii) Construct partition of unity {χi}i∈I subordinated to {Ui}i∈I of
Lipschitz functions with ∆χi ∈ L∞

(iii) Globalize BI (K ,N) by using partition of unity and conclude
that RCD∗(K ,N) holds by applying globally the equivalence
theorem �
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Consequences of Bochner inequality.
2: Li-Yau and Harnack type inequalities

THM[Garofalo-M. ’13] Let (X , d,m) be a m.m.s. with m(X ) = 1
and let f ∈ L1(X ,m), f ≥ 0 m-a.e. . Then

I Li-Yau Inequality: if (X , d,m) is an RCD∗(0,N) space then

∆(log(Ht f )) ≥ −N

2t
m-a.e. ∀t > 0

I Bakry-Quian Inequality: If (X , d,m) is an RCD∗(K ,N) space,
for some K > 0, then

∆(Ht f ) ≤ NK

4
(Ht f ) m-a.e. ∀t > 0

I Harnack Inequality: If (X , d,m) is an RCD∗(K ,N) space, for
some K ≥ 0, then for every x , y ∈ X and 0 < s < t we have

(Ht f )(y) ≥ (Hs f )(x) e
− d2(x,y)

4(t−s)e
2Ks
3

(
1− e

2K
3
s

1− e
2K
3
t

)N
2

.



Euclidean tangents to RCD∗(K ,N) spaces

I Cheeger-Colding ’97: for limit spaces the local blow ups are
a.e. unique and euclidean.

I Q: is it true also for RCD∗(K ,N) spaces?

I Notation Fixed x̄ ∈ X , call Tan(X , d,m, x̄) the set of local
blow ups (also called tangent cones) of X at x̄ .

THM [Gigli-M.-Rajala ’13] Let (X , d,m) be an RCD∗(K ,N) space.
Then for m-a.e. x ∈ X there exists n = n(x) ∈ N, n ≤ N, such
that

(Rn, dE ,Ln, 0) ∈ Tan(X , d,m, x),

where dE is the Euclidean distance and Ln is the n-dimensional
Lebesgue measure normalized so that

∫
B1(0)

1− |x | dLn(x) = 1.
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Idea of proof

The cornerstone of the proof is the Splitting theorem in
RCD∗(0,N) spaces by Gigli

1. m-a.e. x̄ ∈ X is the midpoint of some geodesic

2. Take a sequence of blow ups at such x̄ , by Gromov
compactness and by Stability they converge to a limit
RCD∗(0,N) space (Y , dY ,mY , ȳ) ∈ Tan(X , d,m, x̄)

3. By the choice of x̄ , Y contains a line and therefore splits an R
factor, by the splitting thm: Y ∼= Y ′ × R

4. Repeating the construction for Y ′ in place of X we get that
there exists a local blow up Ỹ ′ of Y ′ that splits an R factor:
Ỹ ′ = Y ′′ × R

5. Adapting ideas of Preiss (and of Le Donne) we prove that
m-a.e. tangents of tangents are tangent themselves, i.e.
Y ′′ × R2 = Ỹ ′ × R ∈ Tan(X , d,m, x̄)

6. repeating the scheme iteratively we conclude.
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Y ′′ × R2 = Ỹ ′ × R ∈ Tan(X , d,m, x̄)

6. repeating the scheme iteratively we conclude.

�



Idea of proof

The cornerstone of the proof is the Splitting theorem in
RCD∗(0,N) spaces by Gigli

1. m-a.e. x̄ ∈ X is the midpoint of some geodesic
2. Take a sequence of blow ups at such x̄ , by Gromov

compactness and by Stability they converge to a limit
RCD∗(0,N) space (Y , dY ,mY , ȳ) ∈ Tan(X , d,m, x̄)
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there exists a local blow up Ỹ ′ of Y ′ that splits an R factor:
Ỹ ′ = Y ′′ × R

5. Adapting ideas of Preiss (and of Le Donne) we prove that
m-a.e. tangents of tangents are tangent themselves, i.e.
Y ′′ × R2 = Ỹ ′ × R ∈ Tan(X , d,m, x̄)

6. repeating the scheme iteratively we conclude.
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