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Peacocks

Peacocks

e A peacock is a stochastic process (Xz, t > 0), if
(1) it is integrable, i.e. E[|X¢]] < o0, Vt > 0;

(ii) it increases in convex order, i.e. for every convex function
¢ :R — R, the map t — E[¢p(X;)] is increasing.

e PCOC : "Processus Croissant pour I'Ordre Convexe’ in French.
e A peacock is determined by the family of marginal distributions.

e Kellerer's theorem : Every peacock has the same one-dimensional
marginals as a martingale (M, t > 0), i.e X; ~ M; in law and
E[M¢|M,,r € [0,s]] = Ms for every s < t.
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>

Peacocks and

Associated
Martingales, with
Explicit Constructions
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Peacocks

A proud peacock spreads
Its tail pretending to be

A martingale.
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Peacocks

Extremal martingale peacocks

e Let (u¢, t > 0) be a peacock, £ be a reward/cost function on the
martingale M, we look for the extremal martingale peacocks :

sup E[¢(M)].
M martingale peacock
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Peacocks

Kellerer's theorem (proof of Hirsch and Roynette)

e Kellerer's theorem : For every peacock (fit)¢>0, there is a
martingale (M, t > 0) such that M; ~ p.

@ Suppose the marginals y; admits a smooth density function
p(t,x), denote C(t,x) := [ °(y — x)ue(dy). Then p(t, x)
solves the Fokker-Planck equation

Dep(t,x) = %fo(az(t,x)p(t,x)),

1/2
for o(t,x) = (2531%({5?)) .

@ The Fokker-Planck equation is related to the diffusion

t
M, = I\/lo+/ o(s, Zs)dBs.
0

@ When C is not smooth, approximate it by smooth functions.
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Peacocks

Extremal martingale peacocks

o Let (14, t > 0) be a peacock, & be a reward/cost function on the
martingale M, we look for the extremal martingale peacocks :

sup E[¢(M)].
M martingale peacock

e Approximation technique.
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A discrete time martingale transport problem

Martingale Transportation Problem

e Monge-Kantorovich's Optimal Transportation Problem :

sup EF [C(Xo, Xl)]
PeP(1o,k1)

= inf {pio(X0) + p1(M) < do(x) + M () = c(x,¥)}.

e Martingale Transportation Problem :

sup EP [C(Xo, Xl)]
PeM(po,p11)

= inf { o) + (M) : Mo(x) + Ma(y) + h(x)(y — %) = clx, ) }.
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A discrete time martingale transport problem

Martingale version of Brenier's theorem

e Brenier's theorem (Féchet-Hoeffding coupling) in the
one-dimensional case : when 0,,c > 0, the solution is given by the
monotone transference plan T := F; ! o F.

e Martingale version (Beiglbock-Juillet, Henry-Labordére -Touzi) :
When 0., c > 0, the optimal solution is given by the left-monotone
martingale transference plan (which is a binomial model).

e The transition kernel of the binomial model is, with

Ta(x) < x < Ty(x), q(x) :== T:E;)%c%’

T.(x, dy) = q(x)07,(x)(dy) + (1 — q(x))d7,x)(dy)-
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A discrete time martingale transport problem

Martingale version of Brenier's theorem

Determinate T, and T4 : assume that 6 F := F; — Fg has only one
local maximizer m.

e Coupled ODE, on [m, c0),

d(6F o Ty) = —(1—q)dFy, d(Fio T,)= qdFo.

e Resolution of ODE : denote g(x,y) := F; ' (Fo(x) + 6F(y)),

Ty(x)

[ R©) - or@+ [ (et6) - 0dsF©) =0

| T.(x) = g(x. Ta(x)).
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A discrete time martingale transport problem

Martingale version of Brenier's theorem

20 < —Density mu

[ | il ity
Il Density nu - /
'
'
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Figure : An example of T, and T,.
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A discrete time martingale transport problem

The optimal dual components

e The dynamic strategy h, :
1oy S0 Tu(x)) = ex(x, Ta(x))
h) = Tu(x) — Ta(x)
he(x) = ho (T 1 (x)) + ¢, (x, %) — ¢, (T (x), x), ¥x € (o0, m).

, Vx € [m,00),

e The static strategy (Ao, A1) :

/\/1 = C}/(Tilv )= hio T717 T = 7_uill[m,oo) + 7—d_ll(*oo,m)'
)‘0 = q(c(-, Tu) - /\l(Tu)) + (1 — q)(c(-, Td) — )\1(Td)).
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A discrete time martingale transport problem

The multi-marginals case

e An easy extension to the multi-marginals case

n

EP X, . X))
IPGM(S;OE)...’HH) [;C( k—1 k)}

e The extremal model is a Markov chain (martingale), and the
optimal dual strategies are all explicit.

e What happens if n — oo ?
@ Do they “converge”’?

o the criteria function,
e the Markov chain,
o the super hedging strategy.

@ Does the limit keep the optimality ?
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Problem formulation
Main results
Continuous-time limit Applications
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Problem formulation
Main results
Continuous-time limit Applications

Limit of the criteria function

e Assumption : c(x, x) = ¢,(x,x) =0, ¢y (x,y) > 0.

e Quadratic variation (Fdllmer) of a cadlag path x : [0,1] — R,

Z (th - th71)25tk71(dt).

1<k<n
e It is proved in Hobson and Klimmek (2012) that

n 1 1
> el i) = €0 = 5 [ epleemddldi + 3 el

k=1 0<t<1
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Problem formulation
Main results
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Continuous-time martingale transport

e Let 1 = (ut)o<t<1 be increasing in convex ordering,
right-continuous and unif. integrable.

o Let Q := D([0,1],R), Mo the set of martingale measures on Q
and M, (p) that subset of measures under which X fits all
marginals.
@ Mo(p) is non-empty (Kellerer(1972), Hirsch and Roynette
(2012)).

e MT problem

Poo(p) :=  sup EP[C(X.)].
PEM oo ()
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Problem formulation
Main results
Continuous-time limit Applications

Peacocks

e Peacock (PCOC “Processus Croissant pour |'Ordre Convex”) :
Construction of associated martingales (Hirsch, Profeta,
Roynette and Yor(2011), etc.)

e Self-similar martingales, when X; = /tX.
Madan-Yor (2002), Hamza-Klebaner(2012), etc.

e Fake Brownian motion, when X ~ N(0,1).
Oleszkiewicz(2008), Albin (2008), Hobson (2013), etc.
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Problem formulation
Main results
Continuous-time limit Applications

Dual formulation

e Dynamic strategy : Hp : [0, 1] x Q — R denotes the set of all
predictable, locally bounded processes,

H:={HeHy : H-X is a P-supermartingale for every P € M }.

o A= {\(x,dt) = \O(t, x)y(dt),

M) = (A€ A = () < 0o}, )= [ [ X0t x)nelae)(ao)

e Dual problem

1
Doo (1) := {(H, NE /0 A X, dt) + (H - X)1 > C(X), P-ass., VP € Moo}.
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The limit of Markov chain

e (i) Suppose that (1it)e[o,1] admits smooth density functions
f(t,x). Denote by F(t, x) the distribution function.
(ii) x + 0¢F(t, x) has only one local maximizer m(t).

e Define T4 :[0,1) x [m(t),00) — R by

| x-gafede = o

Ta(t,x)

Ja(t,x) == x — Ty(t,x)

OtF(t, Ty(t, x)) — 0cF(t, x)
f(t,x) )

Ju(t,x) =
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Main results
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Technical Lemma

The functions j4 and j, are both continuous in (t,x) and locally
Lipschitz in x.

We have the asymptotic estimates

To(t, x) = x + eju(t, x) + 0(62), T5(t, x) = x — ja(t,x) + O(e).
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The limit of dual component

e Dynamic strategy : h* : [0,1) x R is defined by

cx(x,x) — ex(x, T4(t, x))
jd(t,X)
h*(t, x) = h*(t, T; 1t x)) — ¢, (T 1 (t, x), %), x < m(t).

Oxh*(t,x) := , x> m(t),

e Static strategy : let /* and A§ be defined by
O™ (t, x) := —h*(t,x),

Ay = 0 + (8xw*ju + (@ () =¥ —Ja() + (- —fd(‘))jcu) Lm)-

the static strategy is given by
1

W) =000+ [ Ao(ex)dt
J0
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Main results

Theorem

Let (m")p>1 be a sequence of partitions of [0,1], and X" be the
associated optimal Markov chain, then the law of X" converge to
P* € Muo(), under which X is local Lévy process

ot .
X = Xo — / 1X57>m(5)jd(s,Xsf)<st — j_—:(s,Xsf)ds),
0

where N is a pure jump process with predictable compensated
process j.—z. Under further integrability conditions, we have

E [C(X)] = Pooli) = Duoln) = u(")

1 oo
:/ / S x)e(x, X — jalt, X))F (£, x)dxcle.
0 Jm(t) Jd
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Main results

The density function satisfies the PDE
Juf
Jd(1 — Oxjq)

uf ,
Lzt (% = 0ol ) (%),

8tf(t7x) = _1X<m(t) (t7 Td_l(tax))

which is also Kolmogorov—Fokker-Planck forward equation
associated to the local Lévy process

dX; = —1Xt_ >m(t)jd(ta Xt*)(de - %(t’ th)dt)'
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Robust hedging of variance swap

e The payoff of variance swap : in discrete-time case
n 2 Xy - . .
> iy log X, + in continuous-time case

‘1 diX]s+ > log? Xi
v t Y
o Xi 0<t<1 Xi-

e Application of the main result with c(x, y) := log?(x/y), we find
an optimal no-arbitrage bounds as well as the super-hedging
strategies.
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Fake Brownian motion

When f(t,x) = ;ﬂtefxz/zt, we get a more explicit formula for jg
and ji,
e~ Ta(0?/2 (1 + Ty(x)? - X'IA'd(x)> /2
2 1 Ad x)
u(x) = Z|x— -
W0 = gl Tu(x)2 — xTalx )}

and also

Ju(t, x) = VEu(x/V1),  Ja(t,x) = x — VtTa(x/V1).
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Fake Brownian motion

af
2 _
N 1t _— ”
— Tay) ~
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_3F T

Figure : T, and T4 of our fake Brownian motion.
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Discussions

e Can we find other extremal martingale Peacocks ?

e SEP (Skorokhod Embedding Problem) approach

@ Monroe's theorem : Every right-continuous martingale can be
embedded into a Brownian motion with stopping times.

e Compactness can be obtained more easily (Beiglbock and
Huesmann (2013)).
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