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Peacocks

• A peacock is a stochastic process (X
t

, t � 0), if

(i) it is integrable, i.e. E[|X
t

|] < 1, 8t � 0 ;

(ii) it increases in convex order, i.e. for every convex function
� : R ! R, the map t 7! E[�(X

t

)] is increasing.

• PCOC : “Processus Croissant pour l’Ordre Convexe” in French.

• A peacock is determined by the family of marginal distributions.

• Kellerer’s theorem : Every peacock has the same one-dimensional
marginals as a martingale (M

t

, t � 0), i.e X
t

⇠ M
t

in law and
E
⇥

M
t

|M
r

, r 2 [0, s]
⇤

= M
s

for every s  t.
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Extremal martingale peacocks

• Let (µ
t

, t � 0) be a peacock, ⇠ be a reward/cost function on the
martingale M, we look for the extremal martingale peacocks :

sup
M martingale peacock

E
h

⇠
�

M·
�

i

.
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Kellerer’s theorem (proof of Hirsch and Roynette)

• Kellerer’s theorem : For every peacock (µ
t

)
t�0, there is a

martingale (M
t

, t � 0) such that M
t

⇠ µ
t

.

Suppose the marginals µ
t

admits a smooth density function
p(t, x), denote C (t, x) :=

R1
x

(y � x)µ
t

(dy). Then p(t, x)
solves the Fokker-Planck equation

@
t

p(t, x) =
1
2
@2
xx

⇣

�2(t, x)p(t, x)
⌘

,

for �(t, x) =
⇣

2 @
t

C(t,x)
@2
xx

C(t,x)

⌘1/2
.

The Fokker-Planck equation is related to the diffusion

M
t

= M0 +

Z

t

0
�(s,Z

s

)dB
s

.

When C is not smooth, approximate it by smooth functions.
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Extremal martingale peacocks

• Let (µ
t

, t � 0) be a peacock, ⇠ be a reward/cost function on the
martingale M, we look for the extremal martingale peacocks :

sup
M martingale peacock

E
h

⇠
�

M·
�

i

.

• Approximation technique.
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Martingale Transportation Problem

• Monge-Kantorovich’s Optimal Transportation Problem :

sup
P2P(µ0,µ1)

EP⇥c(X0,X1)
⇤

= inf
n

µ0(�0) + µ1(�1) : �0(x) + �1(y) � c(x , y)
o

.

• Martingale Transportation Problem :

sup
P2M(µ0,µ1)

EP⇥c(X0,X1)
⇤

= inf
n

µ0(�0) + µ1(�1) : �0(x) + �1(y) + h(x)(y � x) � c(x , y)
o

.
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Martingale version of Brenier’s theorem

• Brenier’s theorem (Féchet-Hoeffding coupling) in the
one-dimensional case : when @

xy

c > 0, the solution is given by the
monotone transference plan T := F�1

1 � F0.

• Martingale version (Beiglbock-Juillet, Henry-Labordère -Touzi) :
When @

xyy

c > 0, the optimal solution is given by the left-monotone
martingale transference plan (which is a binomial model).

• The transition kernel of the binomial model is, with
T
d

(x)  x  T
u

(x), q(x) := x�T

d

(x)
T

u

(x)�T

d

(x) ,

T⇤(x , dy) := q(x)�
T

u

(x)(dy) + (1 � q(x))�
T

d

(x)(dy).
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Martingale version of Brenier’s theorem

Determinate T
u

and T
d

: assume that �F := F1 � F0 has only one
local maximizer m.

• Coupled ODE, on [m,1),

d(�F � T
d

) = �(1 � q)dF0, d(F1 � Tu

) = qdF0.

• Resolution of ODE : denote g(x , y) := F�1
1

�

F0(x) + �F (y)
�

,

Z

x

�1

⇥

F�1
1 (F0(⇠))� ⇠

⇤

dF0(⇠) +

Z

T

d

(x)

�1
(g(x , ⇠)� ⇠)d�F (⇠) = 0,

T
u

(x) = g
�

x ,T
d

(x)
�

.
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Figure : An example of T
u

and T
d

.
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The optimal dual components

• The dynamic strategy h⇤ :

h0⇤(x) =
c
x

(x ,T
u

(x))� c
x

(x ,T
d

(x))

T
u

(x)� T
d

(x)
, 8x 2 [m,1),

h⇤(x) = h⇤
�

T�1
d

(x)
�

+ c
y

(x , x)� c
y

�

T�1
d

(x), x
�

, 8x 2 (�1,m).

• The static strategy (�0,�1) :

�01 = c
y

(T�1, ·)� h⇤ � T�1, T�1 = T�1
u

1[m,1) + T�1
d

1(�1,m).

�0 = q
�

c(·,T
u

)� �1(Tu

)
�

+ (1 � q)
�

c(·,T
d

)� �1(T
d

)
�

.
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The multi-marginals case

• An easy extension to the multi-marginals case

sup
P2M(µ0,··· ,µn

)
EP
h

n

X

k=1

c(X
k�1,Xk

)
i

.

• The extremal model is a Markov chain (martingale), and the
optimal dual strategies are all explicit.

• What happens if n ! 1 ?
Do they “converge” ?

the criteria function,

the Markov chain,

the super hedging strategy.

Does the limit keep the optimality ?
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Limit of the criteria function

• Assumption : c(x , x) = c
y

(x , x) = 0, c
xyy

(x , y) > 0.

• Quadratic variation (Föllmer) of a càdlàg path x : [0, 1] ! R,
X

1kn

�

x

t

k

� x

t

k�1

�2
�
t

k�1(dt).

• It is proved in Hobson and Klimmek (2012) that

n

X

k=1

c(x
t

k�1 , xtk ) ! C (x) :=
1
2

Z 1

0
c
yy

(x
t

, x
t

)d [x]c
t

+
X

0t1

c(x
t

� , x
t

).
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Continuous-time martingale transport

• Let µ = (µ
t

)0t1 be increasing in convex ordering,
right-continuous and unif. integrable.

• Let ⌦ := D([0, 1],R), M1 the set of martingale measures on ⌦
and M1(µ) that subset of measures under which X fits all
marginals.

M1(µ) is non-empty (Kellerer(1972), Hirsch and Roynette
(2012)).

• MT problem

P1(µ) := sup
P2M1(µ)

EP⇥C (X·)
⇤

.
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Peacocks

• Peacock (PCOC “Processus Croissant pour l’Ordre Convex”) :
Construction of associated martingales (Hirsch, Profeta,

Roynette and Yor(2011), etc.)

• Self-similar martingales, when X
t

=
p
tX .

Madan-Yor (2002), Hamza-Klebaner(2012), etc.

• Fake Brownian motion, when X ⇠ N(0, 1).
Oleszkiewicz(2008), Albin (2008), Hobson (2013), etc.

Xiaolu Tan Martingale Transport and Peacocks



Logo

Peacocks

A discrete time martingale transport problem

Continuous-time limit

Problem formulation

Main results

Applications

Dual formulation

• Dynamic strategy : H0 : [0, 1]⇥ ⌦ ! R denotes the set of all
predictable, locally bounded processes,

H :=
�

H 2 H0 : H · X is a P-supermartingale for every P 2 M1
 

.

• ⇤ := {�(x , dt) = �0(t, x)�(dt),

⇤(µ) :=
�

� 2 ⇤ : µ(|�|) < 1 

, µ(�) :=

Z Z

�0(t, x)µ
t

(dx)�(dt).

• Dual problem

D1(µ) :=
n

(H,�) :

Z 1

0
�(X

t

, dt) + (H · X )1 � C (X·), P-a.s., 8P 2 M1
o

.
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The limit of Markov chain

• (i) Suppose that (µ
t

)
t2[0,1] admits smooth density functions

f (t, x). Denote by F (t, x) the distribution function.
(ii) x 7! @

t

F (t, x) has only one local maximizer m(t).

• Define T
d

: [0, 1)⇥ [m(t),1) ! R by
Z

x

T

d

(t,x)
(x � ⇠)@

t

f (t, ⇠)d⇠ = 0

j
d

(t, x) := x � T
d

(t, x)

j
u

(t, x) :=
@
t

F (t,T
d

(t, x))� @
t

F (t, x)

f (t, x)
.
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Technical Lemma

Lemma
The functions j

d

and j
u

are both continuous in (t, x) and locally

Lipschitz in x .

Lemma
We have the asymptotic estimates

T "
u

(t, x) = x + "j
u

(t, x) + O("2), T "
d

(t, x) = x � j
d

(t, x) + O(").
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The limit of dual component

• Dynamic strategy : h⇤ : [0, 1)⇥ R is defined by

@
x

h⇤(t, x) :=
c
x

(x , x)� c
x

(x ,T
d

(t, x))

j
d

(t, x)
, x � m(t),

h⇤(t, x) := h⇤(t,T�1
d

(t, x))� c
y

(T�1
d

(t, x), x), x < m(t).

• Static strategy : let  ⇤ and �⇤0 be defined by
@
x

 ⇤(t, x) := �h⇤(t, x),

�⇤0 := @
t

 ⇤ +
⇣

@
x

 ⇤j
u

+ ( ⇤(·)�  ⇤(·� j
d

(·) + c(·� j
d

(·)) ju
j
d

⌘

1
x�m(t).

the static strategy is given by

 ⇤(1, x)�  ⇤(0, x) +
Z 1

0
�⇤0(t, x)dt.
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Main results

Theorem
Let (⇡n)

n�1 be a sequence of partitions of [0, 1], and X n

be the

associated optimal Markov chain, then the law of X n

converge to

P⇤ 2 M1(µ), under which X is local Lévy process

X
t

= X0 �
Z

t

0
1
X

s

�>m(s)jd(s,X
s

�)
�

dN
s

� j
u

j
d

(s,X
s

�)ds
�

,

where N is a pure jump process with predictable compensated

process

j

u

j

d

. Under further integrability conditions, we have

EP⇤⇥
C (X·)

⇤

= P1(µ) = D1(µ) = µ(�⇤)

=

Z 1

0

Z 1

m(t)

j
u

j
d

(t, x)c(x , x � j
d

(t, x))f (t, x)dxdt.
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Main results

Theorem
The density function satisfies the PDE

@
t

f (t, x) = �1
x<m(t)

j
u

f

j
d

(1 � @
x

j
d

)
(t,T�1

d

(t, x))

�1
x�m(t)

⇣ j
u

f

j
d

� @
x

(j
u

f )
⌘

(t, x),

which is also Kolmogorov–Fokker-Planck forward equation

associated to the local Lévy process

dX
t

= �1
X

t

�>m(t)jd(t,X
t

�)
�

dN
t

� j
u

j
d

(t,X
t

�)dt
�

.

Xiaolu Tan Martingale Transport and Peacocks



Logo

Peacocks

A discrete time martingale transport problem

Continuous-time limit

Problem formulation

Main results

Applications

Robust hedging of variance swap

• The payoff of variance swap : in discrete-time case
P

n

k=1 log2 X

t

k

X

t

k�1
; in continuous-time case

Z 1

0

1
X 2
t

d [X ]c
t

+
X

0<t1

log2 X
t

X
t

�
.

• Application of the main result with c(x , y) := log2(x/y), we find
an optimal no-arbitrage bounds as well as the super-hedging
strategies.
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Fake Brownian motion

When f (t, x) = 1p
2⇡t

e�x

2/2t , we get a more explicit formula for j
d

and j
u

,

e�T̂

d

(x)2/2
⇣

1 + T̂
d

(x)2 � xT̂
d

(x)
⌘

= e�x

2/2,

ĵ
u

(x) :=
1
2

h

x � T̂
d

(x)

1 + T̂
d

(x)2 � xT̂
d

(x)

⇤

and also

j
u

(t, x) :=
p
tĵ
u

(x/
p
t), j

d

(t, x) := x �p
tT̂

d

(x/
p
t).
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Fake Brownian motion
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Figure : T̂
u

and T̂
d

of our fake Brownian motion.
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Discussions

• Can we find other extremal martingale Peacocks ?

• SEP (Skorokhod Embedding Problem) approach
Monroe’s theorem : Every right-continuous martingale can be
embedded into a Brownian motion with stopping times.
Compactness can be obtained more easily (Beiglbock and
Huesmann (2013)).
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