Tutorial:
System-Oriented Inventory Models for Spare Parts

Geert-Jan van Houtum
Seminal paper:

Two important books:
This tutorial

Based on:

In progress:
CONTENTS

1. Introduction
2. Real-life networks
3. Single-location model with backordering
4. Single-location model with emergency shipments
5. METRIC model
6. Multi-location model with lateral and emergency shipments
7. Extensions
8. Applications in practice
9. Challenges for further research
1. Introduction
Total Cost of Ownership (TCO):
The total costs during the whole life cycle (perspective: user of the system)
TCO for an example system

- Acquisition costs
- Maintenance costs
- Downtime costs

Graph showing the percentage contributions of each cost category.
Size of maintenance industry

- Worldwide revenues after-sales services: 1500 billion US Dollars per year (AberdeenGroup [2003])
- Sales of spare parts and services in US: 8% of GNP (AberdeenGroup [2003])
- Manufacturers in US, Europe and Asia generate 26% of their revenues via services (Deloitte [2006])
- At an airline, 10% of all costs is constituted by maintenance costs (Lam [1995])
Long term trends

- Maintenance of complex systems becomes too complicated for users themselves
- Users require higher availabilities (less downtime)
- Users look at TCO

- Maintenance is outsourced to third party or OEM (pooling resources, pooling data, remote monitoring)
- More extreme: One sells function plus availability
- Feedback to design (better systems, higher sustainability)
Research topics

- **Spare parts management**
- Condition based maintenance
- Inventory models for spare parts and service tools
- Scheduling of service engineers
- Design of spare parts networks
- Forecasting of failures
- The effect of remote monitoring and diagnostics on total costs
- Service contracts and customer differentiation
- The effect of design decisions for new systems on their Total Cost of Ownership
- New business models for collaboration between users
- Game-theoretic models on the relationship between OEM-s, third parties and users
- ...
Spare parts inventory models:
• for critical components
• of advanced capital goods
• with service level constraints for system-oriented service measures such as system availability or aggregate fill rate

Application in practice: Tactical planning level!
2. Real-life networks
Network ASML

60 warehouses
5000 SKU’s
Network ASML (cont.)

1. Normal delivery: 2 hrs.
2. Lateral transshipment: 14 hrs.
Network IBM (for next day deliveries)
Network Nedtrain

- Lateral supply out of QRS < 2 hours
- Regular replenishment 2-5/week
- Urgent orders < 24 hrs
User networks vs. OEM networks

<table>
<thead>
<tr>
<th>User networks (typical for military systems)</th>
<th>OEM networks (typical for high-tech systems)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Preventive maintenance dominates</td>
<td>Corrective maintenance dominates</td>
</tr>
<tr>
<td>Two echelon levels in one region</td>
<td>Global network with two echelon levels</td>
</tr>
<tr>
<td>No emergency option</td>
<td>Emergency option at highest echelon level</td>
</tr>
<tr>
<td>Repairs at own repair shops</td>
<td>Repairs at original equipment manufacturers</td>
</tr>
<tr>
<td>Relatively loose service targets</td>
<td>Strict/high service targets</td>
</tr>
</tbody>
</table>
Examples of users maintaining their own system

<table>
<thead>
<tr>
<th>User</th>
<th>Source</th>
</tr>
</thead>
<tbody>
<tr>
<td>An electric utility company</td>
<td>[23]</td>
</tr>
<tr>
<td>Italian airports</td>
<td>[24]</td>
</tr>
<tr>
<td>KLM engineering & maintenance</td>
<td>Our experience (e.g., [25])</td>
</tr>
<tr>
<td>NedTrain</td>
<td>Our experience (e.g., [26])</td>
</tr>
<tr>
<td>Italian paper-making industry</td>
<td>[27]</td>
</tr>
<tr>
<td>Royal Netherlands Navy</td>
<td>[28,29,7]</td>
</tr>
<tr>
<td>US Air Force</td>
<td>[16,18,19]</td>
</tr>
<tr>
<td>US Coast Guard</td>
<td>[3]</td>
</tr>
</tbody>
</table>
Examples of OEMs maintaining sold system

<table>
<thead>
<tr>
<th>OEM</th>
<th>Source</th>
</tr>
</thead>
<tbody>
<tr>
<td>ASML</td>
<td>[1,34,35]</td>
</tr>
<tr>
<td>Cisco</td>
<td>Our experience (e.g., [36])</td>
</tr>
<tr>
<td>IBM</td>
<td>[37–39]</td>
</tr>
<tr>
<td>Océ</td>
<td>Our experience (e.g., [40,41])</td>
</tr>
<tr>
<td>Teradyne</td>
<td>[42]</td>
</tr>
<tr>
<td>Vanderlande Industries</td>
<td>Our experience (e.g., [43])</td>
</tr>
<tr>
<td>Volvo Parts Corporation</td>
<td>[44]</td>
</tr>
</tbody>
</table>
3. Single-location model with backordering

(cf. Chapter 2 of Sherbrooke [1992], Single-item version: Feeney and Sherbrooke [1966])

3.1 Model description
3.2 Overview of assumptions
3.3 Evaluation
3.4 Optimization
3.5 Alternative optimization techniques and service measures
3.1. Model description
Model

- Warehouse
 - Demands (Poisson Streams)
 - Ready-for-use parts
 - Failed parts

- Repair shop
- Installed base

 TU/e Technische Universiteit Eindhoven University of Technology
Model (cont.)

- We use the terminology that is common for repairable LRU’s (Line Replaceble Units). The model is also applicable for consumable LRU’s.
- LRU’s are denoted as SKU’s (Stock-Keeping Units) in this presentation.
- We have an infinite time horizon.
- We look at the buy of the initial stock of spare parts for all SKU’s.
- No emergency shipments.
Input variables:

- I : Set of SKU's, SKU's are numbered 1,..., $|I|$
- m_i : Demand rate for SKU i ($m_i \geq 0$)
- $M = \sum_{i \in I} m_i$: Total demand rate ($M > 0$)
- t_i : Mean repair leadtime for SKU i ($t_i > 0$)
- c_i^h : Price of a part of SKU i ($c_i^h > 0$)
- EBO^{obj} : Target level for aggregate mean number of backorders
Decision variables:

- $S_i : \text{Basestock level for SKU } i \ (S_i \in \{0,1,...\})$
- $S = (S_1, S_2, ..., S_{|I|}) : \text{Vector with all basestock levels denotes a solution}$
Output variables:

- \(C_i(S_i) = c_i^h S_i \): Inventory holding costs for spare parts of SKU \(i \)
- \(C(S) = \sum_{i \in I} C_i(S_i) = \sum_{i \in I} c_i^h S_i \): Total inventory holding costs
- \(EBO_i(S_i) \): Mean number of backorders of SKU \(i \)
- \(EBO(S) = \sum_{i \in I} EBO_i(S_i) \): Aggregate mean number of backorders
Problem (P):

\[\min C(S) \]

subject to

\[EBO(S) \leq EBO^{\text{obj}} \]

\[S_i \in \{0,1,\ldots\} \text{ for all } i \in I \]

Relation with availability:

\[\text{Availability}(S) \approx 1 - \left(EBO(S) / N \right) \]

where \(N \) is the number of machines
3.2. Overview of assumptions
“1. Demands for the different SKU’s occur according to independent Poisson processes”

- A failure of a component does not lead to additional failures of other components
- Assumption of Poisson demand processes is justified when:
 - lifetimes of components are exponential, or
 - lifetimes are generally distributed and number of machines is sufficiently large (a merge of many renewal processes gives a process that is close to Poisson)
“ 2. For each SKU, the demand rate is constant ”

• Justified in case fraction of machines that is down, is always sufficiently small:
 - either because downtimes are short in general
 - or downtimes occur only rarely

“ 3. Repair leadtimes for different SKU’s are independent and repair leadtimes of the same SKU are i.i.d. ”

• See repair leadtimes as planned repair leadtimes
"4. A one-for-one replenishment strategy is applied for all SKU’s"

- Justified in case:
 - there are no fixed ordering costs at all, or
 - fixed ordering costs are small relative to the prices of the SKU’s
3.3. Evaluation
Evaluation can be done per SKU

Extra notation per SKU i:

- $X_i(t)$: number of parts in repair at time t
- $I_i(t,S_i)$: number of parts on hand at time t
- $B_i(t,S_i)$: number of backordered demands at time t
- $X_i, I_i(t,S_i), B_i(t,S_i)$: corresponding steady-state variables
Petri net of repair and demand fulfilment process
Possible states

States that can occur for \((X_i(t), I_i(t, S_i), B_i(t, S_i))\):

- \((0, S_i, 0)\) : Nothing in repair, \(S_i\) good parts on stock
- \((1, S_i-1, 0)\) : 1 part in repair, \(S_i-1\) good parts on stock
- \((S_i-1, 1, 0)\) : \(S_i-1\) parts in repair, 1 good part on stock
- \((S_i, 0, 0)\) : \(S_i\) parts in repair, no parts on stock anymore
- \((S_i+1, 0, 1)\) : \(S_i+1\) in repair, no stock, 1 request in backlog
Equations

- \(I_i(t, S_i) = (S_i - X_i(t))^+ \)
- \(B_i(t, S_i) = (X_i(t) - S_i)^+ \)
- Stock balance equation:
 \[
 X_i(t) + I_i(t, S_i) - B_i(t, S_i) = S_i
 \]

And thus also:

- \(I_i(S_i) = (S_i - X_i)^+ \)
- \(B_i(S_i) = (X_i - S_i)^+ \)
- \(X_i + I_i(S_i) - B_i(S_i) = S_i \)
Palm's Theorem (cf. Palm [1938]):

If at a certain unit the arrival process of jobs is Poisson with rate λ and if the leadtimes for the jobs are independent and identically distributed random variables corresponding to any distribution with mean EW, then the steady state probability distribution for the number of jobs present in that unit is a Poisson distribution with mean λEW.

• Developed for an $M|G|\infty$ queue
• Result is easily seen for deterministic leadtimes
• Generalizes Little’s law for this particular system
Lemma 3.1. Let $i \in I$.

(i) The pipeline X_i is Poisson distributed with mean $m_i t_i$, i.e.:

$$\mathbb{P} \{X_i = x\} = \frac{(m_i t_i)^x}{x!} e^{-m_i t_i}, \quad \forall x \in \mathbb{N}_0.$$

(ii) The distribution of the stock on hand $I_i(S_i)$ is given by:

$$\mathbb{P} \{I_i(S_i) = x\} = \begin{cases}
\sum_{y=S_i}^{\infty} \mathbb{P} \{X_i = y\} & \text{if } x = 0; \\
\mathbb{P} \{X_i = S_i - x\} & \text{if } x \in \{1, \ldots, S_i\}.
\end{cases}$$

(iii) The distribution of the number of backordered demands $B_i(S_i)$ is given by:

$$\mathbb{P} \{B_i(S_i) = x\} = \begin{cases}
\sum_{y=0}^{S_i} \mathbb{P} \{X_i = y\} & \text{if } x = 0; \\
\mathbb{P} \{X_i = x + S_i\} & \text{if } x \in \mathbb{N}.
\end{cases}$$
Last step

\[EBO_i(S_i) = \mathbb{E}B_i(S_i) = \sum_{x=S_i+1} (x - S_i) \mathbb{P}\{X_i = x\} \]

\[= m_i t_i - S_i + \sum_{x=0}^{S_i} (S_i - x) \mathbb{P}\{X_i = x\}, \quad \forall S_i \in \mathbb{N}_0. \]
3.4. Optimization
Problem (P):

\[
\begin{align*}
\text{min} & \quad C(S) \\
\text{subject to} & \quad EBO(S) \leq EBO^{\text{obj}} \\
& \quad S_i \in \{0,1,\ldots\} \text{ for all } i \in I
\end{align*}
\]

Kind of knapsack problem; hard to solve
Problem (Q):

\[\min C(S) = \sum_{i \in I} c_i^h S_i \]
\[\min EBO(S) = \sum_{i \in I} EBO_i(S_i) \]
subject to
\[S \in \{(S_1, S_2, \ldots, S_{|I|}) | S_i \in \{0, 1, \ldots\} \text{ for all } i\} \]

⇒ Multi-objective programming problem

We derive so-called efficient solutions
Example 1

Input variables for Problem (Q):
- $|I| = 3$
- $m_1 = 15, m_2 = 5, m_3 = 1, M = 21$ demands/yr
- $t_1 = t_2 = t_3 = 1/6$ yrs
- $c_1^h = €1,000, c_2^h = €3,000, c_3^h = €20,000$

Extra input variable for Problem (P):
- $EBO^{obj} = 0.1$
Example 1 (cont.)

Enumeration exercise:
- Consider plausible values for the basestock levels
- Compute $C(S)$
- Compute $EBO(S)$
- Plot them in a $C(S)$ vs. $EBO(S)$ figure

<table>
<thead>
<tr>
<th>$S_{(1)}$</th>
<th>$S_{(2)}$</th>
<th>$S_{(3)}$</th>
<th>$C(S)$ (€)</th>
<th>$EBO(S)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>-</td>
<td>3,500</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1.000</td>
<td>2,582</td>
</tr>
<tr>
<td>2</td>
<td>0</td>
<td>0</td>
<td>2.000</td>
<td>1,869</td>
</tr>
<tr>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3.000</td>
<td>1,413</td>
</tr>
<tr>
<td>4</td>
<td>0</td>
<td>0</td>
<td>4.000</td>
<td>1,171</td>
</tr>
<tr>
<td>5</td>
<td>0</td>
<td>0</td>
<td>5.000</td>
<td>1,062</td>
</tr>
<tr>
<td>6</td>
<td>0</td>
<td>0</td>
<td>6.000</td>
<td>1,020</td>
</tr>
<tr>
<td>7</td>
<td>0</td>
<td>0</td>
<td>7.000</td>
<td>1,006</td>
</tr>
<tr>
<td>8</td>
<td>0</td>
<td>0</td>
<td>8.000</td>
<td>1,002</td>
</tr>
<tr>
<td>9</td>
<td>0</td>
<td>0</td>
<td>9.000</td>
<td>1,000</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>0</td>
<td>3.000</td>
<td>2,935</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>0</td>
<td>4.000</td>
<td>2,017</td>
</tr>
<tr>
<td>2</td>
<td>1</td>
<td>0</td>
<td>5.000</td>
<td>1,304</td>
</tr>
<tr>
<td>3</td>
<td>1</td>
<td>0</td>
<td>6.000</td>
<td>0,848</td>
</tr>
<tr>
<td>4</td>
<td>1</td>
<td>0</td>
<td>7.000</td>
<td>0,605</td>
</tr>
<tr>
<td>5</td>
<td>1</td>
<td>0</td>
<td>8.000</td>
<td>0,497</td>
</tr>
<tr>
<td>6</td>
<td>1</td>
<td>0</td>
<td>9.000</td>
<td>0,455</td>
</tr>
<tr>
<td>7</td>
<td>1</td>
<td>0</td>
<td>10.000</td>
<td>0,440</td>
</tr>
<tr>
<td>8</td>
<td>1</td>
<td>0</td>
<td>10.000</td>
<td>0,440</td>
</tr>
<tr>
<td>9</td>
<td>1</td>
<td>0</td>
<td>10.000</td>
<td>0,440</td>
</tr>
<tr>
<td>0</td>
<td>2</td>
<td>0</td>
<td>10.000</td>
<td>0,440</td>
</tr>
</tbody>
</table>
Example 1 (cont.)

![Graph showing EBO(S) vs. C(S) (x € 1,000)]

- **EBO(S)**
- **C(S) (x € 1,000)**

Legend:
- **Enumeration**
- **Efficient solutions**
For Problem (Q), we obtain:

- Efficient solutions
- The whole efficient frontier
- Observation: An optimal solution for Problem (P) is efficient for Problem (Q), and vice versa

Optimal solution for Problem (P):

- \(S = (6, 2, 1) \)
- \(C(S) = € 32,000 \)
- \(EBO(S) = 0.098 \)
Problem (Q):

\[
\begin{align*}
\min & \quad C(S) = \sum_{i \in I} c_i^a S_i \\
\min & \quad EBO(S) = \sum_{i \in I} EBO_i(S_i) \\
\text{subject to} & \quad S \in \{(S_1, S_2, \ldots, S_{|I|}) \mid S_i \in \{0, 1, \ldots\} \text{ for all } i\}
\end{align*}
\]

=> Problem (Q) is separable (cf. Fox, 1966)

=> Efficient solutions via greedy algorithm
Greedy algorithm

An obvious efficient solution:

- \(S = \{0, 0, \ldots, 0\} \)
- \(C(S) = 0 \) => All other solutions: Higher costs
- \(EBO(S) = \sum_{i \in I} EBO_i(0) = \sum_{i \in I} m_i t_i \)
Greedy algorithm (cont.)

Next:
Look for the steepest decrease in $EBO(S)$ against the lowest increase in $C(S)$.
Generation of a next efficient solution:

- Current solution: S
- If S_i would be increased with 1 unit:
 - Decrease for $EBO(S) = \Delta_i EBO(S) = \Delta EBO_i(S_i) = \ldots$ (see proof of Lemma 3.2)
 - Increase in $C(S) = \Delta_i C(S) = c_i^h$
 - $\Gamma_i := \Delta_i EBO(S) / \Delta_i C(S)$
- Pick the SKU with the largest Γ_i (‘biggest bang for the buck’)

Greedy algorithm (cont.)
Greedy algorithm (cont.)

Algorithm 3.1 (Greedy Algorithm).

Step 1. $S_i := 0$ for all $i \in I$ (so $S := (0, \ldots, 0)$);
$\mathcal{E} := \{S\}$;
$C(S) := 0$ and $EBO(S) := \sum_{i \in I} m_i t_i$.

Step 2. $\Gamma_i := \frac{1}{c_i} \left(1 - \sum_{x=0}^{S_i} \mathbb{P}(X_i = x)\right)$ for all $i \in I$;
$k := \text{arg max}_{i \in I} \Gamma_i$;
$S := S + e_k$;
$\mathcal{E} := \mathcal{E} \cup \{S\}$.

Step 3. $C(S) := C(S) + c_k^h$;
$EBO(S) := EBO(S) - 1 + \sum_{x=0}^{S_k} \mathbb{P}(X_k = x)$;
If ‘stop criterium’, then stop, else go to step 2.
Lemma 3.3

Algorithm 3.1 generates efficient solutions for Problem (Q).

Proof: Via Fox (1966).
Alternative: Directly via the logic that always the most negative slope is chosen for the curve formed by the generated solutions.
Application of greedy algorithm:

<table>
<thead>
<tr>
<th>iteration</th>
<th>Γ_1</th>
<th>Γ_2</th>
<th>Γ_3</th>
<th>k</th>
<th>S_1</th>
<th>S_2</th>
<th>S_3</th>
<th>$EBO(S)$</th>
<th>$C(S)$ (Euros)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>$-\cdot 10^{-4}$</td>
<td>$-\cdot 10^{-4}$</td>
<td>$-\cdot 10^{-6}$</td>
<td>-</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>3.500</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>$9.10 \cdot 10^{-4}$</td>
<td>$1.80 \cdot 10^{-4}$</td>
<td>$7.68 \cdot 10^{-6}$</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>2.582</td>
<td>1,000</td>
</tr>
<tr>
<td>2</td>
<td>$7.13 \cdot 10^{-4}$</td>
<td>$1.80 \cdot 10^{-4}$</td>
<td>$7.68 \cdot 10^{-6}$</td>
<td>1</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>1.869</td>
<td>2,000</td>
</tr>
<tr>
<td>3</td>
<td>$4.56 \cdot 10^{-4}$</td>
<td>$1.80 \cdot 10^{-4}$</td>
<td>$7.68 \cdot 10^{-6}$</td>
<td>1</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>1.413</td>
<td>3,000</td>
</tr>
<tr>
<td>4</td>
<td>$2.42 \cdot 10^{-4}$</td>
<td>$1.80 \cdot 10^{-4}$</td>
<td>$7.68 \cdot 10^{-6}$</td>
<td>1</td>
<td>4</td>
<td>0</td>
<td>0</td>
<td>1.171</td>
<td>4,000</td>
</tr>
<tr>
<td>5</td>
<td>$1.09 \cdot 10^{-4}$</td>
<td>$1.80 \cdot 10^{-4}$</td>
<td>$7.68 \cdot 10^{-6}$</td>
<td>2</td>
<td>4</td>
<td>1</td>
<td>0</td>
<td>0.605</td>
<td>7,000</td>
</tr>
<tr>
<td>6</td>
<td>$1.09 \cdot 10^{-4}$</td>
<td>$6.77 \cdot 10^{-5}$</td>
<td>$7.68 \cdot 10^{-6}$</td>
<td>1</td>
<td>5</td>
<td>1</td>
<td>0</td>
<td>0.497</td>
<td>8,000</td>
</tr>
<tr>
<td>7</td>
<td>$4.20 \cdot 10^{-5}$</td>
<td>$6.77 \cdot 10^{-5}$</td>
<td>$7.68 \cdot 10^{-6}$</td>
<td>2</td>
<td>5</td>
<td>2</td>
<td>0</td>
<td>0.293</td>
<td>11,000</td>
</tr>
<tr>
<td>8</td>
<td>$4.20 \cdot 10^{-5}$</td>
<td>$1.74 \cdot 10^{-5}$</td>
<td>$7.68 \cdot 10^{-6}$</td>
<td>1</td>
<td>6</td>
<td>2</td>
<td>0</td>
<td>0.251</td>
<td>12,000</td>
</tr>
<tr>
<td>9</td>
<td>$1.42 \cdot 10^{-5}$</td>
<td>$1.74 \cdot 10^{-5}$</td>
<td>$7.68 \cdot 10^{-6}$</td>
<td>2</td>
<td>6</td>
<td>3</td>
<td>0</td>
<td>0.199</td>
<td>15,000</td>
</tr>
<tr>
<td>10</td>
<td>$1.42 \cdot 10^{-5}$</td>
<td>$3.47 \cdot 10^{-6}$</td>
<td>$7.68 \cdot 10^{-6}$</td>
<td>1</td>
<td>7</td>
<td>3</td>
<td>0</td>
<td>0.185</td>
<td>16,000</td>
</tr>
<tr>
<td>11</td>
<td>$4.25 \cdot 10^{-6}$</td>
<td>$3.47 \cdot 10^{-6}$</td>
<td>$7.68 \cdot 10^{-6}$</td>
<td>3</td>
<td>7</td>
<td>3</td>
<td>1</td>
<td>0.031</td>
<td>36,000</td>
</tr>
</tbody>
</table>
Example 1 (cont.)

We obtain a subset of all efficient solutions!
Example 1 (cont.)

Via greedy algorithm:

- **Heuristic** solution for Problem (P) with $EBO_{obj} = 0.1$:
 - $S = (7, 3, 1)$, $C(S) = € 36,000$, $EBO(S) = 0.031$
 - Optimality gap = $(36000-33000)/33000 = 9.1\%$

- **Optimal** solution for Problem (P) with $EBO_{obj} = 0.031$:
 - $S = (7, 3, 1)$, $C(S) = € 36,000$, $EBO(S) = 0.031$
Example 2

Real-life data, 99 SKU’s
Example 2 (cont.)

=> Smooth line, good heuristic solutions for Problem (P)
Conclusions w.r.t. greedy algorithm

- Generates efficient solutions for Problem (Q)
- Does not generate all efficient solutions, but a certain subset of solutions
- This subset has a certain robustness: small changes in the input parameters (e.g., demand rates!) lead to small changes in the subset of generated solutions
- Leads to a heuristic solution for Problem (P). **Conjecture:** This solution is robust. (Notice: This does not hold for the exact solution of Problem (P).)
Conclusions w.r.t. greedy algorithm (cont.)

- Heuristic solution is optimal for Problem (P) for some specific values of EBO^{obj}
- Generally, the heuristic solution for Problem (P) will be good when one has many SKU’s
- Simple and easy to understand
- Easy to implement in practice
- Requires little computational effort
3.5. Alternative optimization techniques and service measures
Alternative techniques:
• Langrange relaxation
• Dantzig-Wolfe decomposition
-> Both give the same efficient solutions as greedy algorithm

Alternative service measures:
• Aggregate mean waiting time
• Aggregate fill rate
• …
-> Works as long as you have the required convexity properties
Why is robustness of the heuristic solutions important?

Spare parts planning in practice:

- Executed every 3 months, say
- Per planning moment:
 - Generation of new forecasts for the demand rates of all SKU’s
 - Application of the greedy heuristic
- Implementation of new solution:
 - Both increasing and decreasing the stock of a SKU gives some costs
Open problems

- Show/prove that the greedy heuristic leads to robust solutions

- Similarly for Dantzig-Wolfe decomposition (may be easier when we go to dimension 3 or higher)

- How to use of the model in a rolling horizon setting such that basestock levels do not change too much
4. Single-location model with emergency shipments
Assumption for basic model:
If a demand cannot be immediately fulfilled from stock, then the demand is backordered.

In several practical situations:
- Downtimes of machines are very expensive.
- In case of a stockout, a demand will be satisfied in an alternative way, i.e., via a fast repair procedure or via an emergency shipment.
- 'lost sales' instead of 'backordering'
Changes in model assumptions

- t_{i}^{em}: Average time for an emergency shipment for SKU i
- c_{i}^{em}: Cost of an emergency shipment for SKU i, minus cost of a normal repair ($c_{i}^{em} \geq 0$)
- c_{i}^{h}: Inventory holding cost per time unit per part of SKU i ($c_{i}^{h} > 0$)
- $W_i(S_i)$: Mean waiting time for a demand for SKU i
- $W(S) = \Sigma_{i \in I} (m_i/M) W_i(S_i)$: Aggregate mean waiting time for an arbitrary demand for all SKU’s together
• \(W^{\text{obj}} \): Target level for \(W(S) \)

• Problem formulation:

\[
\begin{align*}
(P'') & \quad \min \quad \hat{C}(S) \\
\text{subject to} \quad W(S) & \leq W^{\text{obj}}, \\
S & \in \mathcal{S}.
\end{align*}
\]

• Link with availability:

\[
A(S) \approx 1 - \frac{MW(S)}{Z}.
\]
Evaluation

- Total costs:

\[\hat{C}(S) = \sum_{i \in I} \hat{C}_i(S_i). \]

\[\hat{C}_i(S_i) = c_i h S_i + m_i (1 - \beta_i(S_i)) c_i^{\text{em}}, \]

\[W(S) = \sum_{i \in I} \frac{m_i}{M} W_i(S_i). \]

\[W_i(S_i) = (1 - \beta_i(S_i)) t_i^{\text{em}}, \]

- Formula for \(W(S) \):

- Expression for fill rate \(\beta_i(S_i) \) (steady-state behavior is equivalent to behavior in Erlang loss system):

\[\beta_i(S_i) = 1 - \frac{1}{S_i} \rho_i^{S_i} \left(\sum_{j=0}^{S_i} \frac{1}{j!} \rho_i^j \right), \]

\[\rho_i := m_i t_i. \]

Erlang loss probability
Optimization

• Switch to related multi-objective problem:

\[
(Q'') \quad \min \quad \hat{C}(S) \\
\min \quad W(S) \\
\text{subject to } S \in \mathcal{S}.
\]

• Karush (1957): Erlang loss probability is strictly convex and decreasing as a function of the number of servers
Hence:
- $\beta_i(S_i)$ is strictly concave and increasing
- $W_i(S_i)$ is strictly convex and decreasing
- $\hat{C}_i(S_i)$ is convex
- $\hat{C}_i(S_i)$ may now be decreasing for smaller values of S_i

Define: $S_{i,\text{min}} = \arg\min \hat{C}_i(S_i)$

Exclude solutions S with $S_i \leq S_{i,\text{min}}$ for some i

Then the remaining problem can be solved with a greedy algorithm
Algorithm 2.3 (Greedy algorithm)

Step 1 \(S_{i,\text{min}} := \arg \min \hat{C}_i(S_i) \) for all \(i \in I \);
Set \(S_i := S_{i,\text{min}} \) for all \(i \in I \), and \(S = (S_{1,\text{min}}, \ldots, S_{|I|,\text{min}}) \);
\(\mathcal{E} := \{S\} \);
Compute \(\hat{C}(S) \) and \(W(S) \).

Step 2 \(\Gamma_i := \frac{-\Delta W_i(S_i)}{\Delta C_i(S_i)} \) for all \(i \in I \);
\(k := \arg \max \{\Gamma_i : i \in I\} \);
\(S := S + e_k \);
\(\mathcal{E} := \mathcal{E} \cup \{S\} \).

Step 3 Compute \(\hat{C}(S) \) and \(W(S) \);
If ’stop criterium’, then stop, else goto Step 2.
5. METRIC model
(cf. Sherbrooke [1968])

5.1 Model description
5.2 Evaluation
5.3 Optimization
5.1. Model description
Model

Repair of spare parts

Central Warehouse

Local Warehouse

0

1

\[J_{loc} \]

Machines at customers

Machines at customers
Input variables:

- \(J^{\text{loc}} \): Set of Local Warehouses (LW's), LW's are numbered 1,..., \(|J^{\text{loc}}|\)
- 0: Index for Central Warehouse (CW)
- \(J \): Set of all warehouses, \(J = \{0\} \cup J^{\text{loc}} \)
- \(I \): Set of critical SKU's, SKU's are numbered 1,..., \(|I|\)
- \(m_{i,j} \): Demand rate for SKU \(i \) at LW \(j \) (\(m_{i,j} \geq 0 \))
Input variables (cont.):

- $t_{i,j}$: Order and ship time from CW to LW j for SKU i (these times are deterministic; $t_{i,j} > 0$)
- $t_{i,0}$: Mean repair leadtime for SKU i (repair leadtimes are i.i.d.; $t_{i,0} > 0$)
- c_i^h: Holding cost rate per part of SKU i ($c_i^h > 0$)
- $EBO_{i,j}^{obj}$: Target level for aggregate mean number of backorders at LW j
Decision variables:

- $S_{i,j}$: Basestock level for SKU i at warehouse j ($S_{i,j} \in \{0,1,\ldots\}$)
- $S_j = (S_{1,j}, \ldots, S_{|I|,j})$: Basestock vector for SKU i
- S: Matrix with all basestock levels
Output and other variables (cont.):
- $EBO_{i,j}(S_{i,0}, S_{i,j})$: Mean number of backorders for SKU i at LW j;
- $EBO_j(S_0, S_j)$: Aggregate mean number of backorders at LW j

$$EBO_j(S_0, S_j) = \sum_{i \in I} EBO_{i,j}(S_{i,0}, S_{i,j}).$$
Output and other variables (cont.):

- \(C(S) = \sum_{i \in I} \sum_{j \in J} c_i^h S_i \): Total average costs (excl. holding costs for pipeline stock)
Problem (R):

$$\min C(S)$$

subject to

$$EBO_j(S_0,S_j) \leq EBO_j^{\text{obj}}, \quad j \in J^{\text{loc}},$$

$$S_{i,j} \in \{0,1,...\} \quad \text{for all } i \in I \text{ and } j \in J$$

Remark: Sherbrooke [1968] had a constraint for sum of $EBO_j(S_0,S_j)$. Then a greedy procedure can be applied to generate efficient solutions (after convexification).
5.2. Evaluation
Exact Evaluation
(due to Graves [1985])

Observation 1:
Evaluation can be done per SKU i
(the SKU’s are only ‘connected’ via the aggregate mean waiting times)
Observation 2:
For each SKU $i \in I$:

- LW places replenishment orders at CW j according to a Poisson process with rate $m_{i,j}$
- The total demand process at CW is a Poisson process with rate:

$$m_{i,0} = \sum_{j \in J_{loc}} m_{i,j}$$
Order in which LW’s place replenishment orders does not depend on the basestock levels!
Line of analysis – Variables that are determined:

- $I_{i,0}(S_{i,0})$: On-hand stock of SKU i at CW (in steady state)
- $B_{i,0}(S_{i,0})$: Number of backorders for SKU i at CW (in steady state)
- $B_{i,0}^{(j)}(S_{i,0})$: Number of backorders for SKU i of LW j at CW (in steady state)
- $I_{i,j}(S_{i,0},S_{i,j})$: On-hand stock of SKU i at LW j (in steady state)
- $B_{i,j}(S_{i,0},S_{i,j})$: Number of backorders for SKU i at LW j (in steady state)

Same variables with E added j: mean value
Exact Evaluation (cont.)

Given: \(i \in I \)

Define:

\(Y_{i,j} \) : Poisson distributed random variable with mean \(m_{i,j} t_{i,j} \) for each warehouse \(j \)
Step 1:

- $X_{i,0}$: Number of parts in repair pipeline at CW
- $I_{i,0}(S_{i,0}) = (S_{i,0} - X_{i,0})^+$ and $B_{i,0}(S_{i,0}) = (X_{i,0} - S_{i,0})^+$

- Repair shop at CW is as a $M|G|\infty$ queue, and thus Palm's theorem may be applied
- Thus: $X_{i,0} = Y_{i,0}$
Step 2:

- Due to FCFS allocation:

 Each backordered demand at CW is a demand from LW \(j \) with probability \(\frac{m_{i,j}}{m_{i,0}} \)

- Hence:

\[
\mathbb{P}\left\{ B_{i,0}^{(j)}(S_{i,0}) = x \right\} = \sum_{y=x}^{\infty} \binom{y}{x} \left(\frac{m_{i,j}}{m_{i,0}} \right)^x \left(1 - \frac{m_{i,j}}{m_{i,0}} \right)^{y-x} \mathbb{P}\left\{ B_{i,0}(S_{i,0}) = y \right\}.
\]
Step 3:
- $X_{i,j}(S_{i,0})$: Number of parts in replenishment pipeline at LW j
- $I_{i,j}(S_{i,0}, S_{i,j}) = (S_{i,j} - X_{i,j}(S_{i,0}))^+$ and $B_{i,j}(S_{i,0}, S_{i,j}) = (X_{i,j}(S_{i,0}) - S_{i,j})^+$
- Due to deterministic order and ship time:
 $X_{i,j}(S_{i,0})$ at time $t = B_{i,0}^{(j)}(S_{i,0})$ at time $t - t_{i,j}$
 + Demand in interval $[t - t_{i,j}, t)$
- Hence: $X_{i,j}(S_{i,0}) = B_{i,0}^{(j)}(S_{i,0}) + Y_{i,j}$
Procedure:

- Compute first two moments of $I_{i,0}(S_{i,0})$ and $B_{i,0}(S_{i,0})$
- Compute first two moments of $B_{i,0}^{(j)}(S_{i,0})$ for each LW j: simple formulas available
- Compute first two moments of $X_{i,j}(S_{i,0})$ for each LW j
- Fit a negative Binomial distribution on first two moments of $X_{i,j}(S_{i,0})$ for each LW j
- Compute first moments of $I_{i,j}(S_{i,0},S_{i,j})$ and $B_{i,j}(S_{i,0},S_{i,j})$

=> Accurate and efficient approximation!
METRIC approach (cf. Sherbrooke [1985])

Procedure:

- Compute first moments of $I_{i,0}(S_{i,0})$ and $B_{i,0}(S_{i,0})$
- Compute first moment of $B_{i,0}^{(i)}(S_{i,0})$ for each LW j:
 \[
 \text{mean of } B_{i,0}^{(i)}(S_{i,0}) = \left(\frac{m_{i,j}}{m_{i,0}} \right) \times \left(\text{mean of } B_{i,0}(S_{i,0}) \right)
 \]
- Compute first moment of $X_{i,j}(S_{i,0})$ for each LW j
- Fit a Poisson distribution on first moment of $X_{i,j}(S_{i,0})$ for each LW j
- Compute first moments of $I_{i,j}(S_{i,0},S_{i,j})$ and $B_{i,j}(S_{i,0},S_{i,j})$

=> Not always accurate!
5.3. Optimization
Greedy heuristic
(cf. Wong et al. [2007])

Main idea:
• Start with zero stock for all SKU’s at all LW’s
• Use a steepest descent method to decrease costs
• Use a greedy logic to get to a feasible solution
Greedy heuristic (cont.)

• Distance of a solution S to the set of feasible solutions:

$$\sum_{j \in J^{\text{loc}}} \left(EBO_j(S) - EBO_j^{\text{obj}} \right)^+.$$
Greedy heuristic (cont.)

- Decrease in distance to feasible solutions per unit of increase in costs:

\[\Gamma_{i,j} = \Delta_{i,j} EBO / c_i^h. \]

\[\Delta_{i,j} EBO = \sum_{l \in J^{loc}} \left[\left(EBO_l(S) - EBO_l^{obj} \right)^+ \right] \]

\[- \left(EBO_l(S + e_{i,j}) - EBO_l^{obj} \right)^+ \]
Greedy heuristic (cont.)

Algorithm 4.1 (Greedy Algorithm).

Step 1. $S_{i,j} := 0$ for all $i \in I$, $j \in J$ (so $S_j := (0, \ldots, 0)$ for all $j \in J$ and $S := (S_0, S_1, \ldots, S_{|J|})$);

$$C(S) := 0 \text{ and } EBO_j(S) := \sum_{i \in I} m_{i,j}(t_{i,0} + t_{i,j}) \text{ for all } j \in J^{loc}. $$

Step 2. $\Gamma_{i,j} := \frac{\Delta_{i,j} EBO}{c_i^h}$ for all $i \in I$, $j \in J$;

$$(k, l) := \arg \max_{(i,j) \in I \times J} \Gamma_{i,j};$$

$S := S + e_{k,l}.$

Step 3. $C(S) := C(S) + c_k^h$;

Calculate $EBO_j(S)$ for all $j \in J^{loc}$;

If $EBO_j(S) \leq EBO_j^{obj}$ for all $j \in J^{loc}$, then stop, else go to step 2.

Leads to: Heuristic solution (under exact evaluations)

No theoretical results like for single-location model
Dantzig-Wolfe decomposition leads to:
- Lower bound
- Heuristic solution

Performance of greedy heuristic:
- Small optimality gap
- \# SKU’s ↑ => Optimality gap ↓
- Computation time is relatively low
6. Multi-location model with lateral and emergency shipments
General setting

Key features:

- Multiple local warehouses (LW’s)
- Each LW supports one or more groups of machines
- Aggregate mean waiting time target per group
- Central warehouse: outside scope of model, is assumed to have infinite stock
- Multiple SKU’s
- All SKU’s are critical
- In case of stockout: application of lateral transshipment or emergency shipment
- Two types of LW’s: Main and regular LW’s
Two types of LW’s: main and regular LW’s

- Only main locals are suppliers for lateral transshipment
- This distinction is made to facilitate implementation in practice
- Pooling: full, partial, none
Output variables: (basic output)

Demand stream for SKU i at LW j:

- $\beta_{i,j}(S_i)$: Fraction satisfied by LW j itself
- $\alpha_{i,j,k}(S_i)$: Fraction satisfied by main LW k via a lateral transshipment
- $A_{i,j}(S_i)$: Total fraction satisfied by a lat. transshipm., $A_{i,j}(S_i) = \sum_{k \in K \setminus \{j\}} \alpha_{i,j,k}(S_i)$
- $\theta_{i,j}(S_i)$: Fraction satisfied by an emerg. shipment

It holds that: $\beta_{i,j}(S_i) + A_{i,j}(S_i) + \theta_{i,j}(S_i) = 1$
Done per given SKU $i \in I$

Via Markov process:

- States $x_i = (x_{i,1}, x_{i,2}, \ldots, x_{i,J})$, where $x_{i,j}$ denotes the on-hand stock at LW i
- Steady-state distribution $\{\pi(x_i)\}$ is determined numerically
- The $\beta_{i,j}(S_i)$, $\alpha_{i,j,k}(S_i)$, $\theta_{i,j}(S_i)$ follow from the $\pi(x_i)$
- Number of states: $\prod_{j \in J} (S_i + 1)$
Given: $J = \{1,2,3\}$, $K = \{1,2\}$, $k_3 = 1$, $S_{i,1} = 2$, $S_{i,2} = 1$, $S_{i,3} = 0$
We obtain:

\[\beta_{i,1}(S_i) = \pi(1,0,0) + \pi(1,1,0) + \pi(2,0,0) + \pi(2,1,0), \]
\[\alpha_{i,1,2}(S_i) = \pi(0,1,0), \quad \theta_{i,1}(S_i) = \pi(0,0,0), \quad \ldots \]

Principle: Decompose network into single-location models

- Normal delivery by A
- If A out of stock: lateral transshipment from B
- Then B observes extra demand: overflow demand
- Approximation: Overflow demand processes are Poisson processes
- Iterative procedure
Approximate evaluation

• Efficient and accurate

• One can apply the procedure to many structures for the lateral transshipments!

• In use at ASML since 2005
 • 60 stockpoints, 5000 SKU’s, say
 • Optimization: Greedy heuristic
7. Extensions
Multi-echelon, multi-indenture systems

- Exact recursion like for METRIC model
- Efficient and accurate appr. Eval. Based on two-moment fits
Batching

Easy to incorporate for:
- Single-location model with backordering
- METRIC model with (s,Q) rule at central warehouse and given Q’s

Hard to incorporate for models with emergency shipments
Multiple demand classes

Standard way: Critical levels

Drawbacks:
- More complicated optimization problem; no greedy heuristic available
- Critical levels are too strict for very low demand rates
- Critical levels may not be accepted in practice

Challenge: Find better ways for the differentiation when demand rates are low
8. Applications in practice
Advanced software packages:
• MCA Solutions: Founded by Morris Cohen & Associates
• Xelus
• Network Neighborhood: Developed by IBM
• …

Own developments:
• US Coast Guard: Development with Deshpande et al. [2006]
• ASML: Planning algorithm developed with TU/e
• …
9. Challenges
The full problem

Central Stockpoint

Supply spare parts

Reg. repl.: 1-2 weeks

Emergency Shipm.: 1-2 days

Local Stockpoint

Customers with contracts

Reg. repl.: 1-2 weeks

Lateral Shipments:
A few hours

Local Stockpoint

Customers with contracts

Direct sales
Dynamic decisions

Motivation:
• One has visibility of actual stocks
• Condition monitoring data
• Service contracts are for 1/2/3 years

Needed:
• Approximate dynamic programming, …
• Interaction between tactical and operational planning
Example of condition monitoring data

<table>
<thead>
<tr>
<th>MACHINE NUMBER</th>
<th>TIMESTAMP</th>
<th>MACHINE TYPE</th>
<th>CUSTOMER ID</th>
<th>P955</th>
<th>P956</th>
<th>P957</th>
<th>P958</th>
<th>P959</th>
<th>P960</th>
<th>P961</th>
</tr>
</thead>
</table>
Further challenges

• Coupling with service tools planning

• Other performance measures: Long delays vs. Short delays

• Setting of leadtimes for procurement/repair

• Choice of transport modes