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Abstract

Let (&1,1), ..., (A, Va) be a random sample from & bivariate distribution function F
in the domain of max-attraction of a distribution function G. This G is characterised by
the two extreme value indices and its spectral or angular measure. The extreme value
indices determine both the marginals and the spectral measure determines the dependence
structure of G. One of the main issues in multivariate extreme value theory is the es-
timation of this spectral measure. We construct a truly nonparametric estimator of the
spectral measure, based on the ranks of the above data. Under natural conditions we prove
consistency and asymptotic normality for the estimator. In particular, the result is valid
for all values of the extreme value indices. The theory of (local) empirical processes is
indispensable here. An application is given.
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60F17.
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1 Introduction

In two-dimensional space as in one-dimensional space, if one has to do inference in the tail of a
distribution outside the range of the observations, a rational way to proceed is to use extreme
value theory, i.e. to model the tail asymptotically as an extreme-value distribution. In order
to turn this into a useful tool, one has to estimate the parameters of the fitted extreme-value
distribution. In fact there is no finite-dimensional parametrisation in the higher-dimensional
case: the probability distribution is characterised by the extreme value indices and an arbitrary
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finite measure, the spectral or angular measure. The estimation of this spectral measure is one
of the main issues in multivariate extreme value theory. In this paper a natural non-parametric
estimator is constructed and its asymptotic properties are derived. In order to describe the
setup, we have to start by explaining the probabilistic background.

Let (X,)), (X1, M), (X2, Y1), .oy (Xn, V5) be iid. with common distribution function F.
Suppose that there are norming constants a,,c, > 0 and b,,d, such that the sequence of
distribution functions

¥

p {ma-x1_<.ign Ay — by < 5, MAKigicn Yi—dn < y}
Qn Cn

converges to a limit distribution function, say G{z,y), with non-degenerate marginals, i.e.
Jim F"(anz + bn, cny + dn) = G(z, y) (1)

for all but countably many z and y. The two marginal distribution functions are automatically
extreme value distribution functions and we choose the constants a,, ¢n, b, and dy, such that
for some 3,72 € R,

G(z,00) = exp {—(1 + 713:)"”’“} ,

Gloo,y) = exp {~(1+ 12y)"¥/"} .

Then there is a finite measure & on [0, 7/2), the spectral measure, such that

2 - - nf2
G(xl l,y'n‘ 1)=e"p{-[] (ll\tanﬂvlf\;ow)@(do)} 2)

g T2 T

and /2 /2
/ (1A tan6) ®(d9) = [ (1A cot6) &(d8) = 1.
0 0

This is a variant, useful for our purposes, of the usual representation, cf. de Haan and Resnick
(1977), Deheuvels (1978) and Pickands (1981). For more background material see Einmahl, de
Haan and Sinha (1997).

An alternative useful way to express (1) is

Jim a(l = Fant + bp,cny + dy)) = — log G(z, y).
A continuous version also holds,
Jim, ¢(1 = F(at)z + b(e), ety + d(t)) = ~ log Gz ) )

for suitable functions a,c > 0, and b and d, or

_ " _ - M _
lim tP{X b(t) > d 1 or Y- d(t) > Y 1} =
t—+oo a(t) T c(t) Y2
n _ " _ n/2
=—IogG(zl l,y 1)=j‘ (ll\tanavll\cotﬁ)@(de)
N T2 0 z



for z,y > 0, where we can choose b(¢) = F{~(1 - 1/t) and d(t) = F(1- 1/t}, with F, and F}
the marginals of F. This implies

lim P {’Y ;‘(:;(t) "’""71'“ Y- :(f)(t) > y':; Haso)orys> d(t)} -
=/:I2 (IA;anﬂle;otG)Q(da)/q) ([O,g]) @)

Relation (4) has an interpretation analogous to the Generalised Pareto setup in one-dimensional
extreme value theory: observations outside a large rectangle (—oo, b(t)] x (—oo,d(t)] can be
considered as i.i.d. random variables with approximate distribution function

/2 IAtand 1Acotd e
- /o ((1 + mz)i/m v (1+ 723!)”"") elan)/e ([0’ ED )
This interpretation is the basis for estimating ®.
Relation (3) becomes simpler if we apply a preliminary transformation to the marginals:

o1 _ _ _ [ ( z y )
lim t'P {1 - R(¥) <tz or - F() S ty) = /0 sV ) 5(d),  (5)
(cf. de Haan and Resnick (1977)) or, more generally, for any Borel set A in [0, 00)?\ {(o0, 00)},
tim t7'P {(1 - Fi(X),1- F2())) € tA} = A(A) (6)
provided A(8A) = 0 with the measure A on [0,00)? \ {(c0,00)} defined by
Ml x o) = [ (175 ¥ Tasg) ®@0) @
T OIEWENI= ] \TVcotf ' TVtand '
Or, with P the measure on [0,1]2 induced by (X,Y) := (1 - R(X),1- Fx())),
. -1 -
]zlﬂ"l t= P(tA) = A(A). (8)

These relations show how one can get A from F and hence it shows a way to estimate A. A
slightly more complicated relation shows how to get & from F: apply (6) to the set

Cy:= {(m,y) €0,0) :zAYy<1, y< a:tanﬂ} .
The result is
lim TIP{(1 - R@)A Q- FBO) <t 1- B(Y) < (1- F(X))tand}
l}{g tTIP{XAY <t, Y < Xtand} = A(Cy) = B(6) (9)

for all but countably many 8. Note that we simplified the notation: ®(6) := &([0, 4]).

In order to turn the left-hand side of (9) into an estimator for ®, we have to replace F
and F? and the unknown probability measure P with empirical counterparts. In Einmahl, de
Haan and Sinha (1997} this has been done by replacing P with the empirical measure and the
tails 1 ~ Fi(z) and 1 — Fy(y) with the fitted Pareto tails,

¢ (1 + 7’13:—;(-%(1)) i and ¢ (l + 7,2 :(:;(3))—”'”
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(based on one-dimensional versions of (3)). The necessity to estimate six parameters causes
mathematical problems: asymptotic normality was only proved for 71,72 > 0.

In this paper we replace P, Fy and F; by the corresponding empirical measures and consider
the following purely non-parametric estimator based on the relations (8) and (9):

(2)

n
E 1{(n+l—le")/\(n+1-—R?)Sk,n+]—R;vg(n—i-l—ﬂf) tan 8}

H)

&(0) =

3

I B 23

1
g {Rvalyzrwl-k.n-i-l-R.yS(n+1-R:-") tand}

where R,’-Y is the rank of A; among X, ..., X,, R%’ is the rank of ); among ), ..., Y, and for
any Borel set C C [0, 1]?,

. 18 -
F(C) = ;Z 1¢(X;,Ys),
=1
where ]
X %) = ~(n+1- Rf,n+1- R}).

We shall prove that & is weakly consistent for & provided k& = k(n) — o0, k(n) = ofn),
n — 00, and strongly consistent if moreover k(n)/loglogn — oo, n — co. We shall give
further conditions on ® and the sequence k(n) that ensure asymptotic normality.

The estimator seems natural, since it is essentially the empirical distribution function.
Although the mathematical details of the derivation are delicate, the asymptotic results are
rather simple and valid for all y; € R,i =1,2. The non-parametric estimator seems to perform
well in applications, better than the semi-parametric one described above (cf. de Haan and de
Ronde (1998) or the reports on the Neptune project, Draisma et al. (1996, 1997)).

Apart from Einmahl, de Haan and Huang (1993) and Einmahl, de Haan and Sinha (1997)
we are not aware of other work on estimating the spectral measure starting from observations
in the domain of attraction. There are several proposals for estimating the measure A starting
from such observations: Huang (1992) (cf. Drees and Huang (1998)), de Haan and Resnick
(1993), Abdous, Ghoudi and Khoudraji (1997) and in a restricted parametric context, Tawn
(1988), Coles and Tawn (1991), Joe, Smith and Weissman (1992). The paper Deheuvels and
Martynov (1996) considers observations taken from the limit distribution itself.

If one takes any of the mentioned estimators for A and one uses it to estimate the extreme-
value distribution G via (2) and (7):

o (=t s 1) = exp (- (o0l x o),

this leads to an estimator of G that is itself not necessarily an extreme value distribution (only
max-infinitely divisible). If one estimates G via (2) using ®, one does get an extreme value
distribution.

Apart from this, & is useful for assessing the amount of independence in the tail of F.
(Note that G has independent marginals if and only if @ is concentrated on {0,7/2}). ® is
also necessary as a building block for the analysis of probabilities of rare sets in an extreme
value context (de Haan and Sinha (1997)).



The writeup is for the two dimensional situation. The higher dimensional case can be dealt
with in a similar way, but the technical details are much more involved.

The results are presented in Section 2. The proof of the main Theorem is given in Section
3. Section 4 contains an application.

2 Main Results

Our point of departure is now (6) or (8), that is, we consider a probability measure P on
[0, 1) with distribution function F which has uniform-{0, 1) marginals and assume there exists
a measure A such that

.1
lim ZP(t4) = A(4)

for all measurable 4 C [0, 00]? \ {00, 00} with A(4) = 0, where tA = {(tz,ty) : (z,y) € A}.
Note that A([0, ¢z] x [0, ty]) = tA([0, 2] x[0, y]) and that 0 < A([0, z)x[0, y]) < zAy. Furthermore
A{[0, 0] X [0, 2]) = A([0, 2] x [0, 00]) = z. Set

C’g:{(m,y)e[ﬂ,oo]zz tAy<1, ygztana}, 8 e [0,%].

We consider (X,Y1),-.., (X0, Yn) where (X;,Y;) = (1 - /(X)) 1~ Fi(¥),i=1,..,n. We
denote the marginal empirical distribution functions of (X1,Y;), ..., (Xn, Y;,) with Fi,, and Fa,
s0, e.g., Fin(z) = 150, L(-co,z](Xi). Now we transform the data by Fy, and Fj, in the
following way: (X;, i) = (Fia(X:), F2a(Y;)), i = 1, ..., n. Observe that the thus obtained data
are no longer independent (with respect to ¢). This dependence is non-negligible and creates a.
major technical problem. Denote the empirical measures of the (X;, ¥;) and (X;,¥;),i=1,...,n
with P, and B,, respectively, so

B0 = 33 10(ki 7.
Let k = k(n) < n be a sequence of positive numbers such that
k= oo and k/n— 0 as n = co. (10)
Recall &(6) = A(Cy) and B(9) = 3£, (£Cy).
Theorem 1 1. Suppose (1) and (10) hold. Then
¢S50

in the vague topology on the space My ([0,7/2]) of nonnegative Radon measures on [0,7/2).
2. Suppose in addition that
k/loglogn — oo

asn = oo, Then
® 5 @, a.s.

in the vague topology.



Proof. 1. We know from Huang (1992), Chapter 2, Theorem 1, that in the vague topology on

~

M, ([0, 00]? \ {(c0,00)} the measure A represented by

R c 1<
A{([z,00) x [y,0))} := % z I{R;V>n+1—kz O RY>n+1-ky)
i=1

satisfies )
AL
Next consider the transformation T : M, ([0, oo]?\ {0, 00}) = M, ([0, 00) x [0,7/2]) defined
by
TA:=AoT*

where T' := ({0, 00]? \ {{c0,00)} —= ([0,00) x [0,7/2] is defined by T(z,y) = (r,w)) with
r =2z Ay, w = arctan(y/z). Note that T* is a continuous function. So if K C (0, 00] % [0, 7/2]
is a compact set, then T+ (K) is a compact set in [0,00)2\ {c0,00}. So by Resnick (1987,
Proposition 3.18, page 148), we get that T is a continuous map in the vague topology. Thus
we get that
AoT* B pAoTr.
But since &(-) = Ao T([0,1]x ) and ®(-)=A o T*([0,1] X -), we conclude that
[ R

in the vague topology.
2. We have from Qi (1997) that under the stated conditions

A A, as.

in the vague topology. The rest of the proof is the same as in the first part. o
We will now consider the process

vk (8(6) - (), 6¢o,x/2].

We will assume that the density ) of A exists and that it is continuous on [0,0)% \ {(0,0)}.
Observe that A(tz,ty) = 1A(z,y). Define

Co=3{(@1) € 0,00\ (50,00} : (Fine), Fun() € Lo}
Then we have (note 13,,(;"503) = P, (£Cy))

vE(80)-2(0) =& (%Pn (géa) - 2P ( k C’a))

n

w8 (3. (56) -4 @)
+VE(A () ~ A (Co))
=V +r(0) + Va(0), 0 €[0,7/2). (11)

Define WA~ to be a Wigner process with “time” A, i.e. a centred Gaussian process with
EWA(CYWA(C) = A(Cn C). Note that

{WA(C), 8 € [0,n/2]} £ (w(2(9)), 6 € [0, 7/2)},
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with W a standard Wiener process on [0, c0). Define Wy (z) = W, ([0, £] x [0, 00]) and W,(y) =
Wa([0,00) x [0,y]). Note that W, and W, are also standard Wiener processes. Define the
process Z by

zZ@®) = fowﬁ—& Az, z tand) {W)(z) tan§ — Wy(z tané)} dz
—Wy(1) f:_;_ Mz, 1) do
tan @ —_—

“Lapaem@WiD) [ ML w)dy, 0 €[0,7/2).

Our aim is to show that Vy(6) % Wa(Cs), r(8) % 0 and Va(d) 5 Z(), where ‘%’ denotes
weak convergence in D [0, §], with the supremum norm.

Now we are almost ready to present the theorem on the weak convergence of vk (@ - ‘I>),
but we need two conditions. Let A = A(A, M) be as in the proof of the theorem and write
A ={ANnA": A A € A}.

Condition 1

sup

p (kA) —A(A)' 0.
AeA’

£ \n

Let C, C [0,00)%\ (00, 00) be a sequence of sets. Write Cp(z) = Cp N ({z} x [0, 0]) and
assume C), is such that Cp(x) is of the form {z} x [0, ba{z)], ([0, bx(x)] = @ possibly) for some
bn(x).

Condition 2a For all L > 0 we have: if for some 9 € [0, /4],

Vk sup  |ba(2) ~ ((ztand) A1)| < L(z tanﬂ)ils', (12)
0<e< 25

for all n € N, then

. n k
Jﬂt}n sup\/l_clzP (;Cn) - A(CR)| =0,

where the sup’ is taken over all C,, satisfying (12) for some 6 € [0, 7/4).
Condition 2b is similar to Condition 2a, but with = and y interchanged.

Theorem 2 Assume the framework of Section I and suppose A has a conlinuous density A
on [0,00)%\ {(0,0)}. Under Conditions 1, 2a and 2b we have, as n — oo,

VE (8(6) - 2(6)) S Wa(Co) + 2(8), in D [o, g] .
Note that W, (Co) + Z(0) = 0 a.s.; also

Z(n/2) = ~Wa(1) f: " Mz, 1) de - Wi (1) ./lm ML,y)dy as.



3 Proof of Theorem 2

A.

We first prove weak convergence of vZ (‘5(0) - *I>(0)) in D[0, 7/4). More precisely, we will
show that for probabilistically equivalent versions of the processes involved, as n — oo,

sup |V (8(6) - 2(6)) - (Wa(Cy) +2(6)| 5o (13)

oefo.5]

In the sequel we will replace Cy, 8 ¢ [0, Z], by

{(fc,y) 1y < %an ((tan &) F, (mg)) ¥ < %QZu (-g)},

where Q;y, is the quantile function corresponding to Fj,, j = 1,2, and call it €y again. Both
sets are not exactly equal due to the fact that Fyy, is a step-function, but the difference is
negligible for our purposes. Define the marginal tail empirical processes by

w._{&(ﬂn(&‘%)—w%), OS‘”S%r
S £>%,j=1,2

and the marginal tail quantile process by

gum{ F (@) -58), osesh,
0, z>%,i=1,2
Note that
%Qgﬂ ((tan ) F, (2: %)) = z tan 0+\/iE {(ta.n Nwin{z) + v, (x tané@ + %(ta.n ﬂ)wln(m))} 5
(14)
A.l.

First we deal with V{(#) in (11). Let A > 0, such that 1/A € N. Let p=0,1,2,..,4 -1, and
define Iz (p) = [PF.%?: (p+ I)t—%;], 8 € [0,7/4]. We set A to be the class containing all the
following sets:

1
;;-"__.01 {(z,y) :z€la(p), 0<y< ztan b+ Cy(x tanﬂ)T'S'} R
for some 8 € [0, 7/4] and Co, €y ..., Ci"l €R, and

{(z,v) : y < b}, for some b < 2, and

{(z,¥): z < a}, {(z,y): s <M, y< 2}, for some a < M (later on M will be taken large),
and

{(z,y) re2 s y< b}, for some ¢ € [0, /4] and b < 2.



Then A = A(A, M) is a Vapnik-Chervonenkis (VC) class. Write
1
zng(x) = (tan Nwyn(z) + von (a: tand + -\/—E(tan G)wl,,(:c))

and note that $Q2n (f) =1+ 7‘;02"(1). Define

Viaa= sup {#06(2) A (van(1) + VE(1 - 2tan6))} /(z tan8) %,
LIFING)

and

Vono= ol {zns(z) A (o2n(1) + V(1 - £ tan0))} /(z tan ) F,

Set, for either choice of sign,

1 L
H:,:A,o = {(2;!}) 2 €lalp),0<y<Lztand+ W(z tané) nlszfA’a}

and
14

+ +
MA,0 - U H A8
p=0

Here it should be noted, especially for p = 0, that the V:A_, do not “blow up” as n — co. In
particular, it is useful to write
Uzn (m tané + Vlz(ta,n 0)w1,,(:z:))
(z tan 8)1%

Van (z tan @ -+ Vlz(ta.n ﬂ)wlﬂ(:n))

g, 1 : M
(z tanf + Vlz(tan 8wy, (a:)) t ((3’ tan@)4 + ﬁ(tan B)$ wyp(x)/xd )

and to use the fact that vy, /J t and wyn /1 t are bounded in distribution (I is the identity
function).

Now we apply Theorem 3.1 of Einmahl (1997), see also Einmah!, de Haan and Sinha
(1997). Then using that A is a VC class and Condition 1, we have for a special construction
(but keeping the same notation), as n — oo,

4 (34)- 1 (24) -

: 7 =o. (15)

sup
AcA

Set C’a_l = {(a:, el z< Eln_a}' C’o,g =Cy \C"g,l, and define for j = 1,2,

k- k - .
Vii(6) = V& (%P,., (;Cod) - %P (;Cg,,-)) Li=1,2.
Then
11(8) < e\ Mg ) -z P -MZ,
n k _
+ VEZP (; (Mo \ MM))

= VH(0) +i(0); (16)

9



similarly
Viu® 2 VE(3R (Taaz,) - 2P (Barg,))
- VEEP (3 (Mo \3,))
=t Vii(6) - n(6). ()

We now first deal with r,(6) and next with Vi (9).
Using Condition 2a and the results on the behaviour of weighted tajl empirical and quantile
Processes (see Einmahl (1992, 1997)) we can show that, as n = oo,

- + ~ )5
P r1(8) — VEA (MA'O\MA’a)I-—}O. (18)
Now consider Vi
su kA (ME \MZ,). 19
36[0,1?/4] ( A,a\ A,e) (19)

Note that

VEA (M}, \ M)

1
a (p-l-l);;%- « tan 8+ -4 (xtanﬂ)*V"’ ]

= \/EZ \ ’ f e & _P'Aa Alz,y) dydz.
p=0 pm zmo+#(ttano} VP,A.a

Setting y = z tand + 7‘;(3 tan8) % 2 we obtain

L2
A~ [legRy v
° f e A(z,z tand + i(:a: tan G)i%z)(a: tan6) % dz dz
p=0 ‘Phz Vias vk
< 16sup A1 max Vi -V,
< yzg (Ly) pe{01rnk 1) ( P8 p,A,a)

Since A(L, y) = y~*A(1/y, 1) and by the continuity of A on [0, 00)%\ {(0, 0)} we have limyyoo A(L,y) =
0. Hence sup,54 A(1,y) < oo. Also because of the tightness of w;,/I° and v;, /1%, j = 1,2,
0 < & < 1/2, on [0, M], we see that for & >0,

lim limsupP{ su max Vh o=V ) >eb =0
10 nnsee {ee[o,f/n:] ref0,1,...k-1} ( Pag "A"’) = } !
and hence, using (18),
lim limsupP{ su ri(8) >e) =0. 20
Alo u-rcop {ae[o'gfq l( )"" } ( )

Now consider for either choice of sign fol(ﬂ). Since Mi", € A, we have, using (15), that

ooty 500 = 142

=o. (21)

10



But with similar calculations as for (19) we obtain that

16
A(ME,ACs ) < —=supA(l, vE
( . 3,1) - ﬁygg (1.9) pe{o.rlr.lfck-l} ”‘A'al

with
= . L z, 1
Ca,l—{(-"»‘,y)ece- < tan()} = {(a:,y)e[ﬂ,oo) :0<z< tangsosygwtano}'

Since
8efo,x/4) pe{0,1,... -1} | m.el p(1),
we have that for any A > 0 (% € N),
sup A{ME,ACs) 5o
ae[u,qu ( a8 9'1)

Hence, since W, is uniformly continuous on A,

ae.‘ii;;]')“} IWA (Mi:'a) - Wa (Cs.l)l Eo. (22)

Combining (16), (17), (20), (21) and {22), we now have proven that

sup  [V1,1(0) - Wa (Con)) 5 0. (23)
96[0,1/4]

Observe that Cy ; is (almost) a rectangle. (Only near (1/ tand, 1) there is 2 small deviation from
the rectangular shape, but with some care it can be shown that this deviation is negligible.)
But these rectangles are in the VC class A and need no approximation like C‘a... Therefore we
can show in a similar but easier way than for Vi, that

sup  |Vi,3(0) - Wa (Co2)l 5 0. (24)
d¢lo,x/4)

Combining (23) and (24), we now have, as n = oo,

sup [Vi(8) - Wa (Ca)| S 0. (25)
ocfo,r/4)
A‘2.
Next we consider V(). We show that, as n — oo,
sup [V (A(Cs) - A(Co)) - 2(8)| 5 0. 26
o V-3 -0 8

Note that for ¢ € [0, /4]

s 00
2(6) = fo Mz, tand) {W, (<) tand — Wy(z tan8)} do — Wa(1) f_._g Az, 1) dz.

tan

11



Observe, with égll, Cs,1 and z, ¢ as before, that

VE (ACo1) - ACon))
=\/]?/Kh f::tan0+§:{zmg(z)f\(vgn(l)+\/z(l-:ctan&))}
0 k4

tanf

Az, y)dydz.  (27)
Now for (large) M > 1,

selon/al l‘/E (A(é"l) - A(C"'l))

_ /o;h Az, z tan8) {W)(z) tan§ — Wa(z tan8)} dz|

. ae[arcil:.l;,m] l‘/’; (A(é"") - A(Co"))

—foﬁb Alz, z tan8) {Wy(z) tand — Wy(z tané)} dz

+  sup I\/E (A(éﬂ,l) - A(Cﬂ.l))

8€[0,arctan 4]

+  sup joﬁh A(z, z tand) {W)(z) tand — Wa (2 tan )} dz

GE[O.arctan ﬂ?]
=N+ +T;.

We have

T

IA

supé € [0, arctan -;7] /Dﬁh %:\(l,tanﬂ) {IW1(z)| tan @ + |Wy(z tan 8)]} dz

=7 M) LA10)]
sefoarctan ] {(""‘“9)*(1-““9) fo L g + M(1, tand) fo 27‘1”}

A

1
< sup {(ta.nﬂ)A(l,tanﬂ) ( sup WII—(::) % v
6€[0arctan 4] zefoy) =4 Jo v¥/

[Wi(z)] fa'—, 1 |Wa ()| fl 1
+ i;ll) el vmdv +,\(1,tan8)y21{:)1'>l] g A t’3/4dv . (28)

Since P has uniform marginals we have
00
f Az,0)dz < 1.
1

Butsince A(z,0) = L1A(1,0), this implies A(1,0) = 0. Hence by the continuity of A: limggo A(l,y) =
0. Combining this with (28) yields that for any € > 0,

Jim P{Ty > e} =0, (29)

Let us consider T, now. For 73, and also for T}, we will replace zp,g A (v34(1) + vk (1 - z tan6))
by zs6(z) in the right-hand side of (27), since it can be shown that the difference between
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these two expressions is negligible. Concerning T3 we have

1 prtan @+ —mz, o(x)
vE / / A ) dyd
o Jr

tan &

1
< supA(L,y) [ f e
¥20 0oz

[win(z)|
<sup/\(1,y{ta.n922l[10p1] /16
Vo (o:ta.n0+ j-(tanﬂ)wln(:r))l 1
+(tan8)i su k / dv.
( ) ..-:E[Ol?l} (z ta.nO)'l'i‘ o vls/16
Also
— zr,an0+ zn0(%)
‘\/_f Ve Alz,y) dydz
stand
~ zn,0(z)
= .[t ¢ l[ ? A(I,tan@-l——z-) dzdz
1 x Jo vk
z |2n,6(z)| /5}'—51 1/16 4
< sup A(l,ta.n0+ﬁ) 1<:25-§ ( tanB)1/16 J, v(vta.nﬂ) v.

stupls:Sm tzn,0 ()

Hence, since |
znel(z
sup su - n.ag 2}1_6 = Op(1),
pe0m/4) 1¢a< Ly (2 tan0)
we see, somewhat similar as for T3, that

lim limsupP {T; > ¢} =0. (30)

M=co naoeo
Finally consider T;. Write z¢(z) = Wi(z) tan @ — W(x tan 6). Then we have
. z tan 64 w2, 9 ()
vk [ f Sy Az, y) dydz
tan 9+#z¢(x)
xtanﬂ-l-*za(x)

< sup
oc [nrctan ﬁ,ﬂ

+ sup Alz,y) dydz

Ee[arct.an *;,%]

—Lﬁ A(z, ztan)zy(z) dz

= Tip+Tp.
For handling T, note that it can be easily shown that

|2n,0(2) — z8(2)| P
sup Su 0.
oelo, *lr)/ 4}0<z£M (z tan§)1/16

We have "
Tipa < S“P A1, y)f . Iz’;: (tza,)n a)f;f:)l(x tan 8)1/16 dz.

13



Hence, for any M > 1,

Tia 5 0. (31)
In the term T}, we split up outer integral in the integral from 0 to § {0 < § < 1), and from &
to ﬁ;, and denote the corresponding expressions with T} 2.1 and T4 32, respectively. Then

|29(3)| 5 l 1/4
Ti2,0 < 2sup A(L,y) sup sup [y (vtan )/ dv (32}
yz0 Ge[arct.an 7%.41] z€[0.8] (:D tan 6) o v
and
w1 [l B
Nz < sup [ — f (A (l,tana + —) - A(1, tan 0)) dzdz|. (33)
o€ [arctan ﬁ,%] é z Jo m\/E

Now noting that
sup sup |z(z)] < oo as.
ee[arctan 314-—,«/4] 05”5%&

and that Zhy < M, we obtain from (32) and (33) that for any M > 1,

T}_,g E) 0. (34)
Combining (29)-(31) and (34) yields that, as n — oo,

. .
VE (ACan) - ACa)) - /0 ™% Az,  tan 6)z5(z) dz| B 0, (35)

sup
efo,x/4}

Similarly, but much easier, we obtain,

VE (ACo2) = AlCa2)) -Wa(1) [, Mz,1)ds| B0, (36)

tan @

sup
#ef0,x /4]

Combining (35) and (36) yields (26).

A3,

We now consider r(§) in (11). From (14), Condition 2a, and the wel-known behaviour of
weighted tail empirical and quantile processes, it now follows that

sup |r(8) 50 asn — oo (37)
#clo,x /4]

Combining (25),(26) and (37) yields (13). So actually we proved the theorem for § € {0,7/4].
B.
Next note that it rather easy to show that, as n — oo,

F(3(3)-2()) - (e +2(5))

Hence it follows by a symmetry argument, observing that for 8 € (n/4, 7/2) (the closure of )
C’; \ Cy is the mirror image (with respect to the line y==z) of C.;_'..g, that, as n = oo,

Eo.

sup |V (&(6) - B(6)) - (Wa(Co) + Z(6)] 5 o. (38)

0e(3.5]
(Obviously, the VC class A has to be extended for this, but that can be done without any
problem.) Combining (13) and (38) completes the proof. o
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4 An application

The National Institute for Coastal and Marine management of The Netherlands provided 2
data set consisting of wave heights (HmO) and still water levels (SWL) during 828 storm
events spread over 13 years in front of the Dutch coast near the town of Petten. They can be
considered independent and all following the same probability distribution. These observations
are relevant for a small stretch of sea dike that protects a gap in the natural coast protection
formed by sand dunes near Petten. The dike is called ‘Pettemer zeedijk’. Figure 1 displays
the estimated spectral measure

Yo _ n41-RY
R'- VR. Zﬂ‘l'l k,arctan ;m?sa}

N 1.2
=1

(0 £ 8 < 7/2), based on 28 extreme observations {k = 28) along with the points arctan %:g;,

:=1,2,...,28. Asymptotic dependence seems to be present.

In order to see how non-parametric methods compare with semi-parametric ones (see Sec-
tion 1), we have displayed two estimators, not of ® but of the measure A through the level
sets of its estimated distribution function A{([z, 0] X [y,00])¢} (cf. (7)) in Figure 2. The
upper figure displays the level sets for the non-parametric A-estimator (cf. Huang (1992)) and
the lower figure the level sets for the semi-parametric A-estimator (cf. de Haan and Resnick
(1993)). It is known that the level sets of the theoretical A-function form concave functions
and these functions have the same shape for different levels, Huang (1992). These properties
are better reflected in the upper figure than in the lower one. An important reason for the
poorer showing in the lower figure is the less than optimal fit of the parametric distribution
for lower values of HmO. So, although Figure 2 does not refer to an estimation for ®, it does
contain the message that in this area non-parametric methods for estimating the dependence
perform better.

For more information about this application see de Haan and de Ronde (1998).
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FIGURES
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Figure 1: Estimated spectral measure. The solid line represents the estimated distribution
function ®(8), scaled down from 39/28 to 1.
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Figure 2: Level sets of the estimated function A{({z,00) X [y,00))°}. The top picture shows
the level sets estimated in a non-parametric way. The bottom picture the same but estimated
in a semi-parametric way.
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