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Abstract

This paper provides a test of convexity of a regression function.
The basic idea uses an interesting connection between (1) a hypoth-
esis test of convexity of a nonparametric regression function based
on a cubic splines estimator and (2) a hypothesis test for normal
means constrained by linear inequalities. The test statistic is shown
to be asymptotically of size equal to the nominal level, while diverg-
ing to infinity if the convexity is misspecified. Therefore, the test
is consistent against all deviations from the null hypothesis. The
behavior of the test under the local alternatives is studied.

1 INTRODUCTION

Tests of convexity of a regression function is one of the most important prob-

lems in econometrics. Indeed, “The General Theory of Employment, Interest, and
Money emphasized the central importance of the consumption function and explic-
itly argued that the consumption function is concave” (Carroll & Kimball 1996).
Economic theory predicts also the convexity of functions like for example Bernoulli
utility function, cost function, production function, Engels curves, etc. Besides, the
Human Capital theory argued that the relationships between the logarithm of wage
and the experience is concave.
On the other hand, psychologists have worried for over a century about whether
subjective reports about physical magnitudes like length, weight, area, luminance
etc. have a convex or concave relationship to corresponding measurement. Also,
this convexity problem is very closely connected to the order-restricted hypothesis
testing problems described in references such as Robertson et al. (1988).

There are some papers in the statistics literature dealing with nonparametric
hypothesis tests of convexity of the regression function. The work along this line
includes Schlee (1980), Yatchew (1992), Diack (1996), Diack & Thomas (1998) and
Diack (1998).

Schlee (1980) in a nonparametric regression model with random design used an esti-
mator of the second derivative of the regression function. His test statistic requires
computing the distribution of the supremum of this normalized estimator over an
interval. But this method imposes some theorecal difficulties. To overcome the
problem, he proposes a sequence of points from the interval and uses the theory
of maximal deviation to obtain the distribution of the test statistic under the null



hypothesis. However, this work does not discuss asymptotic results or pratical im-
plementation.

Yatchew’s test (with semi-parametric model) is based on comparing the nonpara-
metric sum of squared residuals with convexity constraints, with the nonparametric
sum of squared residuals without contraints. Yatchew’s approach relies on sample
splitting which results in a loss of efficiency. He gives a heuristic proof of the con-
sistency of the test. Diack (1998) adapts respectively Schlee’s idea and Yatchew’s
idea in a nonparametric model with fixed design to construct two other tests of
convexity for which he gives new asymptotic results of convergence.

Diack and Thomas (1998) use a least-squares splines estimator and develop in a
nonparametric model with deterministic design, a non-convexity test which is con-
sistent for some alternative hypothesis. A small simulation study in Diack(1996)
shows that the test is satisfactory for finite sample sizes.

In this paper, we propose a new test of convexity of a regression function in a
nonparametric model. Qur test uses, as Diack and Thomas' test, a cubic spline
estimator which allows us to formulate the convexity hypothesis in a very simple
way. Hence, our problem becomes roughly, a problem to test a multivariate normal
mean with composite hypotheses determined by linear inequalities.

The remainder of this paper is organized as follows. In section 2, we introduce
the nonparametric regression model and the hypotheses to be tested. After, we
recall some properties of the cubic spline estimator. Section 3 describes our test of
convexity of the regression function, and section 4 is devoted to a discussion and
demonstration of some properties of the test.

2 PRELIMINARIES
2.1 The model and the hypotheses

Consider the nonparametric regression model:
vij = flw) +eyi=1.,ni=1.,n z€(01),i=1,.,m

At each deterministic design point x;, (i = 1, ..., 7), n; measurements are taken. The
probability measure assigning mass p; = n;/n to the point z;(3_ y; = 1) is referred
to as the design and will be denoted by p". We assume that the random errors ;;
are uncorrelated and identically distributed with mean zero. Their variance o2 will
be assumed unknown. Finally f is an unknown smooth regression function.

In what follows, we will assume some regularity conditions on f.

The following class of functions were used by Diack and Thomas (1998) to con-
struct a test of non-convexity.

Forle Nand M > (, let

Fim={f€C*0,1): sup | fIDM) () | <M},
0<z<1

We intend to contruct a test of Hp : “f is convex” versus H; : “f is non-convex.”
0

It would be interesting to know how the test behaves under the local alternatives.
So, we might consider a sequence of local alternatives Hy, : “fn = fo+haL” where
fo is a fixed function in the null hypothesis and L is known and lies in Fyar .



Throughout this paper, a testing problem with null hypothesis Hy and alterna-
tive Hy is denoted by [Hy, Hij.

We will use a cubic spline estimator and characterize convexity in the set of
all polynomial cubic splines to transform our problem into a test of a multivariate
normal mean with composite hypotheses determined by linear inequalities.

2.2 The Cubic Spline Estimator

Let p be a positive continuous density on (0,1). We assume that

Orsnmlgl p(z) > 0.

Let 5y =0 <1y < ... <754 = 1 be a subdivision of the interval (0,1) by k distinct
points defined by

f: plz)dr=if(k+1), i=0,...,k+1. (1)

Let 6 = maxocick(nigy — M)-

For each fixed set of knots of the form (1), we define S(k,d) as the collection
of all polynomial splines of order d (degree<d — 1) having for knots 7, < ... < ;.
The class S(k, d) of such splines is a linear space of functions of dimension (k + d).
A basis for this linear space is provided by the B-splines(see Schumaker 1981). Let
{N1,.., Ngyq} denote the set of normalized B-splines associated with the following
nondecreasing sequence {¢1,..,tx424} ¢

thi<ta<..<tg =0
tader 2 tod4k—1 2 ... Ztgprer =1
tagpy=m for 1=1,..k

The reader is referred to Schumaker (1981) for a discussion of these B-splines.

In what follows, we shall only work with the class of cubic splines: S(k,4). It
will be convenient to introduce the following notations:

N(z) = (N1(2), .., Nesa(z)) € R*** and F = (N(z1),.,N(z): (k +4) x r
matrix. R

We will denote by f,, the least squares spline estimator of f :

N ke
Ful2) =D 8pNp(2) 2)
r=1
where
n . R r n; k+4 2
6 = (61, 0x44)" = arg_min E Z (yz'j - ngNp(Wi)) . (3)
ecR™" i = p=1
Let

_ 1 ¢ B 1 i
A S i, i = — E Eis
Yi n; Wiz, i n; o ijs

=1

Y = (0,.%),8=(&,.,&) and fa = (f(z1),., fz:))



Let D(u"™) be the r x r diagonal matrix with diagonal elements g, ..., ., then, basic
least squares arguments prove that:

O =M FD(E™Y with M(u") = N(z:)N'(z:)p; = FD(u")F'.
=1

Asymptotic properties of this estimator have been established in Argarwal and
Studden(1980).

Note that the first moment of ﬁ, is given by
Efu() = N(=) M~ (u")FD(s") fa-

Thus, if f is a cubic spline function (that is to say there is © such that fa = F'©)
then f, is unbiased and F©® = ©&. We will use below this property to construct our
test.

3 TEST STATISTIC
3.1 Convexity in S(k,4)

First of all, we characterize convexity in the class S{k, 4). Note that if a function
g is a cubic spline, then its second derivative is a linear function between any pair of
adjacent knots #; and 7, ,, and it follows that g is a convex function in the interval
7;<T<7;41 if and only if g”(n;) and g"(n;,,) are both non negative (this property
was used by Dierckx (1980) to define a convex estimator).
For a function g in the class §(k,4), we can write:

k+4
9(z) =Y 8,Np(z) with ©=(0),...,0044) € R,
p=1
k+d k44
Then: g¢”(n,) = Z BN o(ny) = Zf?pd 1o

where the coefficients d,; are easily calculated from the knots (see Dierckx 1980)

dpy=0 if p<l or p>i+4
6

d, =
dH-l" _ ("+““‘+2¥"+5“'+3) for 1=0,..k+1
43,1 (ro—tipa) (tips—trpa)
dipos = —(diyar + diyr)

Let b = (Os 0: "',0: —dH-l,l; _dl+2,la _d!+3,h 03 G O)I € Rk+4and o= (91, cacy 9k+4)’r
then

g'(n) = -¥,0.

Hence, we see that a cubic spline g is a convex function if and only if ';0<0 for all
I=0,.,k+1

The basic idea of our test goes as follows. Whenever f is a cubic spline function,
then JFO = © ( we have already mentioned it in section 2). Therefore, a test for
convexity can be written as Hy : b'©<0 forallli=0,...,k + 1 versus H, : ¥/;0 > 0
for some [ € {0,...,k + 1} and where © is the mean of the random vector .



On the other hand, Beatson (1982) shows that for a smooth and convex func-
tion f € C™(0,1)(0<m<3), the uniform distance between f and the set S.(k,4) of
convex functions of S{k,4) tends to zero when the mesh size §; tends to zero (see
lemma 8 in the appendix).

A testing problem in the form [Hy, H;] is related to the one-sided testing problem
in multivariate analysis and has been studied by several authors (Bartholomew 1961,
Kudd 1963, Niiesch 1966, Kudé and Choi 1975, Shapiro 1985 and more recently by
Raubertas et al. 1986 and Robertson et al. 1988).

3.2 One-sided Test

Let Y be a random vector distributed as Mg(0,Z,) (¢ € N, g > 0) where T,
is a known nonsingular matrix.
We consider testing Hy : ¥,0<0 (I =0,...,k -+ 1) against H; : 10 > 0 for some
le{0,. . k+1}.

In this paper we identify a hypothesis with the corresponding set of parameters.
For example, we write Hy = {© € R? : ¥';0<0}.
The likelihood function is L = ¢pexp (—% Y -0 ||§q .) where ¢p is a positive

constant independent of ©. Thus, the likelihood ratio for the problem [Hy, H,} is
given by:

sup. L 1 . :
=—H°——exp — inf ||[Y -2z |3, ].
sup gy L 2 zeH, ‘
So, to determine the test statistic under the null hypothesis, we need to resolve the
following nonlinear programming problem: inf . [|Y — =z |[2_, .
L ?

It is worth noting that H, is a polyhedral cone and is thus closed and convex.
Hence, for a given Y, this infinimum is attained at unique point denoted by I, (Y')

and represents the squared distance from Y to’H;.
Thus, the likelihood ratio test (LRT) rejects H, for large values of the test statistic

= inf |Y—z|>.,.
TEH, 9

Shapiro (1985) showed, in a study of the distribution of a minimum discrepancy
statistic, that if H, is a any convex cone and if © = 0, then the distribution of X2
statistic, called chi-bar-squared statistics, is a mixture of chi-squared distributions.
Raubertas et al.(1986) generalize the one-sided testing problem to allow hypotheses
involving homogeneous linear inequality restrictions. This framework includes the
hypotheses of monotonicity, nonnegativity, and convexity. Here we give an imme-
diate consequence of theorem 3.1 of Shapiro (1985). For that purpose we shall use
some geometrical properties of polyhedral cones.

3.2.1 Polyhedral cones

A polyhedral cone is a set of points that satisfies a finite set of homogeneous
linear inequalities. Let

{a1,...,a,} be a set of vectors in R? (with p<q) and let A = (a;]...|a,) 2 g-by-p
matrix. Then the polyhedral cone determined by A is

ClA] ={z e R? : A'z<0}.
The polar cone C° [A] of a cone C [A] is defined by
C°lA] ={z € R : 2'y<0, VyeC[A4]}.



It is easy to see that

14
ClAl={zeR :z=) Ma, M20, i=1..,p}

i=1
Note that C° [A] is also a polyhedral convex cone and {C° [4])° = C[4].

We shall introduce some useful notations which are a restatement of notations
of Raubertas et al. (1986).

Let J be a subset (possibly empty) of {1,...,p} and let J be its complement.
A, will be the matrix consisting of those columns of A indexed by the elements of
J. The matrix A5 is defined analogously.

The faces ¥ of C [A] are defined as follows:

¥y ={zec R : Ajz=0,A<0}

Note that ¥; = C [A] when J is empty.

For the definition and basic properties of faces and polar cones the reader is
referred to Rockafeller (1970) or Stoer and Witzgall (1970). A column of A is called
redundant (Sasabuchi, 1980) if its presence or absence makes no difference to the
cone determined by A. In what follows, we will assume (without loss of generality)
that A contains no redundant columns. In this case dim (¥ ;) = q — #J where #J
is the cardinal of J. Recall that the dim (¥ ;) is defined to be the dimension of the
linear subspace spanned by ¥ .

To a face ¥;, we denote by P; the symmetric idempotent matrix giving the
orthogonal projection onto the space generated by ¥;. As above, for all z, llga)
represents the projection of z onto C [A}.

Now, we shall need the following result which in various forms has been used by
several authors (Kudd 1963, Wynn 1975 and Shapiro 1985).

Lemma 1 For all x € R : lga)(x) € ¥y if and only if Pj(z) € ¥y and = —
Pj(z) € C°[A]. In this case Hcpay(z) = Ps(z) and x — Pj{x) = A;(AA;) 1ALz

3.2.2 The distribution of ¥?

Let us assume that ¥ = igt['A] |IX — z|{* .Then, the following result is an im-
€

mediate consequence of theorem 3.1 of Shapiro (1985).

Theorem 2 Let X be a random vector distributed as Ny (0,1;), then the randomn
variable X2 is distributed as a mixture of chi-squared distribution, namely:

P(*2s") =wP {32+ > wiP(xi;25) (4)
9-p<igg-l

with wy = P (X € C[A]) = P(A'X<0)

and

wi= X P(Ps(X)eU,)P(A;(A;A,) 1 Ajz € C°[4))
q—#J=j

Moreover, wq + Y wi=1

g—p<isg—1



Now we come back to our test. We can write H, = C'[B] with B (by|...]bx11) .
Thus p = £+ 2 and ¢ = &k + 4. It is easy to see that B contains no redundant
columns. Recall that in this case

X% = inf ||Y—:’£”§ 1.
€M, 7

IfY ~ Ng(0,Z;), by a straightforward manipulation of results of theorem 2, we
obtain

PE2)=wP(d22)+ 3 wP(E,28) ()
g—pLi<g~1
with wg = P{X € C[B]) = P (B'X<0)
and
wi= Y, P[B5Y - (B5T,B)) (B4Z,Bs) " B,Y<0] P[(B)S,Bs)"'B}Y >0].
q—#J=j

This result shows that the distribution of ¥? when © = 0, is a mixture of chi-
squared distributions. So, to calculate the probabilities in the right-hand side of
(5), the values of w; are needed. However, even for moderate g(g > 3), good closed
form expressions for these level probabilities have not found. Thus approximations
are of interest. For this, one may use Monte Carlo method (see Diack 1998).

Note that the coefficients w; depend on the vector b; matrices £,. Hence, in what
follows, we denoted %2 by )_C%q (p).

Questions concerning the determination of the distribution of ;‘(%q (p) for any point
of null hypothesis are unresolved. However, Raubertas et al. (1986) generalize the
result of Shapiro (1985) to obtain the distribution of ;'(%q (p) for © in the lineality
space of H, ({x € R? : B’z = 0} in this case). They show that the distribution of
)-{%q (p) is the same for any © in the lineality space of H. and stochastically greatest
among © € H] when @ is in the lineality space of H. (See the second corollary to
theorem 3.6 on page 2822 of Raubertas et al. 1936).

Therefore (5) has the following consequence: the size-« likelihood ratio test with
null hypothesis H:, versus the alternative hypothesis H; is the test with reject the
null hypothesis if

where si,p is defined by

Y wP(i;zsd,)=a (6)

g—p<LiLg-1

Hence s2 ,, is a function of the weights w;.

It is easily seen that all these results are still valid if Y is asymptotically normally
distributed.

Now, the following result gives a sufficient condition of convergence of the power
of the test.

Theorem 3 If infepy | Y —= ”2;' /g — +oo then P ()‘(%q(p) > si,p) — 1,

Proof. Let T be a ¢ x ¢ nonsingular matrix such that TE,T' = I,, that is
Ty =TT, and make the transformation

X=TY, U=To.



Then X is a random vector distributed as N,{U, I,). Define the set of vectors
{a1,...,ap} as

a',- = b’jT_l, (J = 1,...,p).

We have ¥/;0 = a’;U  (§ =1, ...,p), and hence the problem [H;,H;] is transformed
to the following problem [H,, , H;} :

H, :¥;U<0 (j=1,...,p) versus H, : a’;U > 0 for some j € {1,...,p}.

We can write

%%,(7) = min, | X — 2 |[P=]| X Ty (X) 7.

On the other hand,
WU -Tgr () NI U T (X | < | X =U Nl + || X = Hgn (X} ] .

Hence, P (9-{%,, (p) > sg.p) =P (”X - HH;:(X)” > sa,p)
> P(IX = U< ||V ~ e @) - 505) -
Hence, the result follows from Bienayme-Chebychev inequa.lzity applied to the
random variable || X — U || and the assumption ”U = Iy (U)" /g — +0o0. B

The test statistic requires computing the projection Il (Y) of Y. However, a
good closed-form solution has not found. Hence, this probiem requires extensive
numerical work to obtain solution. We propose an algorithm based on successive
projections which has been introduced by Dykstra (1983) (see also Boyle and Dyk-
stra 1985). This algorithm determines the projection of a point X of any real Hilbert
space onto the intersection K of convex sets K; (j = 1,...,p) and it is meant for
applications where projections onto the K;'s can be calculated relatively easily. Let
K be a closed convex cone in JR?. We suppose that K can be written as r]?:l K; and
each K is also convex cone. For all X € IR?, we denote by Xg the I'— projection
onto X, where I' is a positive definite matrix. The algorithm consists of repeated
cycles and every cycle contains p stages.

Let XL, be the appproximation of X5 given by Dykstra’s algorithm at the ith stage
of mth cycle.

The following result (see Boyle and Dykstra 1985) proves that the algorithm con-
verges correctly.

Theorem 4 For any (1<i<p), the sequence { X ;} converges to XL, in the follow-
ing sense:"X,[,;,- - XE“F — 0 as m — +oo0.

Application: Let X = H, be the null hypothesis of the problem [H,, H,] and

let K; = {x € R? : bx<0}. Let T = T7! be the covariance matrix of Y. For all
m e N, m>0, we defined )_C?:., (p,m) by

_ !
x2,(0,m) =Y —Ymp |12,

-1
where Ynf,‘? is given by the pth stage of mth cycle of the Dykstra’s algorithm.
We have then the following equality:

_ z-l 2—1 E_l 2—1
RE,0) =Y ~Vid (2=l Y =Y B+ Yog ~Yi? I

-1 »=1 »-1
T q T
+2 < Y - Ymp ,Ymp - YH; >E;1



where <,>p-t is the inner product on R? defined by ¥, 1. Using now theorem 4,
we see that

-1 -1
“ Ym; "‘YH:' ||§;:—> Das. as m — +00.
o

In the same way, it can be shown that for fixed p and ¢
p-1 p-! net
<Y Yol Yup —YH;" >2;|—>0 a.s. as m — +00.
Hence, )‘(%q {p,m) converges almost surely to )‘(%q (p) as m tends to infinity. There-

fore, to implement the test, we will use )‘(%q {(p, m) instead of 3-622,, (p).
We can now define our convexity test.

3.3 Definition of the test

Consider the problem [H,, H,] where H, means that the regression function f
is convex and H; is the unrestricted alternative.
Let © be the solution of the quadratic programming problem (3). The number of
knots will be a function of the sample size k = k,,. To define @m,kn+2 by

-~ ~5
em,k,,+2 = em',‘k,.+2

with .1 = "%M ~1{u") and where éf;‘k +2 Eiven by the (k, + 2)** stage of the

mt* cycle of Dykstra’s algorithm.
Like this, we will define our test of convexity by rejecting H, when

_ noa &
X?‘rz M—-l(#n)(kﬂ + 21 m) = ;2_ Il @ - emykr|+2 ”i!(p.“)z si,kn+2! (7)

where 52 , |, is defined by (6).

4 ASYMPTOTIC PROPERTIES

Note that the test procedure requires the knowledge of the variance ¢2. How-

ever, in practice, o is unknown and we need a consistent estimate of it. This can be
. . . . "2 1 r -

obtained in the case of the least squares estimator, using &, = Py w3 S —

ﬁ,(m,‘))2 or alternatively, any consistent estimator based on nonparametric regres-
sion techniques.

In what follows, we assume that u™ converges to a design measure g, where p is an
absolutely continuous measure. We denote by G, and G the cumulative distribution
function of x™ and u respectively. The critical region of the test is

_ =2 _™uwa_A 2 2
An,m = {X%M_l(“n)(kn + 2;m) = 6‘—3‘: ” e - em,kn+] I EnZ Sﬂ‘.kn'l'?}'

Now, we are ready for the main result of this section.

Theorem 5 Let f € Fyar with 1 > 3. Let us consider the problem [Ho Hy|. Then,
under the following assumptions:
(B ey E=1,..,7 ;7 =1,..n;) i.i.d. with mean zero and finite variance o*.
(#) ni — +00 and 82 — o? (with convergence in probability)
(#42) sup1 |Gn(z) — G(z)| = o (6x,), as k, — +oo.

0<z<
(iv) . lirﬁl_mrnﬁin ( sup ,u,,') =0
- 1<i<r



The test is asymptotically size a. More precisely,

limsup sup lim Pj(Anm)=c.

n—toofeH, Moo

Moreover, if

() Erfwhﬁnéﬁﬂ = +00

then, the test is consistent for all f, € Hip t.e.:
lim lim Py (Aqm)=1

n—+oom—+o00

The proof of theorem 5 is given in Appendix.

Remark 6 Theorem 5 gives the behavior of the test under the hypotheses Hyp, :
Frn = f+hoL. The fized alternative corresponds to hy, = 1. This formulation allows
us to deal with some local alternatives. From theorem 5, the test statistic diverges
to +o00 under any fized alternative to H,. Moreover, the test has power to detect
local alternatives of the type Hy, approaching the null at rate slower than n~1/28;>.
In the case of gaussian errors, assumption n; — 4o is not needed.
Assumption (iii) is the same as in Aggarwal and Studden (1980)
It is easy to see that assumption (iv) implies that nli.r-{-look =400 .

For a uniform design, ie. p, = 1fr;i = 1,...,r then (iv) is equivalent to
lim né} =0.
n—+o0 "

Discussion: We have proposed a consistent test of convexity of a regression
function in a nonparametric model. While it appears difficult to impose properties
such as concavity on nonparametric local averaging estimators, this restriction is
readily introduced by using a cubic spline estimator. Hence, the idea of the test
exploits the close connection between the convexity problem and the hypothesis
testing problems concerning linear inequalites and normal means. The test is shown
to be consistent against local alternatives approaching the null at rates slower than
n~Y/ 26;“3. It is reasonable to think that the test is more powerful than Yatchew’s
test . Indeed, in general the local convergence rate of k, in which those tests have
power to detect local alternatives is the square root of the rate at which the test
statistics converge to infinity. Yatchew’s test converges to infinity at rate n!/2 (see
Diack 1998). It has then a power to detect local alternatives approaching to the
null at rate slower than n=1/%. Therefore our test is more powerful in detecting local
misspecification. In Diack (1998) one can see that Schlee’s test has local properties
similar to ours (see theorem 3 Diack 1998).

The test is also easy to compute. A simulation study in Diack (1998) shows that
the test has adequate size and its behavior for small sample is better than Yatchew’s
and Schlee’s. However, further extensive study on the choice of the number of knots
is necessary.

A test of monotonicity can be readily constructed paralleling the above convex-
ity test with quadratic splines instead of cubic splines. This additional step is still
under study.

Appendix For the proof of the theorem 5, we need to use some preliminary
lemmas. Lemma 7 which is obtained by a straightforward manipulation of results
of Schumaker (1981), gives a sup norm error bound when approximating a smooth
function with a cubic spline.

Lemma 7 There is a constant ¢ such that for oll f € Fy ur, there is a function §
in S(k,4) such that:
sup |f (2) — S (z)| <eb,-
0<z<1

10



Lemma 8 is a consequence of results of Betason (1982). It gives a similar sup
norm error bound when approximating a convex and smooth function with a convex
cubic spline.

Lemma 8 There is a constant ¢ such that if f € Fi pr s convez, then there exists
a convez functions § in S(k,4) such that:

sup |f (x) — 5 (z)| <eb,,-
o<zl

Lemma 9 has the following consequence: if &i converges in probability to
0% then % || © — © k11 ||%, has the same asymptotic distribution than % ||

E) —ém,kn 2 H12VI( un) - Reader is referred to Lehman (1986) for a proof of this lemma.

Lemma 9 Let X,, be a random variable converging in distribution. Let a, and
b be random variables converging respectively in probability to a and b. Then, the
random variable a, X, + b, converges in the same distribution as aX, + b.

Proof.
6 = M~ (u")FD(u")Y.
From Lemma 2, there is a function § in &(k,,4), such that :
sup | f(z) — S(z) | <cbi, -
D]
S € S(kn,4) hence, there exists © € R**** such that S(z) = N'(x)©.
Let
Sa = (S(z1), .., 8(z,)) = (N'(21)8, .., N'(z,)0) = F'©.

Then,
M~ (u")FD(u")Ss = M~ (u*)FD(u")F'© = ©.
Let
8 = MM (u")FD(u™)(Sa +&).
Then

. —~ 2
EbH=6 and s@«»N(@),%M‘l(p")).

{with ~» meaning convergence in distribution).
Therefore, we can write

6=,6+B, ad EB=0+B,

with B, = M1 (p.n)FD(;.Ln)(fA = Sa)
Now, let us recall that the test statistic is given by

— n P =
X%M_I(F,,)(kn + 2;m) = F ” O — G):’ra.,}'c,1+2 ”?W(,u") :

But, for m sufficiently large and for fixed n, (see section 3.2.3 } we have:
<2

Xg2 5y (“")(kn + 2,7} converges in probability to
2 pyo1 (o n +2) = 75 18 = P(®) I
MmN o2 M(un)

11



where P(@)is the M{u"™)—projection of O onto the polyhedral cone
K={ze R"* :¥2<0, 1=0,..k,+1}.
Besides,

_ nooa A
%2 1 +2) = 75 [| (B = 48) + (B = P(,8)) = P(B) + P(,8) (s -

We can rewrite this in the following form:
_ n oo =
X%T I—l(pn)(kﬂ + 2) = ? ” -9@ - P(-‘?e) ”12‘-4'(;;")

n o
+=3 |l Ba ||J\J(p")+ 7 1| P(s8) = P(s8 + Ba) |I34um)

2n .
+ 7 < e P(s(-)) By, > M () -[‘“2 < @ P( @) P(,@) (s@+Bn) > M (un)
2n ~ o
+§ < BrnP(se) - P(se +Bn) > M{pn)

where <, > (un) is the scalar product defined by the metric M (p™).
It is easily seen, as in Diack&Thomas (1998) (see formula 3.5) that

1/2
n
. \/ 57 I Ba Pl MGy |1 = O (r”znl/zakf ( sup m) )
feFm ¥V O 1<igr
It follows that
limsup sup ‘/ B, =0
n_’+°°fe}-l,M 2 || ”"M,(P" )

Using now the fact that projections onto closed convex cones are contracting maps
as are projections onto linear subspaces, we obtain

n -~ o~ n
-2 [ P(s©) = P(s;© + By) 134 (emy <= Il Br 1134 (un) -
Then

lim sup sup --HP(@) P(e“‘B)'M(.u y=0 as.
n—+00 fEF m

It follows that

lim sup sup 2— < B,,P(;© ) P(sé+Bn) >mEy=0 a.s.
n—+co fEF, M

On the other hand

2n ~ ~
| =5 <0~ P(:0),Ba >mum)] < s = 1168 = P(s8) Ilasumy || B llneun)

12



And also

2n o . - -
; < se—P(se):P(se)_P(se'l'Bn) > ()
2n =~ .

== | 1.&- P(:0) llaruy 1| Bn Hasqumy

Then, there is a sequence a,, of reals converging to zero such that

n -~ ~
Py (R pyos umy o +2) 2 p,42) <Py (14 n) 5 1168 = PU:B) [Byumy 2 52 ha2)

Now, under the null hypothesis, S is convex. Thus © € K. Then, since the distri-

bution of ¥ x,, — ,,)(kn + 2) is stochastically greatest among © € K when © = 0,

we see that
” s(:j - P(sé) “M(p") = || :@ -0 - P(sé _6) I:M(.u") .
Moreover,
~ 0'2 1
B -0~ N(O, T M (™)
Hence,
P(11:6-0-P(8-0) iz )= 3 wP(G25)

2<i<kn+3

Therefore, we can write that

limsup lm sup Ps(An,m) = limsup sup Py ( 2. _[(yn)(kn +2) > sg'k”z)

n—+too M+ fe g, n—+oo fe€Ho

n -~ -
=limsup sup Ps [ — || s© — P(:©) |%;(.n\2> 52 )
n—»+0£ fEII'i?o 4 (0'2 ” ¢ (s ) I M{pn) o kn+2

. n o~ -
<limsup sup Py (—2 | :©—© — P(:0 — ) |30y 3§.k,.+2)
n—+oo fE€Ho g

= lim sup llm ‘Po(Anm)

n—4oo M—

Then the test is asymptotically of size c. It remains to be proven that the test is
consistent against local alternatives. From theorem 3, it suffices to show that

7 o~ o~
(ﬁ ” Fo - P(IE@) “?W(u") 1‘5kn — +00.
As above, we have
n = P n
2 11 B8 — P(B8) |3 (umy= 25 1| B +© — P(Br+0) [y -

In other words

13



7| Eo - PuB) | = 2510 = PO)isum + 55 1Brlirguey

2n
> < © = P(0), Br >p1(un)

n 2
+§ ”P(e) - P(@ + Bn)”}pj(_un) + O'_

2n
3 <9 - P(0)+Bn,P(@) —P(9+Bn) > M(p)

+—
a

In the same way as above, we see that

n
—2 |l Bx |13 ¢umy— O-

n
52 {1 P(8) = P(© + B,) 3 ¢umy— 0-

Hence

2n

i1
~5 [<© = P(8),Bn >ppuml=€n (0—2 [1© - P(©) ||?\f!(,u."))

and

2
=7 1< © = P(©) + By, P(O) — P(O + Ba) >urun)

U i
=& (55 10— P(©) I3 )

where €, and ¢, are nonnegative reals converging to zero. Therefore, the consistency
of the test will be established when we show that

n
5 110 = P©) |3(um) b5, — +o0.

If f, € Hi, then S is also non-convex and therefore, © ¢ K. Hence, there is a face
W of KC such that P(©) lies in ¥; with ¥, defined by

U;={ze R"* Bz =0, B5r<0}.

Therefore, from lemma 1, P(9) is also the orthogonal projection of © onto the
subspace generated by ¥; and ® — P(@) is also in the polar cone of K. That is to
say

T ’ . n = r
=3 [1© = P(O) 1= o5 (B0) (BLM ™' (u")B,) ™" (B©)

And
(B5M~Y(y™)B;)~1B4© > 0. .
B30 - (B'FM _1(#“)3.:) (B} M~ (u")B;)1B,0<0 (8)
Besides,
7 2 7 2
(B,0) (B)M~1(1™)B,)~ (B,0) » DO 15,

"B M () Byl T B M ()]

14



Since now, the sequence of knots is quasi-uniform, it is easy to see that

b ||=0 £ b ) =0 (872).
WP 16 ll=O(_inf | 1185 11) = O (57)

On the other hand, BJB_; is a band matrix. Thus, |B;|* = © (6:4).
Hence, we see that ( using the fact that || M{(u™) ll-* O(8x,) and || M~} (y™) ||=
O (53) see Diack& Thomas 1998) for n sufficiently large,

55 16 = Px(©) IByumy> 55 (Z (fs (n,-))?') ..

FEJ
Since f, = f +h,L" we will be finished when we show that: for n sufficiently large
> (fn (nJ)) > € where € is a positive real.
ied

Firs, i is clea that 32 (Fa (n,)) = = (5 ) 1z n,)<0)-
On the other hand, from (8) we have

BLO< (ByM~(u")B,) (B, M~} (u")By) ™ B4©
Then for n sufficiently large,
I e n —_ 1t _ 2 " 2
1(B5M~ ™) By) (ByM ("B BIOI 2 37 (£ (1)) gz (o, )<0)
JjeJ
Therefore,

(B2~ (u™)By) || (B M~ (6™ B P Y (i () Z_ £ (1)) 172 n,) <o)
eJ

jed

We have || (B500-1(5)B, )| < BI 242

Moreover
! - (Byz) M~ (™) (Byz) . yM NNy o
7 = min <min B
(B, M1z B,y ] Py Iz R B,
[E:]§
<——
M
Then
- n 2 I — n —1n2
(B2~ (5B | [[(By M~ (™) B! = 0(2)
Hence,

2 (fa (1:))" 2 0 37 (7 (1)) Y <o

ieJ Jed

Because the knots are dense in (0, 1) one can deduce that

S Unm))2c sup (£ @) 1 rrco] > €

J€d =€l0,

where ¢ et € are positive constants. We have
n
pc3 II© - P(©) Hi:(un) Ok, — +o0.

The consistency of the test for local alternatives follows. m
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