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Abstract

The aim of this paper is to present a class of regression models
adapted for spatial data and to discuss its implementation in
Matlab.

1 INTRODUCTION

Data coming from a geographical background often exhibit spatial dependence.
For example, the evaluated measures of economic activities between two neigh-
bouring districts are often linked. Indeed, the presence of some economic activity
in one of these districts may explain the absence of this activity or the presence
of a complementary activity in the other. Moreover, rich districts might have
attractive effects over their neighbours while poor districts might have repulsive
effects. Thus, there are possible interactions between two neighbouring districts:
this is the contiguity notion.

Besides, the presence in the physical environment of some fertile lands may
result in an over-intensification of the agriculture over these areas. Hence, the
position in geographical space is an important characteristic for the spatial
objects which are analysed.

One of the main objectives in spatial analysis is to identify the nature of
relationships that exist between variables taking into account their covariance
structure. For example, in the presence of heteroscedasticity -that is often the
case for geographical data- the frequently applied ordinary least squares esti-
mator is inefficient since the estimator of the residual variance is biased and the
values of the estimated R? are inflated (see Anselin et al. 1995). Hence the tests
of spatial dependence are affected. To overcome this problem, one may use the
weighted least squares estimator {see Haughton and Haughton 1997).
However, one of the characteristics of models for spatial data is that the er-
rors may be spatially autocorrelated. In this case, the weighted least squares
estimator may be inefficient since this one does not incorporate spatial effects.



There is a wide class of possible models which incorporate spatial effects of this
nature, and the challenge is to choose the appropriate one.

A conventional approach is to assume that the model has an autoregressive-
error structure as in Florax and Folmer (1992). In this class of models, the
most general has the following form:

y = YWy+XB8+WeX"p+e,
£ = AI’V3E'|'I""1

where y is the (n x 1) vector of observations on the dependent variable. Wy, W
and W; are priori specified (n x n) spatial weights matrices. X is an (n x p)
matrix of observation on the independent variables, X* the (n x (p— 1)) matrix
of explanatory variables with constant term deleted. ¢ is the autocorrelation
coefficient, 8 the {p x 1) vector of coefficients of the non weighted independent
variables, p the ((p — 1) x 1) vector of crosscorrelation coefficients, A the co-
efficient of the autoregressive error term. x is a vector of random errors with
E(p) =0, E(zp') = 0202 and Q a positive diagonal matrix.

Even though the underlying economic theory provides little guidance on the
choice of model, it is very important to incorporate an appropriate specification
of spatial effects. This is a real challenge in spatial regression.

The structure of the paper is as follows. In the next section, we present
the different regression models which can be derived from the above model by
introducing constraints. After, we will briefly discuss the choice between these
models. Section 3 describes the implementation of these models in Matlab.

2 Spatial Regression Models

As in times series, several standard models may be considered. Under the
assumptions that (I — AWj3) is invertible and | A |< 1 for reasons of stationarity,
we can rewrite the above model in the following way:

y =Wy + XB+ WaX*p+ (I — AW3) Iy (1)

In the sequel, we denote model (1) by (GSR): General Spatial Regression.

Let us point out that the (GSR) model admits (2p + 2) unknown parame-
ters (¥, 8, p', A, 02)'. Hence, this model requires at least two different weights
matrices (W) # Wy or W, # W3). Otherwise, the unknown parameters are
not identified (see Anselin 1988). However, for the below submodels, one may
suppose that the a priori specified spatial weights matrices Wy, W, and W3 are
equal (say to W). W is the spatial version of the lag operator in times series and
is a contiguity matrix. Given a geographical area with n locations, a contiguity
matrix is a matrix of size n x n with element W3, 7) defining the intensity of the
dependence between two regions. One often assumes that ), W (i, ) = 1. This
latter constraint implies that each region is influenced by at least one neighbour.



Let us note that W is not necessarily symmetrical and must receive serious at-
tention. Indeed, the contiguity matrix is a spatial weight matrix which captures
the effects of spatial autocorrelation and there are many ways to construct it.
For example, one may define a contiguity matrix considering a function of the
distance or the time which seperate two regions. Therefore, the problem is to
choose an appropriate specification of W. A misspecification of the contiguity
matrix has an impact on hypothesis testing with respect to spatial dependence
among residuals. Its effect is evaluated by Monte Carlo simulations on the power
of the Moran’s index and the Lagrange Multiplier tests for spatial errors and|or
the spatial lag (see Anselin et al. 1995).

To explain the presence of autocorrelation and crosscorrelation in the model
(GSR), one may take the following example from Florax and Folmer (1992):

Consider an aggregate regional production function where regional production
i treated as a function of inter alia the availability of labor. Autocorrelation
then implies that regional production in region r is also influenced by regional
production in regional v/, whereas cross-correlation indicates that the regional
production in region r is also influenced by the availability of labor in region
r'(r # r'} (Florex and Folmer, 1992, pp 410).

Of course, in this model, ¥, 3, p and A are unknown and must be estimated.
In order to derive the maximum likelihood estimator, let us write the log-
likelihood.

Consider the following notations:
A=1-MW3, B=I-yW, X=[X|WX'], v=(8,0)"

When the errors p are normally distributed, by a straightforward manipulation,
one can show that the log-likelihood function is given by:

L = —(n/2)logm— (n/2)logo? +logdet A + logdet B
+(1/2) log det 2~ — (1/20%)(By — X~)/(A'Q~1 A} By — Xv)

However, in general -that is to say when A # 0 and|or % % 0— the maximum
likelihood estimates for 3,p and o? can be found through maximisation of the
concentrated log-likelihood as suggested in Anselin (1980). That is to say:

first, we assume that 1 and X are known to derive the maximum likelihood
estimator for 3, p and o2. After, we inject these estimators in the log-likelihood
function to obtain the concentrated log-likelihood function in ¥ and A. We
then get the estimators of the nuisance parameters ¢ and X by maximizing
the concentrated log-likelihood function. Via an iterative procedure, maximum
likelihood estimates for 1, 8, p and X are obtained.

In what follows, we assume that Q-7 is the diagonal matrix with diagonal
term {w;}7L; and that the errors p are normally distributed.



2.1 The Weighted Least Squares Model (WLS):

This is the most simple case corresponding to ¥y =A=0and p=0.
The model is defined as follows:

y=XB+p

The maximum likelihood estimators (MLE) of the coefficient 5 and the variance
o2 are given by

O‘_‘g = II ¥ — -Xﬁ ”?‘;—1

ﬁ = (ng—lx)—lxrg—],y, =

A predicted value of y is given by: ¥ =X B.
2.2 The Spatial Autoregressive Error Model (SARE):
This is the case when ¥ =0and p=0:
y=XB+(I - AWs) 'p.
For a given A we have:

Hy— XB(A) ”%A'n-lA)

n

B = (X' AQIAX)IX(AQ 1 A)y, o2()) =
Hence, it is easy to see that the concentrated log-likelihood in A is given by :

L\ = -(n/z)logzqr-(n/z)loga“z()\)+(1/2)ilogw,-

i=1

+ilogll — \6i| - (n/2)

t=1

where {§;}]., are the eigenvalues of the weight matrix Wj3.
A predicted value of y is given by

T= X3+ \Ws2 = X5+ AWay - WaX).

2.3 The first-order Spatial Autoregressive (SLY):
This is the case when A=0and p=0:

y=yWiy+ XB+pu



For a given 1 we have:

3('#(’) = (X'Q"IX)—]X'Q_IAy, &2(¢) = ” Ay — Xﬁ(‘d’) ”2—1 .

n

The concentrated log-likelihood in 9 is given by
L) = —(n/2)log2m — (n/2)logo(¥) +(1/2) ) logws
=1
+Y_log|1 - p8:| - (n/2)
i=1

where {6;}}..;, as in above, are the eigenvalues of the matrix W;.
A predicted values of y is given by : 7 = Wiy + X5.

2.4 Spatial Weighted Crossregressive Model (SLX):
This is the case when ¥y = A =0

y=XB+WoX*p+u (2)

Model (2) can be rewritten in the following way:

v=Xy+p (3)

Therefore, the (SLX) model is equivalent from the computational point of view
to the (WLS) model with independent variables defined by X and regression
coefficient by ~.

2.5 Mixed Crossregressive and Spatial Regressive Model
(SLYLX):

This is the case when A =0:

Yy=y¥Wiy+ XB+WoX'p + p (4)
One can rewrite model (4) in the following form:
y=9Wi+Xv+p. (5)

We see that the (SLYLX) model is equivalent from computational point of view

to the (SLY) model with independent variables defined by X and regression
coefficient by .



2.6 Mixed Crossregressive and Spatial Autoregressive Er-
ror model (SLXARE):

This is the case when 1 =0

y=XB+WoX*p+ (I - AW3) s (6)

This model is equivalent from computational point of view to the following
(SARE) model:

y=Xv+ (I - AWs)"p. (7)

2.7 First-order regressive and Spatial Autoregressive Er-
ror Model (SLYARE):

This is the case when p=0:

y = vWiy + XB+ (I - AW3)'p.
For given ¥ and A we have:
By, A) = (XTA'QTAX) 1 X' (A1 A)By
and

I} By — XB('IP:A) “%A:g 1 )
n .

a2(, \) =

The concentrated log-likelihood in % and A is given by:

L)) = —(n/2)log2?r—(n/2)logc;2(1,b,)\)+(1/2)ilogw,-

i=1
+leog 11— pos| + Y log |1 — A8i| - (n/2)
i= i=1

where {a;}7, and {6;}/1, are respectively the eigenvalues of the weights ma-
trices W, and Ws.
A predicted value of y is given by

T= Wiy + XB + \Waly — XB ~ vWhy).



2.8 How can we choose a model?

Once again, a real challenge in applied spatial regression is to choose the ap-
propriate model. Indeed, it is often awkward to estimate directly the general
model (GSR). The problem is then: is it appropriate to include autoregressive
disturbance and|or a spatially lagged dependent variable? Do we have to intro-
duce spatially lagged independent variables?

To handle this problem, various attemps have been made. There are various
test statistics for spatial correlation among the residuals such as the Moran in-
dex, Geary’s index, Lagrange multiplier tests, the Cliff and Ord statistic, etc
(Anselin et al.1995). Moreover, to handle the problem of the misspecification
of spatial regression models, Florax and Folmer (1992) propose an algorithm
using Lagrange multiplier to choose between these models. We have already
mentioned that these tests are crucially dependent on the contiguity matrix.
Let us discuss in more detail the Moran index. For a standardized sequence
Y1+ - Yn of measures with mean zero and for a given contiguity matrix W such
that EJ. Wi; = 1 and Wy; =0, the Moran I index is defined as follows:

" (n/So) 32, Zj Wisvsy;
- E,‘ y? ’

where So = 3, 3°. W;;. Hence, the Moran index is the ratio of the covariance
between neighbouring measures over the variance of these measures. Therefore
I has a definition similar to the autocorrelation coefficient. When the ¥ are
normally distributed and under the hypothesis that there is no spatial autocor-
relation, the first two moments of I are given by:

I

n231 e nSg + 333
—Dn+ DS

E(l)=-(1/n-1), E(I*)=

where

51=(1/2) )" (Wy; + Wy)?

i,
and

Sp=) (Wi + W,)* with Wy =) Wy and W; =3 Wy
i i

i,j

After normalization, one may use the Moran index to test the autocorrelation of
the disturbance. It is easily applicable and efficient enough. However, the Moran
index points out whether there is or not a spatial autocorrelation but does not
tell us what kind of autocorrelation there is. For two appropriate models with
spatial autocorrelation (that is to say when models are not rejected by the test
using the Moran index ), one can use the Akaike information criterium (AIC)
or the Schwarz bayesian criterium (SBC) for model selection.



3 Implementation in Matlab

We have implemented all these models in Matlab and we will describe in this
section the spatial regression function library. However, one can find in the
following web adress http:/ /www.econ.utoledo.edu/matlab_ gallery/index.html,
some of these packages in a simplified version(corresponding to models SLX, SLY
and SLYARE). One will find in this adress other interessing spatial econometrics
functions.

Our library contains sevaral packages and each package corresponds to one
of these models. Because all these packages are made in the same way, we will
describe just one of them: say the package corresponding to model (SLYARE).

This package is formed by three Matlab functions: p_slyare, slyare and
1_slyare. First of all, Jet us recall that the model (SLYARE) is define as follows:

y=yWiy+ X8+ (I — W3y

o | = 1_slyare ([, ], y, X, W1, W;, Q) returns the reverse of the concen-
trated log-likelihood function of model {(SLYARE). £ should be a column
matrix equivalent to the diagonal covariance matrix of errors. We assume
that X (:, 1) contains a constant term.

o slyare(y, X, W1, W;,§l) computes the first-order Regressive and Spatial
Autoregressive Error model (SLYARE) y should be a (n x 1), X is the
{(n x (p — 1)) matrix of explanatory variables with constant term deleted.
results = slyare(y, X, W;, W3, Q) returns several items (see annex) the
more interesting are printed out by the Matlab function p_ slyare.

o p_slyare(y, X, W1, W3, 2, vnames) prints output from slyare regression.
Here, vnames should be an optional {px1) vector of variable names ordered
with y, 21, 22, etc. Results is returned by slyare().

results(l:p,1) = 3

results(p+1,1) = ¢

results(p+2,1) = A

results(l : p,2) = t (asymptotic student statistic of coefficients E)
results(1,5) = ORSS (ordinary residual sum of squares)

results(2,5) = R? (Warning: there is no precise counterpart to R? in
the generalized regression model but here we will take R? = Fish/((n —
p)/(p— 1) + Fish) where Fish is the Fisher’s statistic)

results(3,5) = R4 (adjusted rsaquared)
results(4, 5) = ! {log likelihood)
results(5, 5) = n (sample size)

results(6,5) = p ( p— 1 is the number of independent variables)



results(8,5) = AIC = | — p (Akaike information criterium)
results(9,5) = SBC =l — .5plog(n) (Schwarz Bayesian criterium)
results(10,5) = Fiish (Fisher’s statistic)

results(11,5) = IR (Moran’s residuals coefficient)

results(12, 5) = stIR(Standardized IR)

Let us point out the fact that all these functions require to run first eigu().
This latter compute the eigenvalues of contiguity matrices Wy, Ws.

eigu(W1, W3) returns the (n x 2) matrix of the global vectors delta (size
(nx1)) and gamma (size (n x 1)} the eigenvalues of contiguity matrices W;, Ws
respectively. eigu() run fast and of course we need just to turn it once only
whatever they may be the following functions.

Finally, our procedures are useful. In application with a real data set, all
these procedures with n = 162 and more than 5 explanatory variables took about
5 secondes of real time on a 333 MHz machine using a PC version of Matlab v.
One may download a self executable file containing all these functions from the
following Web adress:http://www.eurandom.tue.nl/diack
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