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Abstract

In this paper, we develop two consistent nonparametric tests of
the monotonicity of a regression function. One is related to the
so-called one-sided testing problem in multivariate analysis. It is
analogous to Diack’s test of convexity of a regression function. The
other test is an adaptation of Schlee’s idea in a nonparametric model
with fixed design. The tests are consistent against all alternatives
and have power against local misspecifications.

1 INTRODUCTION

Shape restrictions on a functional parameter such monotonicity arise in a variety
of statistical models. Indeed, monotone functions have played an important role in
data analysis.

Whenever monotonicity is avalid assumption, it is advantageous to impose mono-
tonicity on a nonparametric local averaging estimators. However, when the true
function is non-montone, this restriction may lead to erroneous inference. Thus
there may be several competing models. Therefore, test of monotonicity provide a
way in order to prevent from wrong conclusions.

In our best knowledge, only Schlee (1980) is concerned by the problem to test
the monotonicity of a regression function.

Schlee’s test uses, in a nonparametric model with random design a modified
version of the kernel estimator. His test is based on the greatest discrepancy of
an estimator of the first derivative of the regression function from zero. However,
Schlee does not discuss asymptotic results of the test.

In this paper, we propose two consistent nonparametric tests of the monotonicity
of a regression function. One is related to the so-called one-sided testing problem
in multivariate analysis. It is analogous to Diack’s test of convexity of a regression
function. For this case, we will estimate the model by a quadratic spline estimator
which allows us to formulate the monotonicity hypothesis in a very simple way.
The other test is an adaptation of Schlee’s idea in a nonparametric model with
fixed design. As Schlee, we will use a kernel estimator (but different) of the first
derivative of the regression function.

2 TEST VIA QUADRATIC SPLINE

The methodology is similar to that used by Diack(1999) to construct a convex-
ity test of a regression function. The basic idea uses a connection between (1) a



hypothesis test of monotonicity of a nonparametric regression function based on a
quadratic splines estimator and (2) a hypothesis test for normal means constrained
by linear inequalities.

We will consider the following nonparametric regression model:

yij = flz) +egi=1.,ni=1.,n =€ (0,1},i=1,..,7

At each deterministic design point z;, (i = 1, ...,7), n; measurements are taken. The
probability measure assigning mass p; = n;/n to the point z;(3_ p; = 1) is referred
to as the design and will be denoted by ™. We assume that the random errors €;;
are uncorrelated and identically distributed with mean zero. Their variance o2 will
be assumed unknown. Finally f is an unknown smooth regression function.

In what follows, we will assume some regularity conditions on f.

Consider the following class of functions:
Forl€ Wand M >0, let

Fim={fec*(0,1): s | SO () | <M}
<zl

We intend to contruct a test of Hy : “f is monotone” versus Hy : “f is non-
monotone.”

It would be interesting to know how the test behaves under the local alternatives.
So, we might consider a sequence of local alternatives Hy, : “fn = fo+hnL” where
fo is a fixed function in the null hypothesis and L is known and lies in F;,5s. This
formulation includs the fixed alternative which corresponds to h, = 1.

Throughout this paper, a testing problem with null hypothesis Hy and alterna-
tive H, is denoted by [Hp, H1).

We will use a quadratic spline estimator and characterize monotonicity in a very
simple way.

2.1 The Quadratic Spline Estimator

Let p be a positive continuous density on (0,1). We assume that

S p(z) > 0.

Let 7y =0 < 7y < ... < Mgy = 1 be a subdivision of the interval (0,1) by k distinct
points defined by

fmp(w)dx=z'/(k+1), i=0,.,k+1 (1)
0

Let §; = maxocick (i1 —)-

For each fixed set of knots of the form (1), we define S(k,d) as the collection
of all polynomial splines of order d (degree<d — 1} having for knots 7; < ... < 7.
The class S(k,d) of such splines is a linear space of functions of dimension (k + d).
A basis for this linear space is provided by the B-splines(see Schumaker 1981). Let
{M,.., Nrya} denote the set of normalized B-splines associated with the following
nondecreasing sequence {1, ..,tx424} ¢

h<ta<..<tg=0
todik 2 todek-1 = oo Z a1 =1
tagr=m; for 1= 1,..,k



The reader is referred to Schumaker (1981) for a discussion of these B-splines.

In what follows, we shall only work with the class of quadratic splines: S(k, 3).
It will be convenient to introduce the following notations:

N(z} = (Ni(z), .., Neys(z)) € B**® and F = (N(z1),..,N(z,)); (k +3) x 7
matrix. N

We will denote by f, the least squares spline estimator of f :

R k+3
Fa(2) =Y 6pNp(a) (2)
p=1
where
" . . r ony k+3 2
O=(01,...0k3) =arg min >3 lwi— > 0pNp(z:) ] . 3)
e R** i =1 p=1
Let

]

1 & 1 &
¥ E,—Zlyih £ = n—izeij,

=1
Y = (‘571, "1@')’15 = (5-1:":5-1')’ and fa = (f(:t.‘1), -y f(xr))!

Let D(u") be the r x r diagonal matrix with diagonal elements y,, ..., .., then, basic
least squares arguments allow to prove that:

8 =M (WFDEMP with M(u") = 3 N(z)N'(zi)u; = FD(u™)F'.

=1

Asymptotic properties of this estimator have been established in Argarwal and
Studden(1980).

Note that the first moment of 7, is given by
Efn(z) = N(@)' M~ (") FD(u™) fa.

Thus, if f is a quadratic spline function (that is to say there is © such that fa =
F’©) then f, is unbiased and PO = ©.

2.2 Monotonicity in §(k,3)

Because, in the sequel, only non-decreasing functions will be considered, we wilt
use the term non-decreasing function and monotone function interchangeably. Note
that, if a function g is a quadratic spline, then its first derivative is a linear function
between any pair of adjacent knots 7, and n,;, and it follows that g is a monotone
function in the interval n;<z<#n;,, if and only if g’(n;) and ¢(n,,,) are both non
negative (this property was used by Dierckx (1980) to define a monotone estimator).
For a function g in the class S(k, 3), we can write:

k+4
9(z) =D 6,N,(zx) with ©=(0y,...,0k43)' € RS,
=1
k+3 k+3
Then:  g'(n) = OpN'p(m) = Y Opdpy,
p=1 =1



where the coefficients d,; are easily calculated from the knots (see Dierckx 1980).

for 1=0,..,k+1

dH'l L N Y

{ dpr=0ifpAl+1orptl+2
—2
diy2q = —di4

Let b = (0,0,...,0, —di41,0, ~di42,1,0,0,...,0) € R**%and O = (84, ..., Ok+3)’,
then

g'(n)=-V0O.

Hence, we see that a quadratic spline g is a monotone function if and only if b 0<0
for all I = 0, ..., k+ 1. Therefore, a test for monotonicity in S(k,3) can be written
as Hy: ¥,0<0for all [ =0,...,k + 1 versus H, : %0 > 0 for some ! € {0,...,k+1}
and where © is the mean of the random vector ©. We will use below this property
to construct our test.

2.3 Definition of the test

Let Y be a random vector distributed as AG(©,Z,) (g € N, ¢ > 0) where &,
is a known nonsingular matrix.
We consider testing Hy : ¥:©<0 (I = 0,...,p) against H, : ¥/© > 0 for some
l€{0,..,p} with (p<q)

In this paper we identify a hypothesis with the corresponding set of parameters.
For example, we write Hy = {6 € R? : 1/,6<0}.
It is easy to see that, the likelihood ratio test (LRT) rejects H,, for large values of
the test statistic

%%,(0) = inf |~ 2.

1t is worth noting that H, is a polyhedral cone and is thus closed and convex.
Hence, for a given Y, this infinimum is attained at unique point denoted by Il (Y)
and represents the squared distance from Y to H;.

We shall introduce some useful notations. Let B the ¢-by-p matrix defined by
B = (b1]...|bp). Let J be a subset (possibly empty) of {1,..., p} and let J be its
complement. By will be the matrix consisting of those columns of B indexed by
the elements of J. The matrix By is defined analogously. Finally #J will be the
number of elememnts of J.

Therefore, using formula (6) in Diack (1999), we see that: the size-a likelihood
ratio test with null hypothesis H; versus the alternative hypothesis Hi is the test
with reject the null hypothesis if

7_()3., (P) 2 33:.;:
where 2 , is defined by
S wiP(xg_j2s,) = (4)
g-pLisg-1

and where

wj= Y P[BYY —(B5%eBy) (B)Z,Bs)™'B}Y<0] P [(ByZeB,)y'ByY 20].
q—#J=J



Moreover,

wo + Z wij=1

—PLigg—1
where wy is given by wg = P {B'Y <0).

To calculate the probabilities in the right-hand side of (4), the values of w; are
needed. However, even for moderate g(g > 3), good closed form expressions for
these level probabilities have not found. Thus approximations are of interest. For
this, one may use Monte Carlo method, what we will do in simulation study.

The test statistic requires computing the projection I, (Y) of Y. However, a
good closed-form solution has not found. Hence, this problem requires extensive
numerical work to obtain solution. As Diack (1999), we propose an algorithm
based on succesive projections which has been introduced by Dykstra (1983) (see
also Boyle and Dykstra 1985). This algorithm determines the projection of a point
X of any real Hilbert space onto the intersection K of convex sets K, (7=1,..,p)
and it is meant for applications where projections onto the K;’s can be calculated
relatively easily. Let K be a closed convex cone in &?. We suppose that K can be
written as (¥_, K; and each K, is also convex cone. For all X € [R?, we denote by
XY the I'— projection onto K, where I is a positive definite matrix. The algorithm
consists of repeated cycles and every cycle contains p stages.

Let X[,; be the appproximation of X£ given by Dykstra’s algorithm at the ith stage
of mih cycle.
For al m € IN, m > 0, let use define )‘(%w(p, m) by

= ;!
%2, (pm) =l Y —Ymg |2,

Using Boyle and Dykstra’s results, Diack(1999) prove that )-C%q {(p, m) converges al-
most surely to )‘c%' (p) as m tends to infinity. Therefore, to implement the test, we
will used %3, (p,m) instead of X%, (p).

Now, we are ready to define a monotonicity test.

Consider the problem [H,, H,] where H, means that the regression function f
is monotone and H; is the unrestricted alternative.
Let © be the solution of the quadratic programming problem (3). The number of
knots will be a function of the sample size k = k,,. To define ém,k“+2 by

ém.kn+2 = éf,':kn+z, (p=kn+2)

with L1 = %ZM ~1(u™) and where éf;:kn +2 given by the (k, + 2)"‘ stage of the
m** cycle of Dykstra’s algorithm.
Like this, we will defined our test of monotonicity by rejecting H, when

- noa A
ngan_l(“n)(kn +2,m}= 72 [1© — Ok, 42 ”?\4(,‘»)2 3g,kn+2: (5)

where sZ , _, is defined by (4).

In pratice, ¢ is unknown and we need to estimate it. This can bg obtained in the
case of the least squares estimator, using 42 = ) Loim1 (Fi — Fal(2:))? or alter-
natively, any consistent estimator based on nonparametric regression techniques.
In what follows, we assume that p™ converges to a design measure 4, where p is an
absolutely continuous measure., We denote by G, and G the cumulative distribution



function of u™ and p respectively. The critical region of the test is

n - Pong
= (3, ®n +2m) = 73118 = Bmrsa 18,2 s}
n

o M-l{un
The following theorem give a result about the size and the consistency of the
test.

Theorem 1 Let f € Fiy with | > 2. Let us consider the problem [H, Hi]. Then,
under the following assumptions:
(@ ey li=1,..,r; _'; =1,..n;) i.i.d. with mean zero and finite variance ol
(i) n; — +o0 and 32 — 02 (with convergence in probability)
(3} sup |Gn(z)— G(2)| =0 (6r,), as kn — +o0.
T

(iv) n_li’n}_mrnﬁgn sup p; | =0

1<i<r
The test is asymptotically size a. More precisely,

lim sup sup hm Pf (Apm)=c
n—toofeH,M

Moreover, if
(v) lim h2nb; = +o0o
n—+oo "

then, the test is congistent for all f, € Hi, i.e.:

nlltl-.lr-looml—l'l-ri-loopf“ (An‘m) =1

The proof of theorem 1 is in every respect similar to the proof of theorem
5 in Diack (1999). The differences between the assumptions (iv) and (v) of this
theorem and the corresponding hypotheses of theorem 5 are due:

o For assumption (iv) . Instead to use lemma 7 and lemma 8 in Diack (1999),
we have to use the two following lemma which are respectively consequences
of results in Schumaker (1981) and in Beatson (1982).

Lemma 2 There is a constant ¢ such that for all f € Fi u, there is a function
S in S(k,3) such that: sup If (z) — 8 (z)| <cby, -

Lemma 3 There is a constant ¢ such that if f € Fi ar is monotone, then there
exists a monotone functions S in S(k,3) such that: sup If (z) — §(z)| <cb .
<z

e For assumption (v) we have

b ||= O b; ||) = © (67}
wﬁgﬂll ll=O(, inf 116511 (6e)

instead of

b 1= O( inf b )= © (652
05;215&1“ 5 1l (Ogglknﬂ [} 65 1) (6%.)

as in the case of convexity (see Diack 1999).

Remark 4 Theorem 1 gives the behavior of the test under the hypotheses Hy, :
= f + hpL. The fized alternative corresponds to hy, = 1. From theorem 1, the
test statistic diverges to +oo under any fixed alternative to H,. Moreover, the test



has power to detect local alternatives of the type Hy, approaching the null at rate
slower than n=1/25.2,
In the case of gaussian errors, assumption n; — +o0o is not needed.
Assumption (iii) is the same as in Aggarwal and Studden (1980)
It is easy to see that assumption (iv) implies that n-]-j.I-Pook“ = +co .

For a uniform design, i.e. p, = 1/r,i = 1,...,7 then (iv) is equivalent to
lim né§ =0

n—+o0

3 SCHLEE’S TEST

To construct a monotonicity test of a regression function, Schlee (1980) uses,
in a nonparametric model with random design, a modified version of the kernel
estimator. Basically, his test statistic only need to estimate the first derivative of
the regression function. However, computing the distribution of this statistic comes
to compute the distribution of the supremum of this normalized estimator over an
intervall. But this method imposes some theorical difficulties. To overcome the
problem, he proposes a sequence of points from the interval and uses the theory
of maximal deviation to obtain the distribution of the test statistic under the null
hypothesis. However, this work does not discuss asymptotic results. QOur goal in
this section, is to fill this gap. Thus, we will prove the consistency of the test and
show that it has power against local misspecifications. However, our framework will
be in the following nonparametric model with fixed design:

= fzi) + &, i=1,..,n

The deterministic design points z; lie in (0,1). We assume that the random
errors ¢; are uncorrelated and identically distributed with mean zero. Their variance
02 will be assumed unknown. Finally f is an unknown and we will use a kernel
estimator te approximate it.

3.1 Estimator

A classic estimator of a regression function in nonparametric model (with ran-
dom design) is the well-known Watson-Nadaraya kernel estimator defined by:

0y Sh K ()
)= S K== ©

where K is a kernel function and where i = h,, is a sequence of positive band-
widths depending on n.

In contrast to the quotient type estimator (6), Gasser and Miiller (1979) propose
for a fixed design regression problem, the following kernel estimator:

fulz) = %Z{ K(m;“)du}y,-
i=}]

i1

where
0=s50<s1< <8n =1 and z;<8;<Tiy.

For a differentiable function f, using a differentiable kernel, they adopt the following
defintion for estimating the first derivative f’.

Farla) = ;j{ [ K'(“”—;“)du}yi.



Some asymptotic properties, as weak and strong consistency are established by
Gasser and Miiller (1984).We will use f,,; to define a monotonicity test.

3.2 Assumptions

(A1) f is m times continuously differentiable on [0, 1] with m > 3.

(A2) support K C [-7,7], with T a positive real.

(43) [7_K(z)dz = 1.

(A4) K’ is Lipschitz-continuous of order v with 0 < v<1.

(A5) K is of order (1,m). The reader is referred to Gasser and Miiller (1984)
for a discussion about kernel of order (v, k), where v and k are positive reals.

(AG) 36>1: max; ISj = 8_,'_1| = 0(1/716)

Under (A1) through (A6), Gasser and Miiller (1984) prove that:

Efux(ty = [ K(@)f (¢ — zha)dz + O(1/nhn) )

-~ 1 = 5 _
corFaat) Fuat) = i) [k (B22) K (B ) o
+0 (1/n0h3 + 1/n1+7R3H) 9

and

var(Foa (&) = (0?/nh3) / {K'(x)}2dx + O (1/n®hS + /TR . (10)

T
T

3.3 'Test statistic

Consider the problem [H,, H;]. The idea of Schlee’s test goes as follows. f
differentiable and monotone is equivalent to : for all z, ' (z) 2 0 or, in words:

sup {—f'(2)} 0.

Therefore, if }':1,1 is a consistent estimator of f/, then P (sup= {—f;,l(z:)} 50)

should be closed to 1 when f is monotone. To see that, it is natural to reject
the null hypothesis of the test (that is the monotonicity of f) for the large values

of sup, {—};,,1(:1:)} . Questions concerning the determination of the distribution of

the supremum over the interval [0, 1] are unresolved. Nevertheless, it is possible to
claculate this distribution when the supremum is taken on a finite number of points
(see Schlee 1980). Thus, we will discretize the intervall {0,1].

Let t,...,x, a increasing sequel of k, points of [0, 1] such that

0=t < - <t, =1

We will assume that:

(AT) 5 ti..}.] Cs t" > 2Thn, i= 1,...,kn -1. (11)

Under (A7) it is easy to see that 27hn{ks —1)< 3 5n ! (41 —1;) = 1. Thus, if by,
converges to zero, we have kph, = ((1). To determine the asymptotic distribution
of sup; {—ﬁ, 1(t,-)} we will need the following results which about the maximal

deviation theory. See Schlee (1980) for a proof.



Theorem 5 Let { X}, be a sequence of random variable with mean zero and unit
variance such that

n
Xn! = zYnli,

i=1

{Yni:} independent random variables with a third absolute moment and which are
absolutely continuous with respect to the Lebesgue measure.

The correlation coefficient p,yy. of Xn; and Xpr has the properties

(3) ﬂLﬂ_f}mf’nu' <1,

(24) there is an integer w such that nliI-Eoopnw =0 i [~-U>w

(#i%) Let be T;, a sequence of integer, Tp, > 0, nlir_}_lmT = +co. The third moments
are assumed to satisfy

. . 2 Ta
(i) lim {(ogTa)* /T.} TF, EX3, =0,
- 3
(v) n_I}{}_lm Y1 BVl =0.
Then it i3 valid

n.]:l.TmP {lggxnxﬂ!<ﬂnz + b } = exp {_exP (-—2)}

whereas

an = 1/v2I0gT;, b, = +2ZTog T, — (1/2/21og T, (log log T}, + log4n).
The following results gives the asymptotic distribution of sup, {—ﬁ,,l(t,-)} .
Theorem 6 Under (Al) thmugh (A7) and with the edditional assumptions

Ele:f® < +00,i=1,.
nhd — +oo and nh2m+1 —0,

We have: (w12)

A nh3 12 G ’ Y —eT
o o[JT K @)} ae] T 1 ek {f“’l(t')_f (t,)}ganz+bn] =°
whith

an = 1/v2logks, bx = /2logk, — (1/2/2ogk,) (loglog k,, + log4r).

Proof. From (7) we can write for all ¢ € [0, 1]

Efy1(t) = " K(z)f'(t — zha)dz + O(1/nhy,).

-r

Using (A3) we can rewrite this equality in the following form
Efar() = f'®)+ | K@ {f'(t —cha) = £(8)} dz + O(1/nhy).
Taylor series expansion gives

1) (M) (¢ — ghpv
F1(t = zhy) = f/(t) + z f (t) —zh, )’ +i—-(g+;‘!“)(—xhn)"‘“
F=1

with v = v(x, hy,t) € (0,1). Since K is of order (1,m), we have

f_ :K(w){f'(t—rhn)—f’(t)}dm= K(z)_(_i).;"_)(_ b )™=z,

-



Since now, f™) is continous,

sup | fFO™)E) = (8 — wha) |- 0.

z&[0,1}
Then
sup | 740 e) — F™ (& — zhav) |- 0.
{z,1)€(0,1]x{0,1)
Hence,
3 _ g f(m)(t) m—1 T m—1 m=1
Efn,](t) = f (t) + (m _ 1)|h’n (—-:1’:) K(J:)d;’l: + o(hn ) + O(I/Hhﬂ)’
Therefore,
sup (nh3)/2 | Efa(t) - £(t) |= O ((nhZ™+1)12). (12)
tg(0,1]

On the other hand, using (8) we can see that

nhd
o2 [ K (@)} dz

var(fa1(t)) — L. (13)

Therefore, with (11) we see that

o Fa(t) ~ Efaa(t)

1<i<kn %,ar {ﬁlll(tl)}

has the same asymptotic distribution than

(nh3)'/? N ,
max Faa(tt) = fi(t) ¢
1<i<kn - [f:-,- (K (a:)}2 da:] 1/2 { 1L ! }

Let define X,; by:

_ Fnat)) — Efaa(te)

‘/var {ﬁ,‘l(t;)}

an

and
1 {4 K (s e
Wati = h_2 = .
" fvar {Fatn}
‘We have:

n
Xu= E Wi

i=]

10



with X,,; with mean zero and unit variance and {wnii}: independent. To prove the
theorem, it is enough to verify than the assumptions (i) — (v) of theorem 5 are
satisfied. We have

cov {ﬁ;,l(ti), ﬁ;,:(tt')}
Pripr = '
\/mr {};,1(&)} var {ﬁ‘.1(tt')}

From (A7)
|te =ty |Z 27h, 1#£T,

1o (t—u) ., [ty —u
/0 K { I }K { ™ }d‘u—-ﬁ.
Thus, using (8) and (9) we get
cov { Fan(tr), Far ()} = O(1/nh3) + O(1/nt+7h3H).

We obtain, from (7) that

Then,

lim popr=0 L#I

n—+00

Thus, (i) and (44) are satisfied. It is clear than (i) is also satisfied since that
k, > 0 and &, — +co.

Besides,
{5 K (2)de)} Pl P
| wnii [P= h_ﬁ = 3 .
" 1/var {fn,l(t!)}’
Now,
" K’( )d.'r—- (s: — s,_l)K( )

hn

for some s;-; < @; < 3;. Using (A6) we obtain

| 'K'( LN P < max | K'(2) P s = sic1 = OQ1/n),
TE[=T7,T

si1

From (12) we have

o] ~2etored”
Therefore
E| woi [P= 0 (1/(nha)¥/2).
Then,

Z E | wns ['= O (1/(nh3)1?)

i=1

11



The assumption (v) is verified. It remains to verify the assumption (iv).
We have

3
n
(Xn)® = (Z wnti) =D Wnlini;Wnik-

i=1 1,4,k
Since ¢; are independent and with mean zero, we obtain
n
B(Xu)® =) By
i=1
Then,
| B{Xw)® |= O(1/(nhS)'?)

Hence,

kn
Jdim | {(logka)?/kn} ;EX& | <, lim (logkn)*/(nh})'/>.

NOW, knhn = 0(1) and
(log hn)2/(nh3)Y? = (2RY/ 2 1og hL/2)? /(nh3)Y/2 — 0.

The theorem follows. =
‘We will define the monotonicity test as follows: we will reject the monotonicity
of f at size a when

(nh3)!/2
ane [ J7, (K (2)}” da]

where a, and b,, are the sequences of reals defined in theorem 6. To prove the
consistency of the test we will use the following lemma which introduces the notion
of uniformly subgaussian random variables. We shall say the random variables
21,...,2p are uniformly subgaussian random variables if, for some positive 8,T’, we
have:

- ba
72 e {—fn'l(t;)} o > —log {—log(l — a)}

E {exp | Bz |2}5I‘ < 400, i=1,..,p

For a proof of the following lemma, see Kuelbs (1978), inequality 3.10.

Lemma 7 Let z1,..., 2, be independent and centered random variables and a,, ..., ap
be a sequence of reals numbers. Assume that z,..., 2, are uniformily subgaussian
with constants (B,T'). Then there is a constant ( > 0 depending only on (8,1,

such that for any positive t,
t2
2 ) v ()
i=1%

P
P ( Zaiz;

i=1
We are ready now for the main result of this section. Note that theorem 8
gives a results about the power of the test. However, it is easy to see that the
local convergence rate in which this test has power to detect local alternatives is
the square root of the rate at which the test statistic converges to infinity (then
n~ 12422, see theorem).

12



Theorem 8 Under the assumptions of theorem 6, we assume that &; are uniformly

subgaussian random variables and there is a sequence of positive reals 6, such that

bn — 0 and nhiﬁﬁ — +00, Then the test has power to detect local misspecifications.
Proof. We have

—Fat @) + F1() = {—fn,l(t) + Eﬁ,l(t)} + {—Eﬁ.,l(t) + f’(t)} .
From (12),

sup (nh})"/? | Efaa(t) - £(¢) b= O ((nh2™+1)1/2)
te(0,1)

On the other hand

sup]{—ﬁz.l(t)“*“E}:'-’(t)} < h_l,?,z sup { 3:, K'(t:h—nx)dx} £,

t€[0,1 =1 telo,]
Then, using lemma 7, we get
P [::}31,)11 |-Foat®) + E};,l(t)l > 611]
SHX
Sy {supeeon S, K'(52)da )

i=1

< 2exp(—cnéihl).

< 2exp |—

Therefore

sup | —fa1(t) + Efni(t) |= Op(65).
te[0,1]

Hence,

Py(R.) > Py {(ﬂhﬁ)”2 jmax —f'(tr) = (nh})! /26, — (nhZ™H1)2 — b, > an"-]a}

where R, is the critical region of the test. Now, assume that f is non-decreasing,
there is a positive real ¢ > 0 and a point z¢ on [0,1) such that f' (xp) = . Hence,
since f' is continuous end the sequence of t; is dense on [0,1], we have,

1
max —f'(¢ .
P fltr) > ¢

On the other hand,

bn =0 (V —log hn) and  \/=loghn/(nh3)1/2 — 0,

Therefore,

(nh)Y2 | max  —f(t) = (nh3)'/26, — (mAZH)Y2 b, s, oo,

Furthermore, a, — 0 and the consistency of the test follows. m
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