Report 99-005
The Storage Capacity of the Hopfield Model
and Moderate Deviation Principles
Matthias Lowe
ISSN: 1389-2355



THE STORAGE CAPACITY OF THE HOPFIELD MODEL AND
MODERATE DEVIATION PRINCIPLES

MATTHIAS LOWE

ABSTRACT. This note relates the storage capacity of the Hopfield model of neu-
ral networks to the existence of a moderate deviation principle for the empirical
correlation of the patterns. This moderate deviation principle is satisfied under a
certain condition on the moment generating function of these correlations which on
the other hand can be verified in many cases by GHS- and FKG-type inequalities.
Examples of such situations will be given.

1. INTRODUCTION AND THE BASIC SETUP

The Hopfield model is the simplest and best-studied model of a neural network. Orig-
inally introduced by Pastur and Figotin [FP77] as a so-called frustrated system, it
received most of its attention by its reinterpretation by Hopfield [Ho82] as a very
simple model for the brain. Its closeness to the spin-glass models, in particular to
the Sherrington-Kirkpatrick model, evoked the physicists’ interest in the model and
led to a number of papers that claimed to rigorously “solve” the model (see, e.g.
[AGS87}). Unfortunately, their techniques which go under name “replica method”
(see e.g. [MPV87] for an survey over these techniques) not only involve some math-
ematically completely unjustified operations (such as interchanging different limits)
but also introduce objects which for a mathematician are hard to understand (e.g.
the largest eigenvalue of a symmetric N x N matrix when N goes to zero). So, though
the Hopfield model has been extensively studied yet the number of mathematically
clean results is limited, has basically been found in the last decade and is — with a few
exceptions — restricted to the case where the so called patterns are chosen to be i.i.d.
a case which is not very close to a realistic situation. The corresponding results have
been proven in a number of papers by Bovier, Gayrard, partially in collaboration
with Picco - for an exhaustive and very readable survey see [BP98] and especially
[BG98]| therein and all the references given there (e.g. [BG96a}, [BG97a], [BGITh]) —
and the fundamental paper by Talagrand [T98].

In this little note we will treat Hopfield models with correlated patterns and prove
a result on their storage capacity. The question of the storage capacity has been
asked for Hopfield models with i.i.d. patterns in different ways and by different
authors. The definition of storage capacity we use in this note (which in a way is
the most fundamental one) has been considered for i.i.d. patterns by McEliece et
al. [MPRV87]. Rigorous proofs can be found in the overview paper by Petritis [P96]
and extensions are due to Burshtein [Bu94]. Another, more liberal, definition of
storage capacity (which also allows minor errors in the reconstruction of the stored
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patterns) has basically been introduced by Amit et al. [AGS87] and rigorously treated
by Newman [N88]. Improvements of his results are due to Loukianova [Lou94] and
Talagrand [T95), [T98]. Both notions of storage capacity have been treated for weakly
dependent patterns produced by a Markov chain in {L699a).

To be more specific let us define the Hopfield model. First of all we choose two
numbers N, M € N which will denote the number of spins or “peurons” and the
number of so-called patterns, respectively. Note that M = M(N) may and actually
will depend on N. We shall write M and thus drop its dependency on N whenever
there is no danger of confusion. The random function

L MN
HN(O') = _iﬁ Z Z Jiajgfg;‘t e {_1: +1}N1 (1)
p=1ij=1
denotes the so-called Hamiltonian of the Hopfield model, which is a function of the
spin configuration ¢ € {—1,+1}". This function is random as the variables & €
{-1, +1} with £’ denoting the ith component of the uth pattern are chosen randomly.
In most of the papers on the Hopfield model it is generally assumed that the & are

iid. unbiased random variables, i.e., that at given system size N, the family of
random variables {&*:i € {1,...,N},u € {1,..., M(N)}} is independent with

P =+1) =B = -1)= )

for all i and p. Here and in the following P stands for the distribution of the (£); .
while we denote by E expectations with respect to P.

The case of independent but biased patterns, i.e. the case where (2) is violated, has
been treated e.g. in [L599b).

In this paper we will consider the case where the £ may be correlated in such a way
that a special condition on the four-point-correlation function (see Assumption 2.1
below) is fulfilled and the marginal distributions of the ¢¥ are still unbiased, i.e. (2)
is still satisfied. For correlated, biased patterns some additional term has to be added
to the Hamiltonian (1) to make the model work. As with this correction term neither
the results nor the techniques differ very much from the ones presented here (for a
discussion we refer the reader to [L699b]), we rather prefer not to treat the case of
unbiased patterns in any length.

Whenever convenient, we shall write & for the (N x M)-matrix consisting of the
(6);,, while & = (¢},... €M) and € = (&f,... ,€X), respectively, stand for the ith
row and the uth column of this matrix, respectively.

The spin variables are assumed to be independent with an unbiased a priori distri-
bution P, i.e.,

P(o; = +1) = P(o; = —1) = %
foralli e N.

The Hopfield model may now either be identified with the Hamiltonian (1) or, equiv-
alently, with the Gibbs measure at temperature 1/8 € (0, c0) with respect to the
Hamiltonian (1), i.e.,

ong(o) = 2~ exp{—BHn{c)}/Zn s, oE {-1,-!-1}”, (3)
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where the so-called partition function

Tns=oy 3 exp{~BH(2)} @)

re{—1,+1}¥
is the normalisation which makes gy g a probability measure.

The idea behind this setup is the following. Suppose for the moment that M = 1.
Then Hy(o) clearly has two minima at o; = &} for all i or o; = —¢! for all i. Now,
for any M, if the £’ are chosen as i.i.d. random variables, by the the Central Limit
Theorem

N
1 tev _ 1
N;‘S:‘sz _6FaV+O(m

for each choice of x and v (fixed), suggesting that for M(N) not growing too fast
(as a function of V) still the £# are minima of the Hamiltonian and thus ground
states of the system. So, if we interpret the £%'s as stored information in a brain
consisting of the neurons o; we might be able to even reconstruct noised information
by a stochastic retrieval dynamics, such as the Monte-Carlo dynamics, which favours
states of low Hy-value. (And, indeed, such a Monte-Carlo dynamics at temperature
1/8 has gy g as its invariant measure.)

) (5)

As this heuristics and, in particular (5), is not available for correlated patterns, several
authors doubted that the Hopfield model in the current setup would be able to store
any increasing number M(N) of correlated patterns. In [L699a] we have been able
to show that this is indeed the case, provided the variables & are either correlated
in u or in 7 and independent in the other variable and that the correlations stems
from a one dimensional Markov chain. Unfortunately, the proofs found there are not
easy to transfer to any other situation (for example to the relevant and interesting
situation where the £/ for every fixed i describe a picture, thus a two dimensional
random field) since it heavily exploits the martingale structure of one dimensional
Markov chains.

In this note we will show that under a condition which is easy to verify in many
important examples and which is closely related to a so-called moderate deviation
principle for the empirical four point correlations, also correlated patterns may be
stored in the Hopfield model described above, provided we use the notion of storage
introduced by McEliece et. al. [MPRV87].

This little note has two further sections: To be able to describe our result in Section
2 we first will specify the notion of storage we have in mind, then introduce our
central assumption (Assumption 2.1) which is closely related to a moderate deviation
principle for the patterns and finally give the actual result. Section 3 contains the
proof together with a list of the most important examples.

Acknowledgement: I am thankful to Peter Eichelsbacher for bringing reference
[Wu95] to my attention. I also would like to express my gratitude to Wim Senden
for helping me with the technical details.
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9. THE NOTION OF STORAGE CAPACITY AND THE MAIN RESULT

In this section we will mainly state our result on the storage capacity of the Hopfield
model with correlated patterns.

First let us first briefly explain the concept of storage we are dealing with. The
idea behind it is that a possible retrieval dynamics is a Monte-Carlo dynamics at
zero temperature working as follows: Choose a site ¢ at random. Flip the spin o;, if
flipping lowers the energy (the Hamiltonian) and let the spin o; unchanged otherwise.
On a more formal level we define the gradient dynamics T on the energy landscape
on {—1,+1} induced by Hy via

T;:0;— sgn(z 0;Ji5)
i
where sgn is the sign function. The map T is then defined by T (o) := (Ti(0:))i. We
will call a configuration ¢ = (o;)i<n stable if it is a fixed point of T, ie.

0; = sgn(z o;J;j) foralli=1,...,N

i
which means that o is a local minimum of the Hamiltonian. The storage capacity
in this concept is defined as the asymptotics of the greatest number of patterns
M := M(N) such that all the patterns £” are stable in the above sense almost surely
or with probability converging to one. (Here and in the following the notion “almost
surely” refers to the probability measure on the space of all sequences of patterns
(of infinite length) while in “probability converging to one” the convergence is with
N — 00). Note that this concept is a very natural way to define “storage capacity”,
since that the stored information is stable under the retrieval dynamics is in some
sense “the least we would expect”.

Let us quickly mention another approach to storage capacity which is due to Amit,
Cutfreund and Sompolinsky [AGS85] and has rigorously been analysed by Newman
[N88]. It takes into consideration that we possibly are willing to tolerate small errors
in the restoration of the patterns. So we are satisfied, if the retrieval dynamics
converges to a configuration which is not too far away from the original patterns.
Thus in this concept a pattern £” is called stable, if it is close to a local minimum of
the Hamiltonian, or, in other words, if it is surrounded by a sufficiently high energy
barrier. Technically speaking we will call £” stable if there exist £ > 0 and § > 0 such
that

nt | Hu(0) 2 Hu(€") +eN. ©)
Here the set Ss(¢¥), the infimum is taken over, is the Hamming sphere of radius
6N centred in £”. Again we will use the notion of storage capacity for the maximal
number M (N) of patterns such that (6) holds true for all £ almost surely.

Before stating our main result we have to make one central assumption. To describe
the consequences of this assumption we have to dwell a bit on large an moderate
deviation theory.

In general, if X, is any sequence of random variables, we say thaf it obeys a large
deviation principle (LDP) with speed ¢, and rate function [ (+), if limp~o &n = 0,
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and
0 I(:) <o

is lower semi-continuous, the level sets {z : I(z) < L} are compact, and if for all
Borel sets A the following inequalities hold

— ienj I(z) < liminfe, log P(X, € A°) < limsupe,log P(X, € 4) < — inf I(z).

zCA® N=—+00 n—co z€EA

Here A° and A, respectively, denote the interior and the closure of A, respectively.
The best understood example of an LDP goes back already to Cramér [Cr37]. He
showed that the sequence X, = ;11- ~, Y; for an i.i.d. sequence Y; with EY; = 0 and
Ee'™t < oo for all ¢ obeys an LDP with speed n and rate function 7(-) which is the
Legendre transform of Ee:

I(z) = sup[tr — Ee™].
teR

As a matter of fact when “changing the scale 1” in this example to 7?:% for an

increasing function ¥(n) with ¥(n) — oo but ¥(n)//n — 0 well still have an LDP
but this time with speed ¥?*(n) and rate function t?/20? (where 0 = EY?). As
this reflects both, the closeness to the large deviations as well as the closeness to
the Central Limit Theorem (CLT), the latter LDP is often referred to as moderate
deviation principle (MDP).

Observe also that in the MDP above the rate functions is independent of the speed,
i.e. the rate function is the same of the whole range for possible v functions, while it
is different for 4 = /n. Therefore an LDP with rate function that does not depend
on the speed is commonly called an MDP (not only for sequences of i.i.d. variables).
For a general and very readable survey over the huge field of large deviation theory
we refer the reader to the book of Dembo and Zeitouni [DZ98].

The following assumption is closely related to the existence of an MDP.

Assumption 2.1. Henceforth we shall assume the following for the “four-point-
correlation”- functions:

N M(N)

X&' =35 etererer —ml, (7)
=1 1=vs#pu
(1<t<Nandl<u<N fized), where
N  M{N)
mp;=E) D erererey.
=1 1=vsp
Consider
. 1 .
B gy Y
AGH(E) - N(M(N)—~1)Iog/1lexl)( tX5dP (8)

and assume that there is a function A¥* : R — (—o0, c0] which is finite in a neigh-
bourhood of zero such that

AR = M%) YieR (9)
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Moreover assume that A%*(t) and A™i(t) are twice differentiable and that
(A%)" (&) — (A*) () Vteo,] (20)

and that this convergence is uniform in t for some § > 0 and uniform in i, p. Here
we define

i i .1 i i
(A“' )n(o) = (A#- 1(0) = tl—l»r(%' ; ((A"' )'(t) _ (A'“‘ )’*_(0))
Additionally, suppose that
log N
N |m£].t - mﬂ,il — 0. (11)

Finally assume that
infm,; >0
1,4
for all N, together with _
sup(A*9)"(0) <V < o0
i

for all N and some V.

Remark 2.2. When analyzing the proof of Theorem 2.3 below we find the following:

a) If indeed, inf; , m,; > 0 condition (11) is obsolete. Moreover we also might find
a result for inf; , m, ; < 0 if it is not too big in absolute value. As it is quite hard
to think of a situation where this might occur, we didn’t gnatify this statement.

b) Actually also the uniformity requirement in (10) is a bit too strong. Indeed much
less is required, e.g. that there is a seugnce of numbers A(N, i, u} such that

(A" () = (A*)" ()] < AN, i) = 0
uniformly in some interval t € [0,6) and such that

N
N7 S AN, i, p) = 0
=1

for all € > 0 uniformly in p or

M N

N~—%-¢ Z Z A(N,i,u) — 0

p=1 i=l

for all e > 0. This condition will be easier to check in some examples.

With these definitions our result concerning the storage capacity for correlated pat-
terns reads as follows:

Theorem 2.3. Assume the random matriz € fulfils Assumption 2.1 and suppose that
M(N) = &

ylog N~
Then there ezist positive numbers ¢y > ¢z > c3 > 0 such that the following assertions

hold true:
1. Ify>a

P(lim inf(NhTer = ¢¥)) =1

i.e. the patterns are almost surely stable.
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2. Ifvy> ey
P((NMTer = ¢#)) =1 - Ry

with imy_. Ry = 0, i.e. all the patterns are stable with probability converging

to one.
3. Ify>cs forevery fized p=1,... ,M(N)

P(T€* =€) = 1 — Ry

withlimy_.o Ry = 0, i.e. every fized pattern is stable with probability converging
to one.

Remark 2.4. The above theorem basically states that the storage capacity of Hopfield
models with correlated patterns fulfilling Assumption 2.1 qualitatively behaves like that
of Hopfield models where the patterns are chosen i.i.d. Although Assumption 2.1
seems a bit technical, the proof of Theorem 2.8 to come in the next section will show
that a condition similar to Assumption 2.1 is actually needed. Moreover we will see
that it is satisfied in a variety of important examples.

3. PROOF OF THE THEOREM AND EXAMPLES

In this section we will give the proof of Theorem 2.3 and some examples where
Assumption 2.1 is fulfilled.

We will substantially make use of that Assumption 2.1 is indeed closely related to an
MDP. This observation is due to Wu [Wu95| in a more general setting. He also gives
additional conditions that imply a CLT.

Proof of Theorem 2.3. Observe that — according to the definition of the dynamics
T and the Hopfield model — for any 1 < v < M the pattern &” is stable if and only
if

N M(N)
& —sgn(Zs Jg) =sgn(d>_ >  ereter)

=1 i=1 u=1

foralli=1,...,N. Therefore £ is stable if and only if
N M(N)

YD g >0

j=t p=1
for all ¢ =1,... ,N. Now the sum on the right hand side contains one deterministic

positive summand (for 4 = v), such that the sum actually has a tendency to stay
positive. As this deterministic part has size N the pattern £ is stable if and only if

N M
D0 ereeted > -N

i=1 1=ustv

foralli=1,... ,N.
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Hence for all ¢ > 0
P(&" is not stable )

N N M
STPOC Y egere < -N)
i=1

i=1 l=ps#v

N N M
et (exp (—tz 5 5;’&;&#&;‘)) (12)
i=1

i=1 1=pstv

IA

FAN

where we have applied the exponential Chebyshev-Markov inequality.
Centering the sum in the exponential on the right gives

N N M
P(¢” is not stable ) < Ee"(N"mﬁ*)E (exp (—t(z 2 H m,’}:,- ))
i=1

=1 1=uzv
N .
_ Ze—t(N+mﬂ;)]E(exp(—tX;;z)) 1
i=1

In order to estimate ]E(exp(—tX,'(;i)) we will now make use of Assumption 2.1. Indeed,
as EX}' = 0 we have by the twice differentiability of A% together with

A%y =EXy =0

that .

A%i(s) = / (A%)"(z)(s — z)dz

0
for all 0 < s < §. Similar for A**(s):
A%(s) = (A),(0) + f (A" (z)(s — z)dz
0
for all 0 < s < 6. Now as a consequence of Assumption 2.1
(A”‘i)’(x) - (Au,i);(o) — fo (Ay’i)”(s)ds — I&E’nm‘/{; (A‘,’;f)"(s)ds — (Ay,i)r(m).

Thus (A""');(O) = 0 and therefore

1 X .
sup — A% (z) — A (x
051:26 2 | N ( ) ( )|

< s 5 [l o) - () @ - (1)
< s My - )|

where the expression on the right hand side converges to zero. Note that under the
uniformity assumption of Assumption 2.1 the above convergence is also uniform in ¢
and v.

This estimate will be crucial for the rest of the proof. We use it with « = t/a(N)
for some fixed ¢ and for some sequence a(N) with a(N) — oo and a(N)/VNM — 0.



THE HOPFIELD MODEL AND MODERATE DEVIATIONS 9

Then the above estimate implies by Taylor expansion of A»' that

JRS}’,}”“% JAR (t/a(N)) — = (A‘”) (0)t2|

< lun |a2(N)A“(t/a(N)) - —(A”) (O)tzl =0
implying that

Eexp( (N)x"') = p( 2t2%l(mﬂ)”(0))(1+o(1))

where due to the uniformity assumption in Assumption 2.1 the o(1) is uniform in 4
and v.

Plugging this into (13) gives by replacing ¢ by ;(tT)
P(&” is not stable )

< zexp( a7+ i) ) exo (52T (0)(@)) 1+ o)

< zjexp( ) O+ + iy s = ) ) exp (3250 ) 1 -+t

where again we have made use of Assumption 2.1 and the o(1) term is uniform in i
and v.

Now choosing the essentially optimal ¢ = 1/y and a(N) = M(N) we first see that with
the ansatz (15) below is admissible in the sense that a(N) — 0 but a(N)/vNM — 0
and moreover that

N
P(£” is not stable ) < Zexp (—%—Affv—v) exp(ﬁ(m,,,,- - m,f,—)) (14 o(1)).

i=1

The ansatz
N
M =
(M) = (1)
for some positive constant -y yields
P(f ¥ is not stable )
1 v log N N
< Z ex exp(y(log N/N)(m,; — m))) (1 + o(1))
141
< Nexp(——~2-7 (:EN)(1+0(1)) (16)

The choice vy > 2V gives

P(£” is not stable ) < N'=#% — 0,
which is part three of the theorem.
For parts one and two observe that by (16) and the ansatz (15)

N? ( l'ylogN

D€V i < .
P(Jv : £ is not stable ) < TTog N exp| —3 )(1 o(1))
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So choosing «y > 4V yields
P(3v : £ is not stable ) — 0

which is part two of the theorem.
Finally the choice of v > 6V gives that

P(3v : € is not stable ) < N7*

for some x > 1. As N~ is summable (over N) the Borel-Cantelli Lemma eventually

proves part one of the theorem.
0

Remark 3.1. a) Observe that the theorem gives precise bounds on the constants
c1, ¢y and cs occurring in Theorem 2.3. Note also that if inf,; m,; is strictly
greater than zero these bounds can be improved.

b) Check that Remark 2.2., in particular part b) of it, apply.

To see whether the conditions of Assumption 2.1 are ever fulfilled let us start with
the very basic example of i.i.d. patterns where all the calculations can be done by
hand.

Example 3.2. Independent patterns
Assume that the matriz £ consists of i.i.d. entries obeying (2). Then by independence
forallv, i and N

N M
log]Eexp(—tZ Z grerebey) = logcosh(t).

i=1 1Sp#v

; 1
A =

¥ = Ny -1
Hence A converges (and indeed ist identical) to g(t) := log cosh(t) as well as all its
derivatives converge to the corresponding derivatives of log cosh(t). Taking moreover

into account that
N M
E) Y &ege=0

=1 1<p#y
for all v, i and N and that

d2

pres log cosh(t)
Theorem 2.8 not only yields that the Hopfield model can store ;%VE—N i.1.d. palterns
but also gives the constants ¢c; =6, c; = 4, and c3 = 2, respectively, for the cases one,
two, and three, in Theorem 2.8, respectively. These results agree with those obtained
by McEliece et al. [MPRV8T} and [P96] and have basically been shown to be optimal
by Bovier [Bo99].

For the other examples we heavily exploit the following theorem from [Wu95, Theo-
reml.4].

=1

t=0

Theorem 3.3. If for some 6 > 0 the functions (A'I‘\;i)’ are all concave (or convez)
on [0,8) and if Ay is twice continuously differentiable on [0,8) and if moreover

(A%)"(0) = (AF)"(0) (17)
uniformly in p and i as N tends to infinity, then (8) and (9) are satisfied.
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Remark 2.2 b) applies correspondingly.

The reason why this theorem is extremely helpful is (as was also already pointed out
by Wu) that the concavity can be achieved by a GHS inequality while (17) usually
follows from a FKG-type inequality (in the examples below we will follow [Wu95,
Proof of Lemma 3.2], the interested reader will find the basic ideas there).

If we now introduce correlations among the patterns we might — from a mathematical
point of view — of course, correlate each ¢ to each §; in some strange fashion and
look whether Assumption 2.1 is still fulfilled. Taking into account, however, that the
vector (£}')i1,... v is supposed to describe an image or at least some information to be
stored (which is different for different ») there are two reasonable ways to correlate
the patterns. The correlation of the £’ in y is called sequential correlation and may
be reasonable e.g. when storing films, while the correlation in i is referred to as
spatial correlation, which may be a reasonable model when storing images.

The following two example are basically covered by [L699a, Theorems 2.1,2.2]

Example 3.4. Spatial Markov Chains

Consider sequences of spatially correlated patterns (€8)iz1,... Np=1,.. M) where the
correlation stems form a one dimensional Markov chain. More precisely we will
assume that the random variables (¢!)icnyen are independent for different u and for
fized p form a Markov chain in i with instial distribution

P =24, u=1,... M)=2"M  forall 2% € {-1,1} (18)
and transition probabilities
P(f:-":xﬂ{;-’::c;,j:l,...,z'-l,v=1,...,M) (19)

= P(¢f= g, = ,) = Q(ziy, z¥).

Here Q denotes a symmetric 2 X 2 matriz with entries

- p l-p
N ( l1-p p )
where 0 < p < 1 (note that p = % is the case of independent patierns). Because of

the independence and identical distribution of the patterns ¢*

v,i 1 - - v v
AGHt) = NN —T) logEexp(—tY Y grereser)

=1 1<p#v

N
1
v losEexp(—t ) £16€le).
=1
As the whole situation is completely symmetric under the flipping 2 into the direction
of & we may assume that €162 = 1. Hence the computation above boils down to the
computation of

iy 1 2
A%(t) = -ﬁloglEexp(—tZ§;§§)

—
(which does not any longer depend on v). Observe that (Y;) := (€1€3) is a Markov
chain in § with transition matriz

= g l-—g
Q‘(l—q q )
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and with the fited “starting” point Y; = 1. As ¢ :=p* + (1 — p>1/2andY; =1
also Y; has a tendency to be +1 rather than —1 and therefore (as is eastly checked)

N
E)_§§ 20
s=1
which has been part of Assumption 2.1. Now as its is not too difficult (basically using
Perron-Froebenius theory) to show that

N
Yb—log]Eexp(—tZ{j{?) — log () (20)

J=1
where A\ (t) is the largest eigenvalue of

s 9t (1-ge

Q) = ( (1 - q)et gét )
we could try to verify Assumption 2.1 direcily (the calculations could partially fol-
low those in [L699a}). However, note that the limat A(+) in (20) always ezists due
to Varadhan’s Lemma, because the chain Y; obeys an LDP. On the other hand i
follows easily from the presentation of a Markov chain as a random field (see e.g.
[Ge88, Chapter3]) and the GHS inequality for Bernoulli random fields (as derived in
[GHS70], [EMN76], [EN78]) that the chain Y; fulfils the GHS inequalities. Following
[Wu95, Lemma3.2] and applying [E85, pp.167) these imply the concavity of the As.
For the same reasons it also fulfils the FKG inequality ([FKGT1}, e.g.). They imply
that A"(0) = 3°32 EYyY; and that (see [Wu95, Lemma3.2]) (A“,ﬁ,")"(O) = Z;.V___l EYY;
converges to A"(0). As this convergence is uniform for all points which are outside
a strip (of width growing slowly with n) along the boundary (which is negligible com-
pared to the other points) indeed the assumptions of Theorem 3.8 are fulfilled. Hence
following Theorem 2.8 we obtain a storage capacity of N/vlog N patterns. However,
to obtain bounds for v which are of the right order, more subtleties such as exploiting
the Martingale structure of a Markov chain, are needed.

Example 3.5. Sequential Markov Chains

One could as well consider patterns that are only sequentially correlated by a Markov
chain. So more precisely, assume that the random variables (£!)ienen are indepen-
dent for different i and for fized i form o Markov chain in p with initial distribution

P(et=gl i=1,...,Ny=2"" forallz} € {-1,1} (21)
and transition probabilities
P(&f‘:xfl&}’mw?,j:l,...,N,V=1,...,,u—-1) (22)

= Pt =gt =2t = Qb at)

where Q is as above. Note that, although the Hamiltonian of the model works differ-
ently in the lower indices ¢ and the upper indices y, our definition of storage capacity,
however does not see a big difference between the model in this example and the model
in the ezample above. So, indeed the case of the sequentially correlated patterns can be
treated just like the case in Example 3.4 by interchanging the réle of i and u. It should
be mentioned that a minor difference could be observed when taking into account also
the erpectations of the Y;, as has been done in [L699a).
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The following example we were not able to treat in [L699a]. To understand why we
consider it important, recall that the usual setup for an image is that of a random field.
In the next example we will try to store M independent images in the Hopfield model.
Avoiding the possibly complicated notation of random fields we restrict ourselves to
one of the simplest cases: the ferromagnetic Ising model. Intuitively speaking we will
try to store M independent black and white pictures in the Hopfield model where
a black pixel is more likely to sit next to a black pixel than a white one (and vice
versa).

Example 3.6. Independent Ising models

Consider patterns (£');enuen that are independent of different u and for fized p are
distributed according to the distribution of a d-dimensional Ising model at inverse
temperature 3 which is not the critical temperature, with zero erternal field and free
boundary conditions (otherwise the patterns might have a bias). That means (for
simplicity) we assume that N is a d’th power and that for each fixed p the spins (£F);
are distributed according to

P(e4) = exP(ﬂ ?}:(:é; & fj ) - (23)
Here
Zn(B) = exp(B Z 0:0;)

is the so called partition function of the Ising model, B € [0, 00) is its inverse tem-
perature, and the summation > <ij> 18 taken over all neighbouring pairs of indices
i,7 in Z¢ that sit inside the box of side length NY¢ centred at the origin. Again due
to the independence and identical distribution of the patterns £#

yli — 1 = M i 4 v
AN (t) - N(M(N) _ 1) log]Eexp (-t Jz:; 1;{) gffi 6;163)
N

= logEexp(~t 3 eleleed).

=1

Again we might flip the images until we may assume that £1é2 = 1. Hence we are
again left to treat

N
vt = %I—log]Eexp(—t Z €.

=1
(where the upper indez v has been skipped since obviously this quantity does not depend
on v) under the restriction that & = €2 = 1. The ezistence of the limit as N
approaches infinity of the A, again can be proved by large deviation arguments (using
e.g. [Co86], or [O188]) as the vectors ((€5,€2)); may be regarded as a two dimensional
random field with nearest neighbour interaction. On the other hand considering the
partition function of this model with external field h = (hj)j=1,. N

N
Zn(B,h) =) exp(B Y Elet+6 Y €2+ S hy(el +61)

§1.62 <k,j> <k,j> =1
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we see that clearly )
ZN(ﬁ,h)==(Zﬂ(ﬁ,hD2

where

N
ZN(ﬁ,h) = Zexp(ﬁ Z 005+ Zhjaj)'

<k,j> 7=1

Therefore % log Zn(f) satisfies
O
Oh; M0 N

for each choice of the indices j, k,l as also Tb—log Zn{PB) satisfies these so-called GHS
inequalities. Moreover as the system has component-wise ferromagnetic nearest neigh-
bour interaction the FKG-inequalities follow along the lines of [FKG71]. Finally by
the famous Onsager formulas the Ising model away from the critical temperature has
exponentially decaying and hence summable correlations which readily implies the
summability of the correlations in our model. So by following the arguments in Ez-
ample 8.4, i.e. using again [Wu95, Lemma3.2], which is based on the GHS and the
FKG inequality, together with [E85, pp.167] we see that the conditions of Theorem
9.8 are satisfied. Thus Theorem 2.8 is true and also in this case the Hopfield model
has a storage capacity of N/ylog N patterns for some constant .

log Zn(8) < 0

Of course, we might also try to store more complicated random fields in the Hopfield
model. As can be seen in the above examples this will always work as we can make
sure that the conditions of Theorem 3.3 are satisfied, e.g. by employing [Wu95,
Lemma3.2]. We are also firmly convinced, but have not checked the details, that
along the same lines we could show that the Hopfield model can store N/ylog N
independent Curie-Weiss models.
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